NASM — The Netwide Assembler

version 2.11.03

© 1996-2012 The NASM Development Team — All Rights Reserved

This document is redistributable under the license given in the file "LICENSE" distributed in the NASM
archive.

Contents

Chapter 1: Introduction. e e e e e 16
LAIWhatIs NASM?. e 16
1.1.1 Why Yet Another Assembler?. e 16
1.1.2 License ConditionS e e e 16
1.2 Contact Information L 17
L3 Installation. e 17
1.3.1 Installing NASM under MS-DOS orWindows, 17
1.3.2 Installing NASM under Unix e e e e 18
Chapter 2: Running NASM. e 19
2.1 NASM Command-Line Syntax e e 19
2.1.1 The-o Option: Specifying the OutputFileName 19
2.1.2 The-f Option: Specifying the Output File Format 20
2.1.3 The-l Option: GeneratingalListingFile 20
2.1.4 The-MOption: Generate Makefile Dependencies. 20
2.1.5 The-MGOption: Generate Makefile Dependencies 20
2.1.6 The-MFOption: Set Makefile Dependency File 20
2.1.7 The-MDOption: Assemble and Generate Dependencies.
2.1.8 The-MTOption: Dependency TargetName. 21
2.1.9 The-MQOption: Dependency Target Name (Quoted) 21
2.1.10 The-MPOption: Emit phony targets. 21
2.1.11 The-F Option: Selecting a Debug Information Format 21
2.1.12 The-g Option: Enabling Debug Information. 21
2.1.13 The-X Option: Selecting an Error Reporting Format. 21
2.1.14 The-Z Option: Send ErrorstoaFile. 22
2.1.15 The-s Option: Send Errors tetdout, 22
2.1.16 The-i Option: Include File Search Directories 22
2.1.17 The-p Option: Pre-Include aFile. ... 23
2.1.18 The-d Option: Pre-DefineaMacro. v i it 23
2.1.19 The-u Option: UndefineaMacro. i ittt 23

2.1.20 The-E Option: Preprocess Only. i e e e e e 23

2.1.21 The-a Option: Don’t Preprocess AtAll. 24
2.1.22 The-OOption: Specifying Multipass Optimization 24
2.1.23 The-t Option: Enable TASM Compatibility Mode 24
2.1.24 The-w and-WOptions: Enable or Disable Assembly Warnings 24
2.1.25 The-v Option: Display VersionInfo 25
2.1.26 The-y Option: Display Available Debug Info Formats 26
2.1.27 The——prefix and—--postfix Options. 26
2.1.28 TheNASMEN¥ENnvironment Variable, 26
2.2 Quick Start for MASM USEIS e e e e e e 26
221 NASMIs Case—Sensitive e 26
2.2.2 NASM Requires Square Brackets For Memory References 26
2.2.3 NASM Doesn'’t Store Variable Types e 27
224 NASM DoesnASSUME 27
2.2.5 NASM Doesn’'t Support Memory Models 27
2.2.6 Floating—Point Differences e 28
2.2.7 Other Differences. e 28
Chapter 3: The NASM Language 0 i i e e e e e e e e e e e e e e e 29
3.1 LayoutofaNASM Source Line e e 29
3.2 Pseudo-Instructions L e 30
3.2.1DBand Friends: Declaring Initialized Data 30
3.2.2RESBand Friends: Declaring Uninitialized Data 30
3.2.3INCBIN: Including External Binary Files. 31
3.24EQUDefining Constants e e e 31
3.2.5TIMES: Repeating InstructionsorData 31
3.3 Effective Addresses 32
3.4CoNnstants L e e 33
34 1NumericConstants e 33
3.4.2Character Strings e e e e e e 34
343 Character Constants. e 35
3.44String Constants L L e e e e 35
3.4.5Unicode Strings. L e e e e 35

3.4.6 Floating—PointConstants e e e 35

347 Packed BCD Constants e e e e e 37

BE5EXPrESSIONS i e e e e 37
3.5.1] : Bitwise OR Operator. o e e 37
3.5.27: Bitwise XOR Operator. o e e e e e e 37
3.5.3& Bitwise AND Operator. e e e e e 37
3.5.4<<and>>: Bit ShiftOperators e 37
3.5.5+ and-: Addition and Subtraction Operators 37
3.5.6*%,/,/l ,%and%%Multiplication and Division. 38
35.7Unary Operators e e e e e e e e e e 38

3.6SEGandWRT. e 38

3.7STRICT: Inhibiting Optimization e e 39

3.8 Critical EXPressions e e e e 39

3.9 Local Labels. 39

Chapter 4: The NASM PreproCessor o v v i i i e e e e e e e e e e e e e e e 41

4.1 Single-Line MacCros e e e 41
4.1.1 The Normal Wayedefine e 41
4.1.2 Resolvingbdefine : %xdefine 42
4.1.3 Macro Indirectior®6[...] e e e e 43
4.1.4 Concatenating Single Line Macro Toke¥s; 43
4.1.5 The Macro Name Itsefb?and%?? 44
4.1.6 Undefining Single-Line Macro%undef, 44
4.1.7 Preprocessor Variablésassign L 44
4.1.8 Defining Strings¥edefstr L 45
4.1.9 Defining Tokengodeftok L 45

4.2 String Manipulation in Macros. e e e e 45
4.2.1 Concatenating String&istrcat L 45
4.2.2 String Lengthestrlen L L L e e 46
4.2.3 Extracting Substring®bsubstr L 46

4.3 Multi-Line Macros%macro e e 46
4.3.1 Overloading Multi-Line Macros i e e e 47
4.3.2 Macro-Local Labels 48
4.3.3 Greedy Macro Parameters. e e e e e e e 48
4.3.4 Macro Parameters Range e e e 49

4.3.5 Default Macro Parameters e e e e e e 50

4.3.6%0Q Macro Parameter Counter. e 51
4.3.7%0Q Label PreceedingMacro e 51
4.3.8%rotate : Rotating Macro Parameters e 51
4.3.9 Concatenating Macro Parameters e e e 52
4.3.10 Condition Codes as Macro Parameters. v v i 53
4.3.11 Disabling Listing EXpansion. e e e e e 53
4.3.12 Undefining Multi-Line Macro®bunmacro. v i i e e 53
4.4 Conditional Assembly L e 54
4.4.1%ifdef : Testing Single-Line Macro Existence. 54
4.4.2%ifmacro : Testing Multi-Line Macro Existence 55
4.4.3%ifctx : Testingthe ContextStack. 55
4.4.4%if : Testing Arbitrary Numeric Expressions 55
4.4.5%ifidn and%ifidni : Testing Exact TextlIdentity 56
4.4.6%ifid , %ifnum , %ifstr : Testing Token Types 56
4.4.7%iftoken :TestforaSingle Token, 57
4.4.8%ifempty : Testfor Empty Expansion. e 57
4.4.9%ifenv : Test If Environment Variable Exists 57
4.5 Preprocessor LOOPHIreD. v v v e e e e e e e e e e e e e e 58
4.6 Source Files and Dependencies e 58
4.6.1%include :Including OtherFiles 59
4.6.2%pathsearch : SearchthelIncludePath 59
4.6.3%depend: Add DependentFiles 59
4.6.4%use: Include Standard Macro Package 60
47 TheContext Stack 60
4.7.1%push and%pop Creating and Removing Contexts 60
4.7.2 Context-Local Labels. 60
4.7.3 Context-Local Single—-Line Macros. e e 61
4.7.4 Context Fall-Through Lookup e 61
4.7.5%repl : Renaminga Context e e e e 62
4.7.6 Example Use of the Context Stack: Block IFs 62
4.8 Stack Relative Preprocessor Directives. e e e 64

4.8.1%arg Directive. L e e e 64

4.8.2%stacksize Directive L e e e 64

4.8.3%local Directive e 65
4.9 Reporting User-Defined Errofgierror , %warning , %fatal 65
4.10 Other Preprocessor Directives e 66

4.10.1%line Directive e 66

4.10.2%!<env>: Read an environmentvariable.. L Lo 67
4.11 Comment Block®bcomment L 67
412 Standard MacCros e 67

4.12.1 NASM Version Macros o o v v i e e e e e 67

4.12.2__NASM_VERSION_ID_:NASMVersionID. 68

4.12.3 _NASM _VER :NASMVersionstring i ... 68

4.12.4 FILE__ and__LINE__ :File Name and Line Number. 68

4125 BITS__ :CurrentBITSMode i 68

4.12.6__ OUTPUT_FORMAT: Current Qutput Format 69

4.12.7 Assembly Date and Time Macros 0 i i i i e e 69

4.12.8 USE package :Packagelnclude Test. 69

4129 PASS_ :AssemblyPass. e 70

4.12.10STRUCandENDSTRUDeclaring Structure Data Types. 70

4.12.11ISTRUC, AT andIEND: Declaring Instances of Structures 71

4.12.12ALIGN andALIGNB: Data Alignment e 72

4.12.13SECTALIGN Section Alignment. e 73

Chapter 5: Standard Macro Packages i e e e 74
5.1laltreg : Alternate Register Names e 74
5.2smartalign :SmartALIGNMacro e e 74
5.3fp : Floating—point macros. e e e e 75
5.4ifunc :lIntegerfunctions L e 75

5.4.1 Integer logarithms e e 75

Chapter 6: Assembler Directives e e e e 76
6.1BITS: Specifying Target Processor Mode i 76

6.1.1USE16& USE32 AliasesforBITS e 77
6.2DEFAULT Change the assemblerdefaults 77

6.2.1REL& ABS RIP-relative addressing e 77

6.2.2BND& NOBNDBNDprefix o e e 77

6.3SECTIONor SEGMENTChanging and Defining Sections 77

6.3.1 The SECT__MaCro. it e e e e e e e e e e e s e e e 78
6.4ABSOLUTEDefining Absolute Labels. 78
6.5EXTERNImporting Symbols from Other Modules. 79
6.6 GLOBAL Exporting Symbols to Other Modules 80
6.7COMMOMefining Common Data Areas. v i v v i e e e 80
6.8CPU Defining CPU Dependencies. i i i i i e e e e e e 80
6.9FLOAT Handling of floating—pointconstants 81

Chapter 7: Output Formats e e e 82
7.1bin : Flat-Form Binary Output e e e 82

7.1.10RGBinary File Program Origin e e e 82

7.1.2bin Extensions to th8ECTIONDirective v i 83

7.1.3 Multisection Support forthen Format 83

7.1A4MapFiles. e e 83
7.2ith :Intel Hex Output. e e 84
7.3srec : Motorola S—Records Qutput e 84
7.40bj : Microsoft OMF ObjectFiles e 84

7.4.1obj Extensionsto thEEGMENDirective, 85

7.4.2GROUPDefining Groups of Segments e 86

7.4.3UPPERCASHDisabling Case SensitivityinOQutput 86

7.4.4IMPORT Importing DLL Symbols e 86

7.45EXPORTExporting DLL Symbols 87

7.4.6..start : Defining the Program Entry Point. 87

7.4.70bj Extensions to thEXTERNDirective. 87

7.4.80bj Extensions to th€EOMMONirective. v i i 88
7.5win32 : Microsoft Win32 ObjectFiles. o 88

7.5.1win32 Extensions to thB8ECTIONDirective 89

7.5.2win32 : Safe Structured ExceptionHandling 89
7.6win64 : Microsoft Win64 ObjectFiles. o 91

7.6.1win64 : Writing Position—-IndependentCode 91

7.6.2win64 : Structured Exception Handling. Lo 92
7.7coff :Common ObjectFileFormat e 95

7.8macho32 andmacho64: Mach Object File Format. 95

7.9elf32 ,elf64 ,elfx32 :Executable and Linkable Format ObjectFiles 95
7.9.1 ELF specificdirectivesabi e 95
7.9.2elf Extensions to th8ECTIONDirective v 95
7.9.3 Position-Independent Coddf. Special Symbolsand/RT 96
7.9.4 Thread Local Storagelf Special Symbolsand/RT 97
7.9.5elf Extensions to th&LOBALDirective.« 97
7.9.6elf Extensions to th€EOMMORNirective« 98
7.9.716-bitcodeand ELF 98
7.9.8Debug formatsand ELF 98

7.10aout : Linuxa.out ObjectFiles e 98

7.11aoutb : NetBSD/FreeBSD/OpenBS&out ObjectFiles. 98

7.12as86 : Minix/Linux as86 ObjectFiles. 99

7.13rdf : Relocatable Dynamic ObjectFile Format 99
7.13.1 Requiring a Library: THEBRARY Directive 99
7.13.2 Specifying a Module Name: TREODULBirective 99
7.13.3rdf Extensions to th&LOBALDirective 100
7.13.4rdf Extensions to thEXTERNDirective 100

7.14dbg: Debugging Format e 100

Chapter 8: Writing 16—bit Code (DOS, Windows 3/3.1). i i i i .. 102

8.1 ProducingEXE Files e 102
8.1.1 Using th@bj Format To GeneratEXE Files. 102
8.1.2 Using thdin Format To GeneratEXE Files. 103

8.2 ProducingCOMFiles e e 104
8.2.1 Using thdin Format To Generat€OMFiles. 104
8.2.2 Using th@bj Format To Generat€OMFiles. 105

8.3 ProducingSYS Files e 105

8.4 Interfacing to 16-bit C Programs. e e e e 105
8.4.1 External Symbol Names e 105
8.4.2Memory Models e 106
8.4.3 Function Definitions and Function Calls., 107
8.4.4 Accessing Dataltems. e 109
8.4.5cl16.mac : Helper Macros for the 16-bitCInterface 110

8.5 Interfacing to Borland Pascal Programs e 111

10

8.5.1 The Pascal Calling Convention it 111

8.5.2 Borland Pascal Segment Name Restrictions 113
8.5.3 Usingcl6.mac With Pascal Programs. 113
Chapter 9: Writing 32-bit Code (Unix, Win32, DJGPP). i 114
9.1 Interfacing to 32-bit C Programs. e e e e 114
9.1.1 External Symbol Names 114
9.1.2 Function Definitions and FunctionCalls. 114
9.1.3Accessing Dataltems. e e 116
9.1.4c32.mac : Helper Macros for the 32-bhitCiInterface 117
9.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries. 117
9.2.1 Obtaining the Address of the GOT 118
9.2.2 Finding Your Local Dataltems e 119
9.2.3 Finding External and Common Dataltems 119
9.2.4 Exporting Symbols to the Library User 119
9.2.5 Calling Procedures Outside the Library 120
9.2.6 Generating the Library File e 120
Chapter 10: Mixing 16 and 32 BitCode. e e 122
10.1 MiXxed=Size JUMPS o i e e e e 122
10.2 Addressing Between Different-Size Segments00 122
10.3 Other Mixed-Size Instructions e 123
Chapter 11: Writing 64-bit Code (Unix, Win64) i i i i 125
11.1 Register Names in 64-bitMode 125
11.2 Immediates and Displacements in 64-bitMode, 125
11.3 Interfacing to 64-bit C Programs (Unix) e 126
11.4 Interfacing to 64-bit C Programs (Win64) e 127
Chapter 12: Troubleshooting e 128
12.1 Common Problems e e 128
12.1.1 NASM Generates InefficientCode. 128
12.1.2 My JumpsareQutof Range e 128
12.1.30R@Doesmt Work o 128
12.14TIMES Doesn't Work o o o 129
12.2BUGS . . . o o e 129
Appendix A: Ndisasm e e e 131

Al Introduction. L e e e e 131

A.2 Getting Started: Installation e 131
A3 Running NDISASM. e e 131
A.3.1 COM Files: Specifyingan Origin. i 131
A.3.2 Code Following Data: Synchronisation. 132
A.3.3 Mixed Code and Data: Automatic (Intelligent) Synchronisation 132
A.3.40therOptions e e e e 133
A.4Bugs and Improvements. e e e e e e e 133
Appendix B: Instruction List L e e e 134
B.lIntroduction. e e 134
B.1.1 Special INStructions.... e e e 134
B.1.2 Conventional instructions. e e 134
B.1.3 Katmai Streaming SIMD instructions (SSE — a.k.a. KNI, XMM, MMX2) 163
B.1.4 Introduced in Deschutes but necessary for SSEsupport 165
B.1.5 XSAVE group (AVX and extended state). 165
B.1.6 Generic memory operations. i e e e e e e e e 165
B.1.7 New MMX instructions introduced in Katmai. 165
B.1.8 AMD Enhanced 3DNow! (Athlon) instructions 166
B.1.9 Willamette SSE2 Cacheability Instructions 166
B.1.10 Willamette MMX instructions (SSE2 SIMD Integer Instructions) 166
B.1.11 Willamette Streaming SIMD instructions (SSE2) 168
B.1.12 Prescott New Instructions (SSE3) e 170
B.1.13VMX/SVM INStructions. e 170
B.1.14 Extended Page Tables VMX instructions 171
B.1.15 Tejas New Instructions (SSSE3). o i i i i e 171
B.1.16 AMD SSE4A e 171
B.1.17 New instructions in Barcelona. 172
B.1.18 Penryn New Instructions (SSE4.1). e 172
B.1.19 Nehalem New Instructions (SSE4.2). i i it 173
B.1.20 Intel SMX. e 173
B.1.21 Geode (Cyrix) 3DNow! additions o 173
B.1.22 Intel new instructions in 22?2, 174
B.1.23 Intel AES instructions. e 174

11

B.1.24 Intel AVX AES inStructions. e e e e e 174

12

B.1.25 Intel AVXinstructions e 174
B.1.26 Intel Carry—Less Multiplication instructions (CLMUL) 188
B.1.27 Intel AVX Carry-Less Multiplication instructions (CLMUL) 188
B.1.28 Intel Fused Multiply—Add instructions (FMA). 188
B.1.29 Intel post—32 nm processor instructions e e 192
B.1.30 VIA (Centaur) security instructions e 193
B.1.31 AMD Lightweight Profiling (LWP) instructions 193
B.1.32 AMD XOP and FMA4 instructions (SSE5) o 193
B.1.33 Intel AVX2 inStructions 196
B.1.34 Transactional Synchronization Extensions (TSX) 200
B.1.35 Intel BMI1 and BMI2 instructions, AMD TBM instructions 200
B.1.36 Intel AVX-512 instructions. 201
B.1.37 Systematic names for the hinting nop instructions 215
Appendix C: NASM Version History e e 220
C.ANASM2SENES . . . o v o o e e e e e e e e 220
C.1.1Version 2.11.03 e e 220
C.1.2Version 2.11.02 e e 220
C.1.3Version 2.11.01 e e 220
C.lAVersion 2.11 L e e 220
C.1.5Version 2.10.09 221
C.1.6 Version 2.10.08 e e 221
C.1.7Version 2.10.07 o e e 221
C.1.8Version 2.10.06 e 222
C.1.9Version 2.10.05 e 222
C.1.10 Version 2.10.04 L e e 222
C.1.11Version 2.10.03 L e e 222
C.1.12 Version 2.10.02. e e 222
C.1.13Version 2.10.01 e e 222
C.1.14Version 2.10 o o e e 222
C.1.15Version 2.09.10 e e 223
C.1.16 Version 2.09.09 e e 223
C.1.17 Version 2.09.08 e e 223

C.1.18 Version 2.09.07 i e 223

C.1.19Version 2.09.06 e e 223
C.1.20 Version 2.09.05. L e e 223
C.1.21Version 2.09.04 e e 223
C.1.22Version 2.09.03 e 223
C.1.23Version 2.09.02. e e 224
C.1.24Version 2.09.01 e e 224
C.1.25Version 2.09 e e 224
C.1.26 Version 2.08.02 e e 225
C.1.27 Version 2.08.01 e e 225
C.1.28 Version 2.08 e 225
C.1.29 Version 2.07 e e e 226
C.1.30Version 2.06 e e 226
C.1.31Version 2.05.01 e e 227
C.1.32Version 2.05 e e 227
C.1.33Version 2.04 e 227
C.1.34Version 2.03.01 L e e 228
C.1.35Version 2.03 e 228
C.1.36 Version 2.02 e e 229
C.1.37 Version 2.01 e e 229
C.1.38Version 2.00 e e 230
C.2NASMO0.98 Series o o e e 231
C.2.1Version 0.98.39 231
C.2.2Version 0.98.38 231
C.2.3Version 0.98.37 231
C.24Version 0.98.36 231
C.25Version 0.98.35 L 232
C.2.6Version 0.98.34 232
C.2.7Version 0.98.33 L 232
C.2.8Version 0.98.32 233
C.29Version 0.98.31 233
C.2.10Version 0.98.30 e e 233
C.2.11Version 0.98.28 e 234

13

14

C.2.12Version 0.98.26 234

C.2.13 Version 0.98.25alt. e 234
C.2.14 Version 0.98.25 L e e 234
C.2.15Version 0.98.24pL. e e 234
C.2.16 Version 0.98.24 e e e 234
C.2.17Version 0.98.23 e e 234
C.2.18Version 0.98.22 e e 234
C.2.19Version 0.98.21 e e 234
C.2.20 Version 0.98.20 e 234
C.2.21Version 0.98.19. e 234
C.2.22Version 0.98.18 e 234
C.2.23Version 0.98.17 e 234
C.2.24Version 0.98.16 e 235
C.2.25Version 0.98.15. L e e 235
C.2.26 Version 0.98.14 L e e 235
C.2.27Version 0.98.13 e 235
C.2.28Version 0.98.12 e e 235
C.2.29Version 0.98.11 e e 235
C.2.30Version 0.98.10. e 235
C.2.31Version 0.98.09. e 235
C.2.32Version 0.98.08 e e 235
C.2.33 Version 0.98.09b with John Coffman patches released 28-Oct-2001 236
C.2.34 Version 0.98.07 released 01/28/01. i i 236
C.2.35 Version 0.98.06f released 01/18/01 236
C.2.36 Version 0.98.06e released 01/09/01 236
C.2.37Version 0.98pl e 237
C.2.38 Version 0.98bf (bug—fixed) 237
C.2.39 Version 0.98.03 with John Coffman’s changes released 27-Jul-2000 237
C.240Version 0.98.03 L e e 237
C.241Version 0.98 e 241
C.2.42Version 0.98p9 e e 241
C.2.43Version 0.98p8 e e 241
C.2.44Version 0.98p7 e e 241

C.2.45Version 0.98p6 e e 242

C.2.46 Version 0.98P3.7 e 242
C.2.47Version 0.98p3.6 e e e 242
C.2.48Version 0.98p3.5 e 242
C.2.49Version 0.98p3.4 e e 243
C.2.50Version 0.98p3.3 e e 243
C.2.501Version 0.98P3.2 e e 243
C.2.52Version 0.98p3-hpa. e 243
C.2.53 Version 0.98 pre-release 3 e 244
C.2.54 Version 0.98 pre-release 2 e e 244
C.255Version 0.98 pre-release 1 e e e 244
C.3NASMO.9SEMES o o e e e e e e 245
C.3.1 Version 0.97 released December 1997 245
C.3.2 Version 0.96 released November 1997 o 246
C.3.3Version 0.95released July 1997 248
C.3.4Version 0.94 released April 1997 e 249
C.3.5Version 0.93 released January 1997. e 250
C.3.6 Version 0.92 released January 1997. e e e 250
C.3.7 Version 0.91 released November 1996 o 251
C.3.8 Version 0.90 released October 1996 251

15

Chapter 1: Introduction

1.1 What Is NASM?

The Netwide Assembler, NASM, is an 80x86 and x86-64 assembler designed for portability and modularity.
It supports a range of object file formats, including Linux aB$D a.out , ELF, COFF Mach-Q,
Microsoft 16—bitOBJ, Win32 andWin64 . It will also output plain binary files. Its syntax is designed to be
simple and easy to understand, similar to Intel's but less complex. It supports all currently known x86
architectural extensions, and has strong support for macros.

1.1.1 Why Yet Another Assembler?

The Netwide Assembler grew out of an ideacomp.lang.asm.x86 (or possiblyalt.lang.asm —
forget which), which was essentially that there didn’t seem to be afge®#86—series assembler around,
and that maybe someone ought to write one.

e aB6 is good, but not free, and in particular you don’t get any 32-bit capability until you pay. It's DOS
only, too.

e gas is free, and ports over to DOS and Unix, but it's not very good, since it's designed to be a back end to
gcc, which always feeds it correct code. So its error checking is minimal. Also, its syntax is horrible, from
the point of view of anyone trying to actuallyrite anything in it. Plus you can’t write 16-bit code in it
(properly.)

e as86 is specific to Minix and Linux, and (my version at least) doesn't seem to have much (or any)
documentation.

« MASMsnN't very good, and it's (was) expensive, and it runs only under DOS.

« TASMis better, but still strives for MASM compatibility, which means millions of directives and tons of
red tape. And its syntax is essentially MASM’s, with the contradictions and quirks that entails (although it
sorts out some of those by means of Ideal mode.) It's expensive too. And it's DOS-only.

So here, for your coding pleasure, is NASM. At present it’s still in prototype stage — we don’t promise that it
can outperform any of these assemblers. But plgdsasesend us bug reports, fixes, helpful information,

and anything else you can get your hands on (and thanks to the many people who've done this already! You
all know who you are), and we’ll improve it out of all recognition. Again.

1.1.2 License Conditions

Please see the filel CENSE, supplied as part of any NASM distribution archive, for the license conditions
under which you may use NASM. NASM is now under the so—called 2-clause BSD license, also known as
the simplified BSD license.

Copyright 1996-2011 the NASM Authors — All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

« Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

« Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1.2 Contact Information

The current version of NASM (since about 0.98.08) is maintained by a team of developers, accessible through
thenasm-devel mailing list (see below for the link). If you want to report a bug, please read section 12.2
first.

NASM has a website &ittp://www.nasm.us/ . If it's not there, google for us!

New releases, release candidates, and daily development snapshots of NASM are available from the official
web site.

Announcements are posted to comp.lang.asm.x86 and to the web site

http://www.freshmeat.net/

If you want information about the current development status, please subscribenésrivedevel email
list; see link from the website.

1.3 Installation
1.3.1 Installing NASM under MS-DOS or Windows

Once you've obtained the appropriate archive for NASMasm-XXX-dos.zip or
nasm-XXX-win32.zip (where XXX denotes the version number of NASM contained in the archive),
unpack it into its own directory (for examplanasm).

The archive will contain a set of executable files: the NASM executabledden.exe , the NDISASM
executable filmmdisasm.exe , and possibly additional utilities to handle the RDOFF file format.

The only file NASM needs to run is its own executable, so c@syn.exe to a directory on your PATH, or
alternatively ediautoexec.bat to add thenasm directory to youlPATH(to do that under Windows XP,

go to Start > Control Panel > System > Advanced > Environment Variables; these instructions may work
under other versions of Windows as well.)

That's it — NASM is installed. You don't need the nasm directory to be present to run NASM (unless you've
added it to youPATH), so you can delete it if you need to save space; however, you may want to keep the
documentation or test programs.

If you've downloaded the DOS source archimasm—-XXX.zip , thenasm directory will also contain the
full NASM source code, and a selection of Makefiles you can (hopefully) use to rebuild your copy of NASM
from scratch. See the filBISTALL in the source archive.

17

http://www.nasm.us/
news:comp.lang.asm.x86
http://www.freshmeat.net/

18

Note that a number of files are generated from other files by Perl scripts. Although the NASM source

distribution includes these generated files, you will need to rebuild them (and hence, will need a Perl
interpreter) if you change insns.dat, standard.mac or the documentation. It is possible future source
distributions may not include these files at all. Ports of Perl for a variety of platforms, including DOS and

Windows, are available from www.cpan.org.

1.3.2 Installing NASM under Unix

Once you've obtained the Unix source archive for NASdsm—-XXX.tar.gz (where XXX denotes the
version number of NASM contained in the archive), unpack it into a directory suabkréscal/src
The archive, when unpacked, will create its own subdirectasy—XXX

NASM is an auto—configuring package: once you've unpackexd ito the directory it's been unpacked into
and type./configure . This shell script will find the best C compiler to use for building NASM and set up
Makefiles accordingly.

Once NASM has auto-configured, you can typake to build thenasm andndisasm binaries, and then
make install to install them in/usr/local/bin and install the man pagesasm.l and
ndisasm.1 in /usr/local/man/manl . Alternatively, you can give options such-asprefix to the
configure script (see the filNSTALL for more details), or install the programs yourself.

NASM also comes with a set of utilities for handling RBOFFcustom object-file format, which are in the
rdoff subdirectory of the NASM archive. You can build these withke rdf and install them with
make rdf_install , if you want them.

http://www.cpan.org/ports/

Chapter 2: Running NASM

2.1 NASM Command-Line Syntax

To assemble a file, you issue a command of the form

nasm —f <format> <filename> [-0 <output>]

For example,

nasm —f elf myfile.asm

will assemblemyfile.asm into anELF object filemyfile.o . And
nasm —f bin myfile.asm —o myfile.com

will assemblemyfile.asm into a raw binary filanyfile.com

To produce a listing file, with the hex codes output from NASM displayed on the left of the original sources,
use the-l option to give a listing file name, for example:

nasm —f coff myfile.asm - myfile.lst

To get further usage instructions from NASM, try typing

nasm —h

As —hf , this will also list the available output file formats, and what they are.

If you use Linux but aren’t sure whether your systemasit or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like
nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1

then your system iELF, and you should use the optiehelf when you want NASM to produce Linux
object files. If it says

nasm: Linux/i386 demand-paged executable (QMAGIC)

or something similar, your systemasout , and you should usef aout instead (Linuxa.out systems
have long been obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won’t see any output at all,
unless it gives error messages.

2.1.1 The-o Option: Specifying the Output File Name

NASM will normally choose the name of your output file for you; precisely how it does this is dependent on
the object file format. For Microsoft object file formatsb| , win32 andwin64), it will remove the.asm
extension (or whatever extension you like to use — NASM doesn't care) from your source file hame and
substitute.obj . For Unix object file formatsaput , as86, coff , elf32 , elf64 , elfx32 , ieee ,
macho32 and macho64) it will substitute.o . Fordbg, rdf , ith andsrec , it will use .dbg , .rdf ,

19

.ith and .srec , respectively, and for théin format it will simply remove the extension, so that
myfile.asm produces the output filmyfile

If the output file already exists, NASM will overwrite it, unless it has the same name as the input file, in
which case it will give a warning and usasm.out as the output file name instead.

For situations in which this behaviour is unacceptable, NASM providesatemmand-line option, which
allows you to specify your desired output file name. You inveledy following it with the name you wish
for the output file, either with or without an intervening space. For example:

nasm —f bin program.asm —o program.com
nasm —f bin driver.asm —odriver.sys

Note that this is a small o, and is different from a capital O , which is used to specify the number of
optimisation passes required. See section 2.1.22.

2.1.2 The—f Option: Specifying the Output File Format

If you do not supply the-f option to NASM, it will choose an output file format for you itself. In the
distribution versions of NASM, the default is alwayia ; if you've compiled your own copy of NASM, you
can redefin@F _DEFAULTat compile time and choose what you want the default to be.

Like -0, the intervening space betweeh and the output file format is optional; sbelf and-felf are
both valid.

A complete list of the available output file formats can be given by issuing the comasmd-hf .

2.1.3 The-l Option: Generating a Listing File

If you supply the-l option to NASM, followed (with the usual optional space) by a file name, NASM will
generate a source-listing file for you, in which addresses and generated code are listed on the left, and the
actual source code, with expansions of multi-line macros (except those which specifically request no
expansion in source listings: see section 4.3.11) on the right. For example:

nasm —f elf myfile.asm —I myfile.Ist

If a list file is selected, you may turn off listing for a section of your source[ligth-] , and turn it back
on with[list +] , (the default, obviously). There is no "user form" (without the brackets). This can be used
to list only sections of interest, avoiding excessively long listings.

2.1.4 The-MOption: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This can be redirected to a file for
further processing. For example:

nasm —-M myfile.asm > myfile.dep

2.1.5 The-MGOption: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This differs frbroghien in that if
a nonexisting file is encountered, it is assumed to be a generated file and is added to the dependency list
without a prefix.

2.1.6 The-MFOption: Set Makefile Dependency File

This option can be used with thé/ or -MGoptions to send the output to a file, rather than to stdout. For
example:

nasm -M —-MF myfile.dep myfile.asm

2.1.7 The-MDOption: Assemble and Generate Dependencies

The -MDoption acts as the combination of th® and —MF options (i.e. a filename has to be specified.)
However, unlike the-Mor ~-MGoptions,~MDdoesnot inhibit the normal operation of the assembler. Use this
to automatically generate updated dependencies with every assembly session. For example:

nasm —f elf —o myfile.o ~-MD myfile.dep myfile.asm
2.1.8 The-MTOption: Dependency Target Name

The-MT option can be used to override the default name of the dependency target. This is normally the same
as the output filename, specified by the option.

2.1.9 The-MQOption: Dependency Target Name (Quoted)

The —MQoption acts as theMT option, except it tries to quote characters that have special meaning in
Makefile syntax. This is not foolproof, as not all characters with special meaning are quotable in Make. The
default output (if no-MTor —MQoption is specified) is automatically quoted.

2.1.10 The-MPOption: Emit phony targets

When used with any of the dependency generation options;MRoption causes NASM to emit a phony
target without dependencies for each header file. This prevents Make from complaining if a header file has
been removed.

2.1.11 The-F Option: Selecting a Debug Information Format

This option is used to select the format of the debug information emitted into the output file, to be used by a
debugger (omill be). Prior to version 2.03.01, the use of this switchndilenable output of the selected

debug info format. Useg, see section 2.1.12, to enable output. Versions 2.03.01 and later automatically
enable-g if —F is specified.

A complete list of the available debug file formats for an output format can be seen by issuing the command
nasm —f <format> -y . Not all output formats currently support debugging output. See section 2.1.26.

This should not be confused with thedbg output format option which is not built into NASM by default.
For information on how to enable it when building from the sources, see section 7.14.

2.1.12 The-g Option: Enabling Debug Information.

This option can be used to generate debugging information in the specified format. See section 2.1.11. Using
—g without—F results in emitting debug info in the default format, if any, for the selected output format. If no
debug information is currently implemented in the selected output forignag,silently ignored

2.1.13 The-X Option: Selecting an Error Reporting Format

This option can be used to select an error reporting format for any error messages that might be produced by
NASM.

Currently, two error reporting formats may be selected. They areXe option and the-Xgnu option. The
GNU format is the default and looks like this:

filename.asm:65: error: specific error message

21

wherefilename.asm is the name of the source file in which the error was deteg@feds the source file

line number on which the error was detectedor is the severity of the error (this could Wwarning),

and specific error message is a more detailed text message which should help pinpoint the exact
problem.

The other format, specified byXvc is the style used by Microsoft Visual C++ and some other programs. It
looks like this:

filename.asm(65) : error: specific error message
where the only difference is that the line number is in parentheses instead of being delimited by colons.

See also th¥isual C++ output format, section 7.5.

2.1.14 The-Z Option: Send Errors to a File

UnderMS-DOSt can be difficult (though there are ways) to redirect the standard—error output of a program
to a file. Since NASM usually produces its warning and error messagadasn |, this can make it hard to
capture the errors if (for example) you want to load them into an editor.

NASM therefore provides theZ option, taking a filename argument which causes errors to be sent to the
specified files rather than standard error. Therefore you can redirect the errors into a file by typing

nasm -Z myfile.err —f obj myfile.asm

In earlier versions of NASM, this option was calle@, but it was changed sinceE is an option
conventionally used for preprocessing only, with disastrous results. See section 2.1.20.

2.1.15 The-s Option: Send Errors to stdout

The —s option redirects error messagesstolout rather thanstderr , so it can be redirected under
MS-DOSTo assemble the filmyfile.asm and pipe its output to thmore program, you can type:

nasm —s —f obj myfile.asm | more

See also theZ option, section 2.1.14.

2.1.16 The-i Option: Include File Search Directories

When NASM sees thésinclude or %pathsearch directive in a source file (see section 4.6.1, section
4.6.2 or section 3.2.3), it will search for the given file not only in the current directory, but also in any
directories specified on the command line by the use ofitheption. Therefore you can include files from a
macro library, for example, by typing

nasm —ic:\macrolib\ —f obj myfile.asm
(As usual, a space between and the path name is allowed, and optional).

NASM, in the interests of complete source—code portability, does not understand the file naming conventions
of the OS it is running on; the string you provide as an argument to thption will be prepended exactly as
written to the name of the include file. Therefore the trailing backslash in the above example is necessary.
Under Unix, a trailing forward slash is similarly necessary.

(You can use this to your advantage, if you're really perverse, by noting that the eftion will cause
%include "bar.i" to search for the filkoobar.i ...

If you want to define astandardinclude search path, similar fasr/include on Unix systems, you
should place one or moré directives in th&NASMENnvironment variable (see section 2.1.28).

For Makefile compatibility with many C compilers, this option can also be specifield.as

2.1.17 The-p Option: Pre-Include a File

NASM allows you to specify files to bere—includedinto your source file, by the use of thp option. So
running

nasm myfile.asm —p myinc.inc

is equivalent to runningasm myfile.asm and placing the directivé&include "myinc.inc" at the
start of the file.

For consistency with thel , =D and-U options, this option can also be specified-Bs

2.1.18 The-d Option: Pre-Define a Macro

Just as the-p option gives an alternative to placifignclude directives at the start of a source file, ttte
option gives an alternative to placin§alefine directive. You could code

nasm myfile.asm —dFOO=100
as an alternative to placing the directive
%define FOO 100

at the start of the file. You can miss off the macro value, as well: the olé@Ois equivalent to coding
%define FOO . This form of the directive may be useful for selecting assembly—-time options which are then
tested usingoifdef |, for example-dDEBUG

For Makefile compatibility with many C compilers, this option can also be specified.as

2.1.19 The-u Option: Undefine a Macro

The —u option undefines a macro that would otherwise have been pre-defined, either automatically or by a
—p or —d option specified earlier on the command lines.

For example, the following command line:
nasm myfile.asm —dFO0O=100 -uFOO

would result inFOOnot being a predefined macro in the program. This is useful to override options specified
at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can also be specified.as

2.1.20 The-E Option: Preprocess Only

NASM allows the preprocessor to be run on its own, up to a point. Usingitloption (which requires no
arguments) will cause NASM to preprocess its input file, expand all the macro references, remove all the
comments and preprocessor directives, and print the resulting file on standard output (or save it to a file, if the
-0 option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate expressions which
depend on the values of symbols: so code such as

%assign tablesize ($-tablestart)

will cause an error in preprocess—only mode.

23

For compatiblity with older version of NASM, this option can also be written—E in older versions of
NASM was the equivalent of the currefz option, section 2.1.14.

2.1.21 The-a Option: Don’t Preprocess At All

If NASM is being used as the back end to a compiler, it might be desirable to suppress preprocessing
completely and assume the compiler has already done it, to save time and increase compilation speeds. The
—a option, requiring no argument, instructs NASM to replace its powerful preprocessor with a stub
preprocessor which does nothing.

2.1.22 The-OOption: Specifying Multipass Optimization
Using the-O option, you can tell NASM to carry out different levels of optimization. The syntax is:

e —0O0 No optimization. All operands take their long forms, if a short form is not specified, except
conditional jumps. This is intended to match NASM 0.98 behavior.

¢ —0OL1 Minimal optimization. As above, but immediate operands which will fit in a signed byte are
optimized, unless the long form is specified. Conditional jumps default to the long form unless otherwise
specified.

e —-Ox (where x is the actual lettex): Multipass optimization. Minimize branch offsets and signed
immediate bytes, overriding size specification unlesssthiet keyword has been used (see section
3.7). For compatibility with earlier releases, the lekemay also be any number greater than one. This
number has no effect on the actual number of passes.

The-Ox mode is recommended for most uses, and is the default since NASM 2.09.

Note that this is a capit&), and is different from a smadl, which is used to specify the output file name. See
section 2.1.1.

2.1.23 The-t Option: Enable TASM Compatibility Mode

NASM includes a limited form of compatibility with BorlandlASM When NASM’'s—t option is used, the
following changes are made:

« local labels may be prefixed wit® @nhstead of

« size override is supported within brackets. In TASM compatible mode, a size override inside square
brackets changes the size of the operand, and not the address type of the operand as it does in NASM
syntax. E.gmov eax,[DWORD val] is valid syntax in TASM compatibility mode. Note that you lose
the ability to override the default address type for the instruction.

» unprefixed forms of some directives supportedg(, elif , else , endif , if , ifdef , ifdifi ,
ifndef ,include ,local)

2.1.24 The-wand -WOptions: Enable or Disable Assembly Warnings

NASM can observe many conditions during the course of assembly which are worth mentioning to the user,
but not a sufficiently severe error to justify NASM refusing to generate an output file. These conditions are
reported like errors, but come up with the word ‘warning’ before the message. Warnings do not prevent
NASM from generating an output file and returning a success status to the operating system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the user.
Therefore NASM supports thew command-line option, which enables or disables certain classes of
assembly warning. Such warning classes are described by a name, for exguinpie-labels ; you can

enable warnings of this class by the command-line optisr-orphan-labels and disable it by
—w-orphan-labels

The suppressible warning classes are:

e macro—params covers warnings about multi-line macros being invoked with the wrong number of
parameters. This warning class is enabled by default; see section 4.3.1 for an example of why you might
want to disable it.

¢ macro-selfref warns if a macro references itself. This warning class is disabled by default.

* macro—defaults warns when a macro has more default parameters than optional parameters. This
warning class is enabled by default; see section 4.3.5 for why you might want to disable it.

« orphan-labels covers warnings about source lines which contain no instruction but define a label
without a trailing colon. NASM warns about this somewhat obscure condition by default; see section 3.1
for more information.

« number—-overflow covers warnings about numeric constants which don't fit in 64 bits. This warning
class is enabled by default.

« gnu-elf-extensions warns if 8-bit or 16-bit relocations are used-inelf = format. The GNU
extensions allow this. This warning class is disabled by default.

« float-overflow warns about floating point overflow. Enabled by default.

« float-denorm warns about floating point denormals. Disabled by default.

« float—-underflow warns about floating point underflow. Disabled by default.

» float-toolong warns about too many digits in floating—point numbers. Enabled by default.
e user controls%warning directives (see section 4.9). Enabled by default.

* lock warns aboutOCKprefixes on unlockable instructions. Enabled by default.

« hle warns about invalid use of the HEACQUIREor XRELEASEprefixes. Enabled by default.

« bnd warns about ineffective use of tB&\Dprefix when a relaxed form of jmp instruction becomes jmp
short form. Enabled by default.

e error causes warnings to be treated as errors. Disabled by default.

e all is an alias fomll suppressible warning classes (not includamgpr). Thus,—w+all enables all
available warnings.

In addition, you can set warning classes across sections. Warning classes may be enabled with
[warning +warning—name] , disabled withjwarning —warning—name] or reset to their original
value with[warning *warning—name] . No "user form" (without the brackets) exists.

Since version 2.00, NASM has also supported the gcc-like syftéwarning and —Wno-warning
instead of-w+warning and-w-warning , respectively.

2.1.25 The-v Option: Display Version Info

Typing NASM -v will display the version of NASM which you are using, and the date on which it was
compiled.

You will need the version number if you report a bug.

25

26

2.1.26 The-y Option: Display Available Debug Info Formats

Typing nasm —f <option> -y will display a list of the available debug info formats for the given output
format. The default format is indicated by an asterisk. For example:

nasm —f elf -y

valid debug formats for 'elf32’ output format are
("' denotes default):
*stabs ELF32 (i386) stabs debug format for Linux
dwarf elf32 (i386) dwarf debug format for Linux

2.1.27 The-—prefix and--postfix Options.

The ——prefix ~ and ——postfix options prepend or append (respectively) the given argument to all
global or extern variables. E.g——prefix _ will prepend the underscore to all global and external
variables, as C sometimes (but not always) likes it.

2.1.28 TheNASMENWEnvironment Variable

If you define an environment variable callBtASMENVthe program will interpret it as a list of extra
command-line options, which are processed before the real command line. You can use this to define
standard search directories for include files, by puttingptions in theNASMENVWariable.

The value of the variable is split up at white space, so that the v&ldie:\nasmlib\ will be treated as

two separate options. However, that means that the valNAME="my name" won't do what you might

want, because it will be split at the space and the NASM command-line processing will get confused by the
two nonsensical wordsdNAME="myandname".

To get round this, NASM provides a feature whereby, if you begiN&k@MEN\environment variable with

some character that isn't a minus sign, then NASM will treat this character as the separator character for
options. So setting thdASMENWariable to the valué-s!-ic:\nasmlib\ is equivalent to setting it to

—s —ic:\nasmlib\ , but!-dNAME="my name" will work.

This environment variable was previously caldSMThis was changed with version 0.98.31.

2.2 Quick Start for MASM Users

If you're used to writing programs with MASM, or with TASM in MASM-compatible (non-Ideal) mode, or
with a86, this section attempts to outline the major differences between MASM'’s syntax and NASM'’s. If
you're not already used to MASM, it's probably worth skipping this section.

2.2.1 NASM Is Case-Sensitive

One simple difference is that NASM is case—sensitive. It makes a difference whether you call ydoo label

Foo or FOO If you're assembling tdOSor OS/2 .0OBJ files, you can invoke thElPPERCASHlirective
(documented in section 7.4) to ensure that all symbols exported to other code modules are forced to be upper
case; but even thewjthin a single module, NASM will distinguish between labels differing only in case.

2.2.2 NASM Requires Square Brackets For Memory References

NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that it should be
possible, as far as is practical, for the user to look at a single line of NASM code and tell what opcode is
generated by it. You can't do this in MASM: if you declare, for example,

foo equ 1
bar dw 2

then the two lines of code

mov ax,foo
mov ax,bar

generate completely different opcodes, despite having identical-looking syntaxes.

NASM avoids this undesirable situation by having a much simpler syntax for memory references. The rule is
simply that any access to thententsof a memory location requires square brackets around the address, and
any access to theddressof a variable doesn’t. So an instruction of the fanov ax,foo will alwaysrefer

to a compile—time constant, whether it's@Uor the address of a variable; and to accessdh&ntsof the
variablebar , you must codenov ax,[bar]

This also means that NASM has no need for MASNDEFSET keyword, since the MASM code

mov ax,offset bar means exactly the same thing as NASktisv ax,bar . If you're trying to get
large amounts of MASM code to assemble sensibly under NASM, you can always code
%idefine offset to make the preprocessor treat @eFSETkeyword as a ho-op.

This issue is even more confusingaB6, where declaring a label with a trailing colon defines it to be a
‘label’ as opposed to a ‘variable’ and caua86 to adopt NASM-style semantics; soafié, mov ax,var

has different behaviour depending on whetrar was declared agar: dw 0 (a label) ovar dw 0 (a
word-size variable). NASM is very simple by comparisererythingis a label.

NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by MASM and its

clones, such asov ax,table[bx] , where a memory reference is denoted by one portion outside square
brackets and another portion inside. The correct syntax for the abmmyiax,[table+bx] . Likewise,
mov ax,es:[di] is wrong andnov ax,[es:di] is right.

2.2.3 NASM Doesn't Store Variable Types

NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM wiill
remember, on seeing@r dw 0 , that you declaredar as a word-size variable, and will then be able to fill

in the ambiguity in the size of the instructiorov var,2 , NASM will deliberately remember nothing about

the symbolar except where it begins, and so you must explicitly code word [var],2

For this reason, NASM doesn’t support ht®DS MOVSSTOS SCAS CMPSINS, or OUTSinstructions,
but only supports the forms such BDSB MOVSWand SCASD which explicitly specify the size of the
components of the strings being manipulated.

2.2.4 NASM Doesn'tASSUME

As part of NASM’s drive for simplicity, it also does not support A&SUMHlirective. NASM will not keep
track of what values you choose to put in your segment registers, and willanggaraticallygenerate a
segment override prefix.

2.2.5 NASM Doesn’'t Support Memory Models

NASM also does not have any directives to support different 16—bit memory models. The programmer has to
keep track of which functions are supposed to be called with a far call and which with a near call, and is
responsible for putting the correct formRET instruction RETNor RETE NASM acceptRET itself as an
alternate form forRETN; in addition, the programmer is responsible for coding CALL FAR instructions

27

where necessary when callirexternal functions, and must also keep track of which external variable
definitions are far and which are near.

2.2.6 Floating—Point Differences

NASM uses different names to refer to floating—point registers from MASM: where MASM would call them
ST(0) , ST(1) and so on, and86 would call them simph0, 1 and so on, NASM chooses to call them
st0 , stl etc.

As of version 0.96, NASM now treats the instructions with ‘nowait’ forms in the same way as
MASM-compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was based on a
misunderstanding by the authors.

2.2.7 Other Differences
For historical reasons, NASM uses the keywdM/ORDwvhere MASM and compatible assemblers use

TBYTE
NASM does not declare uninitialized storage in the same way as MASM: where a MASM programmer might
usestack db 64 dup (?) , NASM requiresstack resb 64 , intended to be read as ‘reserve 64

bytes’. For a limited amount of compatibility, since NASM treatss a valid character in symbol names, you
can code? equ 0 and then writingdw ? will at least do something vaguely usefDlUPis still not a
supported syntax, however.

In addition to all of this, macros and directives work completely differently to MASM. See chapter 4 and
chapter 6 for further detalils.

Chapter 3: The NASM Language

3.1 Layout of a NASM Source Line

Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor directive or an
assembler directive: see chapter 4 and chapter 6) some combination of the four fields

label: instruction operands ; comment

As usual, most of these fields are optional; the presence or absence of any combination of a label, an
instruction and a comment is allowed. Of course, the operand field is either required or forbidden by the
presence and nature of the instruction field.

NASM uses backslash (\) as the line continuation character; if a line ends with backslash, the next line is
considered to be a part of the backslash—ended line.

NASM places no restrictions on white space within a line: labels may have white space before them, or
instructions may have no space before them, or anything. The colon after a label is also optional. (Note that
this means that if you intend to colbglsb alone on a line, and tydedab by accident, then that’s still a

valid source line which does nothing but define a label. Running NASM with the command-line option
—-w+orphan-labels will cause it to warn you if you define a label alone on a line without a trailing colon.)

Valid characters in labels are letters, numbers, #, @ ~, . , and?. The only characters which may be used
as thefirst character of an identifier are letters,(with special meaning: see section 3.9)and ?. An
identifier may also be prefixed with&to indicate that it is intended to be read as an identifier and not a
reserved word; thus, if some other module you are linking with defines a symbolezalegiou can refer to
$eax in NASM code to distinguish the symbol from the register. Maximum length of an identifier is 4095
characters.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU instructions,
MMX instructions and even undocumented instructions are all supported. The instruction may be prefixed by
LOCK REP REPEREPZ REPNHEREPNZ XACQUIREXRELEASEor BNONOBND in the usual way.

Explicit address—size and operand-size prefikés, A32, A64, 016 and 032, 064 are provided — one
example of their use is given in chapter 10. You can also use the name of a segment register as an instruction
prefix: codinges mov [bx],ax is equivalent to codingiov [es:bx],ax . We recommend the latter

syntax, since it is consistent with other syntactic features of the language, but for instructiond €)ioBRs

which has no operands and yet can require a segment override, there is no clean syntactic way to proceed
apart fromes lodsh

An instruction is not required to use a prefix: prefixes sucBR#A 32, LOCKor REPEcan appear on a line
by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM also supports a number of pseudo-instructions, described in
section 3.2.

Instruction operands may take a number of forms: they can be registers, described simply by the register name
(e.g.ax, bp, ebx, cr0 : NASM does not use thgas —style syntax in which register names must be prefixed

by a % sign), or they can be effective addresses (see section 3.3), constants (section 3.4) or expressions
(section 3.5).

29

For x87 floating—point instructions, NASM accepts a wide range of syntaxes: you can use two—operand forms
like MASM supports, or you can use NASM’s native single—operand forms in most cases. For example, you

can code:
fadd stl : this sets st0 := st0 + st
fadd stO,stl : so does this
fadd stl,stO ; this sets stl := st1 + stO
fadd to stl : so does this

Almost any x87 floating—point instruction that references memory must use one of the pbafe@RD
QWORDr TWORIMD indicate what size of memory operand it refers to.

3.2 Pseudo-Instructions

Pseudo-instructions are things which, though not real x86 machine instructions, are used in the instruction
field anyway because that's the most convenient place to put them. The current pseudo-instrudiiBns are
DWDD DQ DT, DQ DY andDZ their uninitialized counterparRESB RESWRESD RESQ REST, RESQ
RESYandRESZ theINCBIN command, th&QUcommand, and thEIMES prefix.

3.2.1 DBand Friends: Declaring Initialized Data

DB DWDD DQ DT, DQ DY andDZ are used, much as in MASM, to declare initialized data in the output file.
They can be invoked in a wide range of ways:

db 0x55 ; just the byte 0x55

db 0x55,0x56,0x57 ;three bytes in succession
db 'a’,0x55 ; character constants are OK
db ’hello’,13,10,'$’ ; so are string constants

dw 0x1234 ; Ox34 0x12

dw 'a’ ; Ox61 0x00 (it's just a number)
dw ‘ab’ ; Ox61 0x62 (character constant)
dw ‘abc’ ; Ox61 0x62 0x63 0x00 (string)
dd 0x12345678 ; 0X78 0x56 0x34 0x12

dd 1.234567e20 ; floating—point constant

dg 0x123456789abcdef0 ; eight byte constant
dg 1.234567e20 ; double—precision float

dt 1.234567e20 ; extended-precision float

DT, DQ DY andDZ do not accept numeric constants as operands.

3.2.2 RESBand Friends: Declaring Uninitialized Data

RESB RESWRESD RESQREST, RESQ RESYandRESZare designed to be used in the BSS section of a
module: they declaraninitialized storage space. Each takes a single operand, which is the number of bytes,
words, doublewords or whatever to reserve. As stated in section 2.2.7, NASM does not support the
MASM/TASM syntax of reserving uninitialized space by writiD§V ? or similar things: this is what it does
instead. The operand tdRESB-type pseudo—-instruction iscatical expressionsee section 3.8.

For example:
buffer: resb 64 ; reserve 64 bytes
wordvar: resw 1 ; reserve a word

realarray resq 10 ; array of ten reals

ymmval: resy 1 ; one YMM register
zmmvals: resz 32 ; 32 ZMM registers

3.2.3 INCBIN : Including External Binary Files

INCBIN is borrowed from the old Amiga assembler DevPac: it includes a binary file verbatim into the output
file. This can be handy for (for example) including graphics and sound data directly into a game executable
file. It can be called in one of these three ways:

incbin “file.dat" ; include the whole file

incbin “file.dat",1024 ; skip the first 1024 bytes

incbin “file.dat",1024,512 ; skip the first 1024, and
; actually include at most 512

INCBIN is both a directive and a standard macro; the standard macro version searches for the file in the
include file search path and adds the file to the dependency lists. This macro can be overridden if desired.

3.2.4 EQU Defining Constants

EQUdefines a symbol to a given constant value: wB&hlis used, the source line must contain a label. The
action ofEQUis to define the given label name to the value of its (only) operand. This definition is absolute,
and cannot change later. So, for example,

message db ’hello, world’
msglen equ $-message

definesmsglen to be the constant 1fhsglen may not then be redefined later. This is not a preprocessor
definition either: the value ofmsglen is evaluatedonce using the value of (see section 3.5 for an
explanation off) at the point of definition, rather than being evaluated wherever it is referenced and using the
value of$ at the point of reference.

3.2.5 TIMES: Repeating Instructions or Data

The TIMES prefix causes the instruction to be assembled multiple times. This is partly present as NASM's
equivalent of th®UPsyntax supported by MASM-compatible assemblers, in that you can code

zerobuf: times 64 db 0

or similar things; bufTIMES is more versatile than that. The argumenfTtMES is not just a numeric
constant, but a numeraxpressionso you can do things like

buffer: db "hello, world’
times 64-$+buffer db ’’

which will store exactly enough spaces to make the total lendihftér up to 64. Finally,TIMES can be
applied to ordinary instructions, so you can code trivial unrolled loops in it:

times 100 movsb

Note that there is no effective difference betwéares 100 resb 1 andresb 100 , except that the
latter will be assembled about 100 times faster due to the internal structure of the assembler.

The operand tdIMES is a critical expression (section 3.8).

Note also thaffIMES can't be applied to macros: the reason for this is TIeES is processed after the
macro phase, which allows the argumenTIRIES to contain expressions such@bs-$+buffer as above.
To repeat more than one line of code, or a complex macro, use the prepréaregsdirective.

31

32

3.3 Effective Addresses

An effective address is any operand to an instruction which references memory. Effective addresses, in
NASM, have a very simple syntax: they consist of an expression evaluating to the desired address, enclosed in
square brackets. For example:

wordvar dw 123
mov ax,[wordvar]
mov ax,[wordvar+1]
mov ax,[es:wordvar+bx]

Anything not conforming to this simple system is not a valid memory reference in NASM, for example
es:wordvar[bx]

More complicated effective addresses, such as those involving more than one register, work in exactly the
same way:

mov eax,[ebx*2+ecx+offset]
mov ax,[bp+di+8]

NASM is capable of doing algebra on these effective addresses, so that things which don't neloedsarily
legal are perfectly all right:

mov eax,[ebx*5] ; assembles as [ebx*4+ebX]
mov eax,[labell*2-label2] ;ie [labell+(labell-label2)]

Some forms of effective address have more than one assembled form; in most such cases NASM will generate
the smallest form it can. For example, there are distinct assembled forms for the 32-bit effective addresses
[eax*2+0] and[eax+eax] , and NASM will generally generate the latter on the grounds that the former
requires four bytes to store a zero offset.

NASM has a hinting mechanism which will caugax+ebx] and[ebx+eax] to generate different
opcodes; this is occasionally useful becajesé+ebp] and[ebp+esi] have different default segment
registers.

However, you can force NASM to generate an effective address in a particular form by the use of the
keywordsBYTE WORIDWORRNANOSPLIT. If you needeax+3] to be assembled using a double-word
offset field instead of the one byte NASM will normally generate, you can fmderd eax+3]

Similarly, you can force NASM to use a byte offset for a small value which it hasn’t seen on the first pass (see
section 3.8 for an example of such a code fragment) by (isytg eax+offset] . As special cases,

[byte eax] will code [eax+0] with a byte offset of zero, andword eax] will code it with a
double-word offset of zero. The normal fof®@ax] , will be coded with no offset field.

The form described in the previous paragraph is also useful if you are trying to access data in a 32-bit
segment from within 16 bit code. For more information on this see the section on mixed-size addressing
(section 10.2). In particular, if you need to access data with a known offset that is larger than will fit in a
16-bit value, if you don't specify that it is a dword offset, nasm will cause the high word of the offset to be
lost.

Similarly, NASM will split [eax*2] into[eax+eax] because that allows the offset field to be absent and

space to be saved; in fact, it will also spiax*2+offset] into [eax+eax+offset] . You can combat
this behaviour by the use of tMOSPLIT keyword: [nosplit eax*2] will force [eax*2+0] to be
generated literally[nosplit eax*1] also has the same effect. In another way, a split EA form

[0, eax*2] can be used, too. HowevédOSPLIT in [nosplit eax+eax] will be ignored because
user’s intention here is consideredeax+eax]

In 64-bit mode, NASM will by default generate absolute addressesREhekeyword makes it produce
RIP —relative addresses. Since this is frequently the normally desired behaviour, Beg-fidL Tdirective
(section 6.2). The keywordiBS overridesREL

A new form of split effective addres syntax is also supported. This is mainly intended for mib operands as
used by MPX instructions, but can be used for any memory reference. The basic concept of this form is
splitting base and index.

mov eax,[ebx+8,ecx*4] ; ebx=base, ecx=index, 4=scale, 8=disp

For mib operands, there are several ways of writing effective address depending on the tools. NASM supports
all currently possible ways of mib syntax:

; bndstx

; next 5 lines are parsed same

; base=rax, index=rbx, scale=1, displacement=3

bndstx [rax+0x3,rbx], bnd0 ; NASM - split EA

bndstx [rbx*1+rax+0x3], bnd0 ; GAS - *1’ indecates an index reg
bndstx [rax+rbx+3], bnd0 ; GAS - without hints

bndstx [rax+0x3], bnd0, rbx ; ICC-1

bndstx [rax+0x3], rbx, bnd0 ; ICC-2

When broadcasting decorator is used, the opsize keyword should match the size of each element.
VDIVPS zmm4, zmmb5, dword [rbx]{1to16} ; single—precision float
VDIVPS zmm4, zmmb5, zword [rbx] ; packed 512 bit memory
3.4 Constants

NASM understands four different types of constant: numeric, character, string and floating—point.

3.4.1 Numeric Constants

A numeric constant is simply a number. NASM allows you to specify numbers in a variety of number bases,
in a variety of ways: you can suffikd or X, Dor T, Q or O, andB or Y for hexadecimal, decimal, octal and
binary respectively, or you can prefbx, for hexadecimal in the style of C, or you can prefixfor
hexadecimal in the style of Borland Pascal or Motorola Assemblers. Note, though, tBaptéfix does
double duty as a prefix on identifiers (see section 3.1), so a hex number prefixeddwstgramust have a

digit after the$ rather than a letter. In addition, current versions of NASM accept the gefifor
hexadecimalQd or Ot for decimal,00 or 0qg for octal, anddb or Oy for binary. Please note that unlike C, a

0 prefix by itself doesiotimply an octal constant!

Numeric constants can have underscorgsnterspersed to break up long strings.

Some examples (all producing exactly the same code):

mov ax,200 ; decimal

mov ax,0200 ; still decimal

mov ax,0200d ; explicitly decimal

mov ax,0d200 ; also decimal

mov ax,0c8h ; hex

mov ax,$0c8 ; hex again: the 0 is required

33

34

mov ax,0xc8 ; hex yet again

mov ax,0hc8 ; still hex

mov ax,310q ; octal

mov ax,3100 ; octal again
mov ax,00310 ; octal yet again
mov ax,0g310 ; octal yet again

mov ax,11001000b ; binary

mov ax,1100_1000b ; same binary constant

mov ax,1100 1000y ; same binary constant once more
mov ax,0b1100 1000 ; same binary constant yet again
mov ax,0y1100 1000 ; same binary constant yet again

3.4.2 Character Strings

A character string consists of up to eight characters enclosed in either single guotes)(double quotes

(..) or backquotes'.(."). Single or double quotes are equivalent to NASM (except of course that
surrounding the constant with single quotes allows double quotes to appear within it and vice versa); the
contents of those are represented verbatim. Strings enclosed in backquotes support\ Cestgpes for
special characters.

The following escape sequences are recognized by backquoted strings:

\ single quote ()
\" double quote (")
\ backquote ()

\\ backslash (\)

\? question mark (?)
\a BEL (ASCII 7)
\b BS (ASCII 8)
\t TAB (ASCII 9)
\n LF (ASCII 10)

\v VT (ASCII 11)

\f FF (ASCIl 12)

\r CR (ASCII 13)

\e ESC (ASCII 27)

\377 Up to 3 octal digits - literal byte

\XFF Up to 2 hexadecimal digits — literal byte
\ul234 4 hexadecimal digits — Unicode character
\U12345678 8 hexadecimal digits — Unicode character

All other escape sequences are reserved. NotéOthaneaning aNUL character (ASCII 0), is a special case
of the octal escape sequence.

Unicode characters specified wiih or\U are converted to UTF-8. For example, the following lines are all
equivalent:

db \u263a’ ; UTF-8 smiley face
db \xe2\x98\xba' ; UTF-8 smiley face
db OE2h, 098h, OBAh ; UTF-8 smiley face

3.4.3 Character Constants

A character constant consists of a string up to eight bytes long, used in an expression context. It is treated as if
it was an integer.

A character constant with more than one byte will be arranged with little—endian order in mind: if you code
mov eax, abcd’

then the constant generated is Ar61626364 , but 0x64636261 , so that if you were then to store the
value into memory, it would readbcd rather thandcba. This is also the sense of character constants
understood by the Pentium@PUID instruction.

3.4.4 String Constants

String constants are character strings used in the context of some pseudo-instructions, névdgntiig
andINCBIN (where it represents a filename.) They are also used in certain preprocessor directives.

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum-size character constants for the conditions. So the following are equivalent:

db ’hello’ ; string constant
db ’'h')e’,I'I'’o’ ; equivalent character constants

And the following are also equivalent:

dd ’ninechars’ ; doubleword string constant
dd ’nine’,’char,’s’ ;becomes three doublewords
db ’'ninechars’,0,0,0 ; and really looks like this

Note that when used in a string—supporting context, quoted strings are treated as a string constants even if
they are short enough to be a character constant, because otlabrveibe would have the same effect as

db 'a’ , which would be silly. Similarly, three—character or four—character constants are treated as strings
when they are operandsi@yyand so forth.

3.4.5 Unicode Strings

The special operators utfl6 , utfléle , utflébe , utf32 , utf32le and
__utf32be__ allows definition of Unicode strings. They take a string in UTF-8 format and converts it to
UTF-16 or UTF-32, respectively. Unless thee forms are specified, the output is littleendian.

For example:

%define u(x) __ utflé_ (x)

%define w(x) _ utf32_ (x)
dw u(C:\WINDOWS’), 0 ; Pathname in UTF-16
dd w(‘A + B =\u206a‘), 0 ; String in UTF-32

The UTF operators can be applied either to strings passed tRlHamily instructions, or to character
constants in an expression context.

3.4.6 Floating—Point Constants

Floating—point constants are acceptable only as argumeb® @VWDD DQ DT, andDQ or as arguments to
the special operators float8 , floatl6 , float32 , floaté4 , float80Om__
__float80e__ , floatl28] ,and_ floatl28h

35

36

Floating—point constants are expressed in the traditional form: digits, then a period, then optionally more
digits, then optionally ai followed by an exponent. The period is mandatory, so that NASM can distinguish
betweerdd 1 , which declares an integer constant, ddd..0 which declares a floating—point constant.

NASM also support C99-style hexadecimal floating—paddxt; hexadecimal digits, period, optionally more
hexadeximal digits, then optionallyPafollowed by abinary (not hexadecimal) exponent in decimal notation.
As an extension, NASM additionally supports @feand$ prefixes for hexadecimal, as well binary and octal
floating—point, using th@&b or 0y andOo or 0q prefixes, respectively.

Underscores to break up groups of digits are permitted in floating—point constants as well.

Some examples:

db -0.2 ; "Quarter precision”

dw -0.5 ; IEEE 754r/SSES5 half precision
dd 1.2 ; an easy one

dd 1.222 222 222 ; underscores are permitted
dd Ox1p+2 ; 1.0x27"2 =4.0

dg Ox1p+32 ; 1.0x2732 = 4 294 967 296.0
dg 1l.el0 ; 10 000 000 000.0

dg 1l.e+10 ; synonymous with 1.e10

dqg 1l.e-10 ; 0.000 000 000 1

dt 3.141592653589793238462 ; pi

do 1.e+4000 ; IEEE 754r quad precision

The 8-bit "quarter—precision" floating—point format is sign:exponent:mantissa = 1:4:3 with an exponent bias
of 7. This appears to be the most frequently used 8-bit floating—point format, although it is not covered by
any formal standard. This is sometimes called a "minifloat.”

The special operators are used to produce floating—point numbers in other contexts. They produce the binary
representation of a specific floating—point number as an integer, and can use anywhere integer constants are
used in an expression. float80Om__ and _ float80e produce the 64-bit mantissa and 16-bit
exponent of an 80-bit floating—point number, andloat128| and__ float128h_ produce the

lower and upper 64-bit halves of a 128-bit floating—point number, respectively.

For example:
mov rax,__float64__ (3.141592653589793238462)

... would assign the binary representation of pi as a 64-bit floating point numb&AMdrhis is exactly
equivalent to:

mov rax,0x400921fb54442d18

NASM cannot do compile—-time arithmetic on floating—point constants. This is because NASM is designed to
be portable — although it always generates code to run on x86 processors, the assembler itself can run on any
system with an ANSI C compiler. Therefore, the assembler cannot guarantee the presence of a floating—point
unit capable of handling the Intel number formats, and so for NASM to be able to do floating arithmetic it
would have to include its own complete set of floating—point routines, which would significantly increase the
size of the assembiler for very little benefit.

The special tokens_Infinity ,_ONaN__(or _NaN_) and__SNaN__ can be used to generate
infinities, quiet NaNs, and signalling NaNs, respectively. These are normally used as macros:

%define Inf _Infinity
%define NaN __ QNaN___
dg +1.5, -Inf, NaN ; Double—precision constants

The%use fp standard macro package contains a set of convenience macros. See section 5.3.

3.4.7 Packed BCD Constants

x87-style packed BCD constants can be used in the same contexts as 80-bit floating—point numbers. They
are suffixed withp or prefixed withOp, and can include up to 18 decimal digits.

As with other numeric constants, underscores can be used to separate digits.
For example:

dt 12345 678 901 245 678p
dt -12_345 678 901 245 678p
dt +0p33
dt 33p

3.5 Expressions

Expressions in NASM are similar in syntax to those in C. Expressions are evaluated as 64-bit integers which
are then adjusted to the appropriate size.

NASM supports two special tokens in expressions, allowing calculations to involve the current assembly
position: the$ and$$ tokens.$ evaluates to the assembly position at the beginning of the line containing the
expression; so you can code an infinite loop usitP $. $$ evaluates to the beginning of the current
section; so you can tell how far into the section you are by ($i%&f) .

The arithmetic operators provided by NASM are listed here, in increasing order of precedence.

3.5.1 | : Bitwise OR Operator

The| operator gives a bitwise OR, exactly as performed byORenachine instruction. Bitwise OR is the
lowest—priority arithmetic operator supported by NASM.

3.5.2 ~: Bitwise XOR Operator

N provides the bitwise XOR operation.
3.5.3 &: Bitwise AND Operator

& provides the bitwise AND operation.

3.5.4 << and >>: Bit Shift Operators

<< gives a hit-shift to the left, just as it does in C53&3 evaluates to 5 times 8, or 49> gives a bit-shift
to the right; in NASM, such a shift Elwaysunsigned, so that the bits shifted in from the left—-hand end are
filled with zero rather than a sign—extension of the previous highest bit.

3.5.5 + and —: Addition and Subtraction Operators

The+ and- operators do perfectly ordinary addition and subtraction.

37

3.5.6*,/,/ ,%and%%Multiplication and Division

* is the multiplication operatof. and// are both division operatork:is unsigned division and is signed
division. Similarly,%and%%provide unsigned and signed modulo operators respectively.

NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo operator.

Since theé%character is used extensively by the macro preprocessor, you should ensure that both the signed
and unsigned modulo operators are followed by white space wherever they appear.

3.5.7 Unary Operators

The highest—priority operators in NASM’s expression grammar are those which only apply to one argument.
These are-, —, ~, ! , SEG and the integer functions operators.

- negates its operandl,does nothing (it's provided for symmetry witf), ~ computes the one’s complement
of its operand! is the logical negation operator.

SEGprovides the segment address of its operand (explained in more detail in section 3.6).

A set of additional operators with leading and trailing double underscores are used to implement the integer
functions of théfunc macro package, see section 5.4.

3.6 SEGand WRT

When writing large 16-bit programs, which must be split into multiple segments, it is often necessary to be
able to refer to the segment part of the address of a symbol. NASM supp@EGbeerator to perform this
function.

The SEG operator returns thpreferred segment base of a symbol, defined as the segment base relative to
which the offset of the symbol makes sense. So the code

mov ax,seg symbol
mov es,ax
mov bx,symbol

will load ES:BX with a valid pointer to the symbsymbol .

Things can be more complex than this: since 16-bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one. NASM lets
you do this, by the use of tMéRT(With Reference To) keyword. So you can do things like

mov ax,weird_seg ; weird_seg is a segment base
mov es,ax
mov bx,symbol wrt weird_seg

to loadES:BX with a different, but functionally equivalent, pointer to the synsyaibol .

NASM supports far (inter-segment) calls and jumps by means of the syaltasegment:offset ,
wheresegment andoffset both represent immediate values. So to call a far proced