NASM - The Netwide Assembler
version 2.16rc9-20221117




© 1996-2022 The NASM Development Team — All Rights Reserved

This document is redistributable under the license given in the section "License".



Contents

Chapter 1:Introduction . . . . . . . . . . L 19
L1WhatIsNASM?. . . . o e e e e e e e e e e e 19
LLIILICENSE . . . o o v ot e e e e e e e e e 19
Chapter 2: Running NASM . . . . . . . . o L e 21
2.1NASM Command-LineSyntax . . . . . . . . . . L 21
2.1.1 The -o Option: Specifying the Output FileName . . . . . . . . . .. ... ... .. ... 21
2.1.2 The -f Option: Specifying the Output FileFormat . . . . . . . . ... ... ... .... 22
2.1.3The -1 Option: Generating a ListingFile . . . . . . . .. ... .. ... ... ...... 22
2.1.4 The -L Option: Additional or Modified ListingInfo . . . . . ... ... ... ... .... 22
2.1.5The -M Option: Generate Makefile Dependencies. . . . . . . . . ... ... ... .... 23
2.1.6 The -MG Option: Generate Makefile Dependencies . . . . . . . . ... ... ... .... 23
2.1.7 The -MF Option: Set Makefile DependencyFile . . . . . . . . . ... .. ... ... ... 23
2.1.8 The -MD Option: Assemble and Generate Dependencies . . . . . . . . ... ... .... 23
2.1.9 The -MT Option: Dependency TargetName. . . . . . . . . . . .. ... ... .. .... 23
2.1.10 The -MQ Option: Dependency Target Name (Quoted) . . . . . . . . ... .. ... ... 23
2.1.11The-Mp Option: Emitphonytargets. . . . . . . . . . . . ... ... ... ... ... 23
2.1.12 The -Mw Option: Watcom Make quotingstyle . . . . . . . .. ... ... .. ... ... 23
2.1.13 The -F Option: Selecting a Debug InformationFormat . . . . . . ... ... ... ... 24
2.1.14The -g Option: Enabling Debug Information. . . . . . . . ... ... ... ... .... 24
2.1.15The -x Option: Selecting an Error Reporting Format. . . . . . . .. .. ... ... ... 24
2.1.16 The-z Option: Send ErrorstoaFile. . . . . . . . . ... .. .. .. ... ... 24
2.1.17The-sOption: Send Errorstostdout . . . . . . . . . . . v v v 24
2.1.18 The -1 Option: Include File Search Directories. . . . . . . . . . ... ... ... .... 25
2.1.19The-p Option: Pre-IncludeaFile . . . . . . . . . . ... . . . ... 25
2.1.20 The-d Option: Pre-DefineaMacro . . . . . . . . . . . . . i .. 25
2.1.21The-uOption: UndefineaMacro . . . . . . . . . . ... .. . 25
2.1.22The-EOption: PreprocessOnly . . . . . . . . . . . . v it 26
2.1.23The -a Option: Don’t Preprocess AtAll . . . . . . . .. . .. .. .. ... ... 26
2.1.24 The -0 Option: Specifying Multipass Optimization. . . . . . . . . ... ... ... ... 26
2.1.25The -t Option: Enable TASM CompatibilityMode . . . . . . . . .. ... .. ... ... 26
2.1.26 The -w and -w Options: Enable or Disable Assembly Warnings. . . . . . . . ... .. .. 27
2.1.27The -v Option: Display VersionInfo . . . . . . . . . ... .. .. .. ... ... 27
2.1.28 The --(g| U prefix, --(g|)postfixOptions. . . . . . . . . ... ... ... ..... 27



2.1.29The—-pragmaOption . . . . . . . . . . . . e 27

2.130The—-beforeOption . . . . . . . . . . . i e 28
2.131The—-limit-xOption. . . . . . . . . . . e 28
2.1.32The—-keep-allOption . . . . . . . . . . . . o it 28
2.133The-—-no-lineOption. . . . . . . . . . . . . e 28
2.1.34The —-reproducibleOption. . . . . . . . . . . . . .. . e 28
2.1.35The NASMENV EnvironmentVariable . . . . . . . . . ... .. o oL 28
2.2Quick Startfor MASMUSErS . . . . . . . . o e e e e e e e e e e 29
22.1NASMIsCase-Sensitive. . . . . . . . L Lo e 29
2.2.2 NASM Requires Square Brackets For Memory References. . . . . . . .. ... ... ... 29
2.2.3NASM Doesn’t Store Variable Types. . . . . . . . . . . . L 29
224NASMDOESNEASSUME. . . . v v vt et e e e e e e e e e e e e 30
2.2.5NASM Doesn’t Support MemoryModels . . . . . . . ... . Lo 30
2.2.6 Floating-Point Differences . . . . . . . . . . . L 30
2.2.70ther Differences. . . . . . . . L 30
2.2.8 MASM compatibility package. . . . . . . ... L 30
Chapter3: The NASM Language . . . . . . . o v v v i it e e e e e e e e e e 31
3.1LayoutofaNASM Sourceline. . . . . . . . . L 31
3.2Pseudo-Instructions. . . . . . L L L 32
3.2.1Dpx: Declaring Initialized Data . . . . . . . . . .. L 32
3.2.2ResB and Friends: Declaring UninitializedData . . . . . . . . ... ... .. ... ... 33
3.2.3 INCBIN: Including External Binary Files . . . . . . . . . . ..o oo 33
3.2.4€eQu: DefiningConstants. . . . . . . . . .. L 34
3.2.5 TIMES: Repeating InstructionsorData . . . . . . . . ... ... ... .. .. ... 34
33 Effective Addresses . . . . . . L L e e 34
34Constants . . . . oL L L e e e 35
34.1NumericConstants. . . . . . . . . L 36
3.4.2Character Strings. . . . . . L L L e e e 36
3.43CharacterConstants . . . . . . . . L L e e 37
344StringConstants . . . . . L oL L 37
3.45UnicodeStrings . . . . L e e e e e 37
3.4.6 Floating-PointConstants. . . . . . . . . . . . e 37
347PackedBCDConstants . . . . . . ... e e e 39
35EXPressions . . . . L. L e e e e e e e 39
3.5.12...::ConditionalOperator . . . . . . . . . . . e 39

3.5.2:||:Boolean OROperator . . . . . . . . . . . e 39



3.53:r:Boolean XOROperator. . . . . . o o o o e e e 39

3.5.4:8& Boolean AND Operator. . . . . . . . . . o i e e e e 39
3.5.5:ComparisonOperators . . . . . . . ... e 39
3.5.6 |:Bitwise OROperator . . . . . . . . . . L e 40
3.5. 7~ Bitwise XOROperator . . . . . . . . o e 40
3.5.8& Bitwise AND Operator . . . . . . . . . . . e 40
3.59BitShiftOperators . . . . . . . L e 40
3.5.10 + and -: Addition and SubtractionOperators . . . . . . . . .. ... ... ... 40
3.5.11 Multiplication, Divisionand Modulo. . . . . . . . . . ... Lo o o 40
3.5.12UnaryOperators . . . . L e e e e e e 40
36SEGANAWRT . . . o o o e e e e e e e e e 41
3.7sTRICT: Inhibiting Optimization . . . . . . . . . . . ... 41
3.8Critical EXPressions . . . . . . . L e e e e e e e e e e e e e 42
39Locallabels. . . . . . . e 42
Chapter 4: The NASM Preprocessor . . . . . v v v v v v v vt e i e e e e e e e e 45
4.1 Preprocessor EXpansions . . . . . . . . Lol o e e e e e e 45
4.1.1 Continuation Line Collapsing. . . . . . . . . . . . e 45
4.12CommentRemoval. . . . . . . . e e e 45
4.13%linedirectives . . . . . L L e e e e 45
4.1.4 Conditionals, Loops and Multi-Line Macro Definitions . . . . . . . ... ... ... ... 45
4.1.5Directives processing. . . . . . . . ..o i e e e e 46
4.1.6 Inline expansions and otherdirectives . . . . . . . . . ... Lo Lo 46
4.1.7 Multi-Line Macro Expansion . . . . . . . . . L. e e 46
4.1.8Detokenization. . . . . . . L e e e 46
4.2Single-LineMacros . . . . . . .. e e e 46
42.1TheNormalWay: %define . . . . . . . o i i i e e e e e e e 46
4.2.2 Resolving sdefiner%xdefine . . . . . .« vt i i i e e e e e e e e 48
423MacroIndirection: %[...7 . . . . . .. e e e e 49
4.2.4 Concatenating Single LineMacroTokens: %+ . . . . . . . . . . .. .. ... 49
4.2.5TheMacroNameltself:%2and %22 . . . . . . . . . . . it 49
4.2.6 The Single-Line MacroName: %x2and %*22. . . . . . . . . o v v v v v v v v v e i e e 50
4.2.7 Undefining Single-Line Macros: sundef. . . . . . . . . . ... o e 50
4.2.8 Preprocessor Variables: %assign . . . . . . . .. Lo e 51
429 Defining Strings: %defstr. . . . . . . . o L e e e e e e 51
4.2.10 Defining Tokens: %deftok . . . .« v v v v v v i e e e e e e 51
4.2.11 Defining Aliases: %defalias . . . . . .« o v v v i i e e e e 51



4.2.12 Conditional Comma Operator: %, . . . . . .« v v v v i i e e e e 52

4.3 String ManipulationinMacros. . . . . . . . .. 52
4.3.1 Concatenating Strings:%strcat . . . . . . . . ... L Lo e 52
43.2StringLength:%strien . . . . . . . L L e 53
4.3.3 Extracting Substrings: %substr . . . . .. L. oL 53

4.4 PreprocessorFunctions . . . . . . . L oL oL 53
44.1%abs() Function . . . . . . . . e e e 53
44.2%cond() Function. . . . . . . . L e e e e e e e 53
443%count() Function . . . . . . . L L e e e e 53
44.4%val() Function. . . . . . . L e e e e e e 54
4.45%is() Family Functions. . . . . . . . . . .. L 54
44.6%num() Function . . . . . . . L e e 54
44 7%sel() Function . . . . . . . . . e e e e 54
448%str() Function . . . . . . . L e e e 55
449%strcat() Function . . . . . . . L e e e 55
44.10%strlen() Function. . . . . . . . L e e e e e e 55
44.11%substr() Function. . . . . . . . L e e e e e e e e 55
4.4.12%tok() function . . . . . . . e e 55

4.5 Multi-Line MacroS: %macro . . . v v v v v v v v e e e e e e e e e e e e e e e e 55
4.5.10verloading Multi-LineMacros . . . . . . . . . . o e 56
452Macro-LocalLabels. . . . . . . . L 57
453 GreedyMacroParameters . . . . . . . .. 57
4.5.4 Macro ParametersRange. . . . . . . . ..o o oo 58
4.5.5 Default Macro Parameters . . . . . . . .. 58
4.5.6 %0: Macro ParameterCounter. . . . . . . . . . .. Lo oo e 59
4.5.7%00: Label PrecedingMacro. . . . . . . . . . e e 59
4.5.8 %rotate: Rotating Macro Parameters. . . . . . . . . . ... L Lo oL 59
4.5.9 Concatenating Macro Parameters . . . . . . . . . . ... e 60
4.5.10 Condition Codes as Macro Parameters . . . . . . . . . . . . .. . 61
4.5.11 Disabling Listing Expansion . . . . . . . . . . . . L e e e 61
4.5.12 Undefining Multi-Line Macros: %unmacro. . . . . . . . . ..o 62

4.6 Conditional Assembly . . . . . . . . L 62
4.6.1 %ifdef: Testing Single-Line MacroExistence . . . . . . . . . .. ... ... .. 62
4.6.2 %ifmacro: Testing Multi-Line Macro Existence . . . . . . . . ... .. ... .. .. ... 63
4.6.3%ifctx: Testingthe ContextStack . . . . . . . . .. ... .. . L. 63

4.6.4 %1 f: Testing Arbitrary Numeric Expressions. . . . . . . . . . . ... . L. 63



4.6.5%ifidnand %ifidni: Testing Exact Textldentity . . . . . . . . .. ... ... ... ... 63

4.6.6%ifid, %ifnum, %ifstr: TestingTokenTypes . . . . . . . . . . . v v i vt 64
4.6.7%iftoken: TestforaSingleToken. . . . . . . . . . . . . 65
4.6.8%ifempty: Testfor Empty Expansion . . . . . . . . . . . . o e 65
4.6.9 %ifenv: Test If Environment VariableExists. . . . . . . . . .. ... ... ... ... 65
4.7 PreprocessorLoopsS:%rep . . v v v v v v i e e e e e e e e e e e e e 65
4.8 Source Filesand Dependencies . . . . . . . . ...l 66
4.8.1%include: IncludingOtherFiles. . . . . . . . . . . . . 66
4.8.2 %pathsearch: SearchthelncludePath . . . . . . . . ... ... ... . ... ...... 66
4.8.3%depend: Add DependentFiles . . . . . . . . . . L 67
4.8.4%use: Include Standard MacroPackage. . . . . . . . . .. L oo 67
49TheContextStack. . . . . . . . . . e 67
4.9.1 %push and %pop: Creating and Removing Contexts . . . . . . .. .. .. ... ...... 67
49.2 Context-LocalLabels. . . . . . . . . . e 68
4.9.3 Context-Local Single-LineMacros . . . . . . . . . . . . e 68
4.9.4 Context Fall-Through Lookup (deprecated). . . . . . . . . . . .. ... ... ..., 68
49.5%repl:RenamingaContext. . . . . . . . . . .. L L 69
4.9.6 Example Use of the Context Stack:Block IFs . . . . . . .. . .. ... ... ... ..., 69
4.10 Stack Relative Preprocessor Directives. . . . . . . . . . . .. L . 70
4.10.1%argDirective. . . . . . . L e e e e e e e 70
4.10.2%stacksizeDirective . . . . . . . L. 71
4.10.3%local Directive. . . . . . . . . L 71
4.11 Reporting User-Defined Errors: %error, %warning, %fatal . . . . . . . . . . . . .. ... .. 72
4.12%pragma: SettingOptions. . . . . . . . . L L 73
4.12.1 Preprocessor Pragmas . . . . . . . . . . .o e e e e e e 73
4.13 Other Preprocessor Directives . . . . . . . . . . . . e 73
4.13.1%lineDirective . . . . . . oL L 73
4.13.2 %!variable: Read an Environment Variable. . . . . . . . .. ... oo oL 74
4.13.3%clear: Clear All Macro Definitions . . . . . . . . . . . . o 74
Chapter5:Standard Macros . . . . . . . . . e e e e e e e e e e e e 75
5. 1NASMVersion Macros . . . . . . o o i i i e e e e e e e e 75
5.1.1 __?NASM_VERSION_ID?__:NASMVersionID . . . . . . . . . . . . v 75
5.1.2 __?NASM_VER?__:NASMVersionString . . . . . . . . . . .. ... .. .. ... 75
5.2 __?FILE?__and __?LINE?__:File NameandLineNumber. . . . . . . .. .. ... ... ... 75
5.3 __?BITS?__:Current Code GenerationMode . . . . . . . . . . . . . . ... ... ... 76
5.4 __?0UTPUT_FORMAT?__: CurrentOutputFormat . . . . . . ... ... ... ... ... ..., 76



5.5 __?DEBUG_FORMAT?__:CurrentDebugFormat . . . . . . . . ... ... ... ... .. .... 76

5.6 Assembly Dateand Time Macros . . . . . . . . o v i v i v i et e e e 76
5.7 __?USE_package?__:PackagelncludeTest . . . . . . . . . ... ..o 77
5.8 __?PASS?__:Assembly Pass . . . . . .. e 77
5.9StructureDataTypes . . . . . . . . L e e e e e e e e e e 7
5.9.1 sTRUC and ENDSTRUC: Declaring StructureDataTypes. . . . . . . . . . . ... ... ... 77
5.9.2 ISTRUC, AT and IEND: Declaring Instances of Structures. . . . . . . . .. ... ... ... 78
5.10AlignmentControl . . . . . . . . . L 79
5.10.1 ALIGN and ALIGNB: Code and Data Alignment . . . . . . . . . ... ... L. 79
5.10.2 SECTALIGN: Section Alignment. . . . . . . . . . . . . 80
Chapter 6: Standard Macro Packages . . . . . . . . . . . e e e e 81
6.1 altreg: Alternate RegisterNames. . . . . . . . . . . . . L L 81
6.2 smartalign: SMart ALIGNMAcCro. . . . . . . . . . o o i v i e e e e e 81
6.3 fp: Floating-pointmacros .. . . . . . . . . . . L e 82
6.4 ifunc:Integerfunctions. . . . . . . . L L 82
6.4.1Integer logarithms . . . . . . . . . L 82
6.5 masm: MASM compatibility . . . . . . . . L L 82
Chapter 7: Assembler Directives . . . . . . . . . . . . e 85
7.1B1TS: Specifying Target ProcessorMode. . . . . . . . . . . L Lo o 85
7.1.1usEle & USE32: AliasesforBITS . . . . . . . . . . . 86
7.2 DEFAULT: Change theassemblerdefaults . . . . . . . . . . ... .. . . 86
7.2.1REL & ABS: RIP-relativeaddressing . . . . . . . . . . ... 86
T.22BND&NOBND: BND prefix . . . . . o o o e e 86
7.3 SECTION or SEGMENT: Changing and Defining Sections . . . . . . . ... ... ... ... ... 86
7.3.1The __?2SECT?__MacCro . . . . . v v vttt e e e e e e e 86
7.4 ABSOLUTE: Defining AbsoluteLabels . . . . . . . . . . ..o 87
7.5 EXTERN: Importing Symbols from OtherModules . . . . . . ... ... ... ... .. ... 88
7.6 REQUIRED: Unconditionally Importing Symbols from Other Modules. . . . . . .. . ... ... 88
7.7 GLOBAL: Exporting Symbols to OtherModules . . . . . . . . ... ... . oL, 88
7.8 commoON: Defining Common DataAreas. . . . . . . . . ... 89
7.9 sTATIC: Local Symbols withinModules . . . . . . . . ... .. L o 89
7.10 (G|L)PREFIX, (G|L)POSTFIX: ManglingSymbols . . . . . . .. .. ... ... ... .... 89
7.11 cpu: Defining CPU Dependencies. . . . . . . .« o o i i it e e 90
7.12 FLOAT: Handling of floating-pointconstants . . . . . . . . ... ... .. L L. 90
7.13 [WARNING]: Enableordisablewarnings. . . . . . . . . . . .. Lo o o 91

Chapter 8: Output Formats. . . . . . . . . . . o 93



8.1bin:Flat-FormBinaryOutput . . . . . . . . . . . . 93

8.1.10RG: Binary File Program Origin. . . . . . . . . . . . . . . e 93
8.1.2 bin Extensions to the SECTION Directive, bin extensionsto} . . . .. ... ... ... .. 93
8.1.3 Multisection SupportforthebinFormat . . . . . . . ... ... ... ... 94
8.14MapFiles. . . . . . . e 94
8.24th:IntelHexOutput . . . . . . . . . e 94
8.3 srec:Motorola S-RecordsQutput . . . . . . . . .. . L 94
8.4 obj: Microsoft OMF ObjectFiles . . . . . . . . . . . . . . . 95
8.4.1 obj Extensions to the SEGMENT Directive . . . . . . . . . . . . . .. .. ... ... 95
8.4.2 GRouP: Defining Groupsof Segments . . . . . . . .. L Lo 96
8.4.3 UPPERCASE: Disabling Case Sensitivity inOutput . . . . . . ... ... ... ... .... 96
8.4.4 IMPORT: Importing DLLSymbols . . . . . . . . . .. Lo L 97
8.4.5 EXPORT: Exporting DLLSymbols. . . . . . . . . . . . L 97
8.4.6 . .start: Definingthe Program EntryPoint. . . . . . . . . ... ... .. ... 97
8.4.7 obj Extensions to the EXTERN Directive . . . . . . . . . . . . . . . . . . ... 98
8.4.8 obj Extensions to the commoN Directive . . . . . . . . . . . ... 98
8.4.9 Embedded File Dependency Information. . . . . . . .. . ... L L L. 99
8.5win32: Microsoft Win32 ObjectFiles . . . . . . . . . . . . . . 99
8.5.1win32 Extensions to the SECTION Directive . . . . . . . . . . . . ... ... ... ... 99
8.5.2 win32: Safe Structured ExceptionHandling. . . . . . . ... ... ... . L. 100
8.5.3 Debugging formatsforWindows . . . . . . . . .. ... L o 101
8.6 wine4: Microsoft Win64 Object Files . . . . . . . . . . . . . . . 101
8.6.1 wine4: Writing Position-IndependentCode . . . . . . . . . .. .. ... ... .. ..., 101
8.6.2wine4: Structured ExceptionHandling . . . . . . . ... Lo oL 102
8.7 coff:Common Object FileFormat. . . . . . . . . . . .. . 105
8.8 macho32 and macho64: Mach Object FileFormat . . . . . . . .. . ... ... ... .. ... 105
8.8.1 macho extensions to the SECTION Directive . . . . . . . . . .. . ... ... ... .... 105
8.8.2 Thread Local Storage in Mach-O: macho special symbolsandwrT. . . . . . ... ... .. 106
8.8.3 macho specific directive subsections_via_symbols. . . . . . . . . . .. ... ... ... 106
8.8.4 macho specific directive no_dead_strip. . . . . . . . . ..o 106
8.8.5 macho specific extensions to the GLOBAL Directive: private_extern. . . . . . . . . . ... 106
8.9 e1f32, elf64, elfx32: Executable and Linkable Format Object Files. . . . . . . . ... .. .. 106
8.9.1 ELF specificdirectiveosabi. . . . . . . . . . . . e 106
8.9.2 ELF extensions to the SECTION Directive . . . . . . . . . . ... .. .. ... ... 107
8.9.3 Position-Independent Code: ELF Special SymbolsandwrT. . . . . . . ... ... .... 108
8.9.4 Thread Local Storage in ELF: elf Special SymbolsandwrT. . . . . . . ... ... .... 108



10

8.9.5 elf Extensionstothe GLOBAL Directive . . . . . . . . . . . . . . . . 109

8.9.6 elf Extensionsto the EXTERN Directive . . . . . . . . . . . ... . oL 109
8.9.7 elf Extensions to the comMON Directive . . . . . . . . . . . L Lo L 109
8.9.816-bitcodeandELF . . . . . . . . ... 109
8.9.9Debugformatsand ELF . . . . . . . . . . .. 109
8.10 aout: Linuxa.out ObjectFiles . . . . . . . . . . . . . 110
8.11 aoutb: NetBSD/FreeBSD/OpenBSD a.out ObjectFiles . . . . . . . . . ... ... ... ... 110
8.12 as86: Minix/Linux asse6 Object Files. . . . . . . . . . . . . .. L 110
8.13dbg: Debugging Format. . . . . . . . . L L 110
Chapter 9: Writing 16-bit Code (DOS, Windows 3/3.1) . . . . . . . . . . o v i v i vt vt e e e 113
9.1Producing .EXEFiles. . . . . . . . L 113
9.1.1 Using the obj Format To Generate .ExEFiles. . . . . . . . . . . .. .. .. ... .... 113
9.1.2 Using the bin Format To Generate .EXEFiles. . . . . . . . .. ... .. .. ... .... 114
9.2Producing .COMFiles. . . . . . . . L e 115
9.2.1Using the bin Format To Generate .coMFiles. . . . . . . . . . ... .. ... .. .... 115
9.2.2 Using the obj Format To Generate .CoMFiles. . . . . . . . . . . .. .. .. ... .... 115
9.3Producing .SYSFiles. . . . . . . L e 116
9.4 Interfacingto 16-bit CPrograms. . . . . . . . . . . L L 116
9.4.1 External SymbolNames . . . . . . . . . ... 116
9.42MemoryModels. . . . . . L 117
9.4.3 Function Definitionsand FunctionCalls . . . . . . . ... ... ... ... ...... 117
9.4.4 AccessingDataltems. . . . . . . . L 119
9.4.5 c16.mac: Helper Macros for the 16-bit CInterface. . . . . . . . . .. ... ... .. ... 120
9.5 Interfacing to Borland Pascal Programs.. . . . . . . . . . . ... L o o 121
9.5.1ThePascal CallingConvention . . . . . . . . . .. . .. .. . ... 121
9.5.2 Borland Pascal Segment Name Restrictions . . . . . . . . ... .. ... ........ 122
9.5.3Using c16.mac With Pascal Programs. . . . . . . . . . . .. ... ... ... ... ... 122
Chapter 10: Writing 32-bit Code (Unix, Win32,DJGPP) . . . . . . . . . . . . . . . . v v v 125
10.1Interfacingto 32-bit CPrograms . . . . . . . . . . . . e 125
10.1.1 External SymbolNames. . . . . . . . . . .. e 125
10.1.2 Function Definitions and FunctionCalls. . . . . . . . .. ... ... ... ... ... 125
10.1.3 AccessingDataltems . . . . . . . . . .. e 126
10.1.4 c32.mac: Helper Macros forthe 32-bitClinterface . . . . . . . . . ... ... ... ... 127
10.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries. . . . . . . .. ... .. 128
10.2.1 Obtaining the Addressof the GOT . . . . . . . . . . . . . ... .. .. ... ... 128
10.2.2 Finding Your Local Dataltems. . . . . . . . . . . . L 129



10.2.3 Finding Externaland Common Dataltems . . . . . . ... ... ... ... ... ... 129

10.2.4 Exporting Symbols tothe LibraryUser . . . . . . . . .. ... oL 129
10.2.5 Calling Procedures Outside the Library . . . . . . . . .. ... .. . L L. 130
10.2.6 Generatingthe Library File . . . . . . . . . . . . 130
Chapter 11: Mixing 16-and 32-bitCode . . . . . . . . . . . . . . . . 133
111 Mixed-Size JUMPS . . . . . L L e e e e e e 133
11.2 Addressing Between Different-Size Segments . . . . . . . . ... Lo oL 133
11.3 Other Mixed-Size Instructions . . . . . . . . . . . . e 134
Chapter 12: Writing 64-bit Code (Unix, Win64) . . . . . . . . . . . . o i v i it it et e e e 135
12.1 Register Namesin64-bitMode. . . . . . . . . . .. 135
12.2 Immediates and Displacements in 64-bitMode . . . . . . ... ... oo 135
12.3 Interfacing to 64-bit C Programs (Unix). . . . . . . . . . . . . o 136
12.4 Interfacing to 64-bit C Programs (Win64). . . . . . . . . . . . . i e 137
Chapter 13: Troubleshooting. . . . . . . . . . . . . e 139
13.1Common Problems . . . . . . L e e 139
13.1.1 NASM Generates InefficientCode . . . . . . . . . . .. oo L 139
13.1.2MyJumpsareOutofRange . . . . . . . . . .. L 139
13.1.30rRGDoesn’tWork . . . . .. 139
13.14T7IMES Doesn’tWork . . . . . oL 140
Appendix A: Listof Warning Classes . . . . . . . . . . o e 141
Appendix B: Ndisasm . . . . . . L L e e e 149
B.lIntroduction. . . . . . . . . 149
B.2Running NDISASM. . . . . . . . . e e e e e e e 149
B.2.1 COM Files: Specifyingan Origin. . . . . . . . . . . . . . 149

B.2.2 Code Following Data: Synchronization. . . . . . .. . ... ... ... ... ... .. 149

B.2.3 Mixed Code and Data: Automatic (Intelligent) Synchronization . . . . . ... ... ... 150
B.2.40therOptions . . . . . . . . . e 150
Appendix C: NASM Version History . . . . . . . . . . L e 153
CINASM2Series. . . v v v v i e e e e e e e e e e e 153
C.LIVersion2.16 . . . . o o i e e e e e e e e e 153
C.12Version 2.15.06 . . . . . Ll e e e e e e e e e e e e 153
C.1.3Version 2.15.05. . . . . L e e e e e e 153
C.lAVersion 2.15.04 . . . . . . L L e e e e e e 153
C.1.5Version 2.15.03 . . . . . L e e e e e e e e 154
C.1.6Version 2.15.02. . . . . Ll e e e e e e e e e e 154
C.L7Version2.15.01 . . . . . o L e e e e e e e e e e e 154



12

C.1.8Version 2.15 . . . . . . e e e e e e e e e 154

C.19Version2.14.03. . . . . . o e e e e e e e e e e e e e 156
C.L10Version2.14.02 . . . . . o o e e e e e e e e e e e e e e 156
C.L11Version2.14.01 . . . . . o o e e e e e e e e e e e e e e e e 156
C.L12Version2.14. . . . . . e e e e e e e e e e e e 156
C.LI3Version2.13.03 . . . . . o e e e e e e e e e e e e e e e e 157
C.L14Version 2.13.02 . . . . o ot e e e e e e e e e e e e e e e e 157
C.L15Version2.13.01 . . . . . o o e e e e e e e e e e e e e 158
C.LI6Version2.13. . . . L o e e e e e e e e e e e e e e 158
C.LI7Version2.12.02 . . . . v v i e e e e e e e e e e e e e e e e 159
C.L18Version 2.12.01 . . . . . o o e e e e e e e e e e e e e e e e 159
C.LI9Version2.12. . . . L o e e e e e e e e e e e e e e 159
C.1.20Version 2.11.09 . . . . . L e e e e e e e e e e e e e e e e 160
C.1.21Version 2.11.08 . . . . . o i e e e e e e e e e e e e e e e 160
C.1.22Version 2.11.07 . . . . v v e e e e e e e e e e e e e e e e e e e e e 160
C.123Version2.11.06 . . . . . v v e e e e e e e e e e e e e e e e e e 160
C.1.24Version 2.11.05 . . . . . L L e e e e e e e e e e 160
C.1.25Version 2.11.04 . . . . . L o e e e e e e e e e e e e e e e 161
C.1.26Version 2.11.03 . . . . . L e e e e e e e e e e e e e e e e e 161
C.127Version 2.11.02 . . . . o o i e e e e e e e e e e e e e e e e 161
C.1.28Version 2.11.01 . . . . . L o e e e e e e e e e e e e e e e e e 161
C.129Version 2.11. . . . L o e e e e e e e e e e e e e 161
C.1.30Version2.10.09 . . . . . . e e e e e e e e e e e e e 162
C.1.31Version2.10.08 . . . . . . . e e e e e e e e e e e e e e 162
C.1.32Version 2.10.07 . . . . o o o e e e e e e e e e e e e e e e e e 162
C.1.33Version2.10.06 . . . . . . o e e e e e e e e e e e e e e e 162
C.1.34Version 2.10.05 . . . . . . L e e e e e e e e 163
C.1.35Version2.10.04 . . . . . . e e e e e e e e e e e e e e 163
C.1.36Version 2.10.03 . . . . . . e e e e e e e e e e e e e e e 163
C.137Version2.10.02 . . . . . . o e e e e e e e e e e e e e e 163
C.1.38Version 2.10.01 . . . . . . e e e e e e e e e e e e e e 163
C.139Version2.10. . . . . o i e e e e e e e e e e e e e e e 163
C.140Version2.09.10 . . . . . . o e e e e e e e e e e e e e e 163
C.1.41Version2.09.09 . . . . . . L e e e e e e e e 163
C.1.42Version 2.09.08 . . . . . . . e e e e e e e e 164
C.1.43Version 2.09.07 . . . . . . o i e e e e e e e e e e e e e e 164



C.1.44Version 2.09.06 . . . . . ... e e e e e e e e 164

C.1.45Version 2.09.05 . . . . . . L e e e e 164
C.1.46Version 2.09.04 . . . . . . .. e e e e e e e e e 164
C.1A4TVersion2.09.03 . . . . . . . e e e e e e e e 164
C.1.48Version 2.09.02 . . . . . . . e e e e e e e e 164
C.1.49Version 2.09.01 . . . . . . .. e e e e e e e e e e e 164
C.150Version2.09. . . . . . L e e e e e e e e e e e 165
C.1.51Version2.08.02 . . . . . . . e e e e e e e e e e 165
C.1.52Version 2.08.01 . . . . . . . . e e e e e e e e e e e e e 165
C.1.53Version2.08. . . . . . L e e e e e e e 165
C.154Version2.07. . . . . o i i i e e e e e e e e e e e e e e 166
C.155Version2.06. . . . . . o o e e e e e e e e e e e e 166
C.1.56Version 2.05.01 . . . . . . .. e e e e e e e e e e e e e 167
C.L57Version2.05. . . . . o i i e e e e e e e e e e e e 167
C.158Version2.04. . . . . . L e e e e e e e e e e 167
C.1.59Version 2.03.01 . . . . . . . e e e e e e e e e e e e e 168
C.160Version2.03. . . . . . L e e e e e e e e e e e e e 168
C.1B1Version2.02. . . . . o o i e e e e e e e e e e e e e 169
C.162Version2.01. . . . . . L e e e e e e e e e e e e 170
C.1.63Version2.00. . . . . . L e e e e e e e e e e e e 170
C2NASM0.98SEries . . . . v v e e e e e e e e e e e e e e e e 171
C.2.1Version 0.98.39. . . . . . . L e e e e e e e e 171
C.2.2Version 0.98.38 . . . . . . . L e e e e e e e 171
C.2.3Version 0.98.37 . . . . . . o i e e e e e e e e e e 171
C.2.4Version 0.98.36. . . . . . . . e e e e e e e e e 172
C.2.5Version 0.98.35. . . . . . . e e e e e e 172
C.2.6Version 0.98.34. . . . . . . L e e e 172
C.2.7Version 0.98.33 . . . . . . . e e e e e e 172
C.2.8Version 0.98.32. . . . . . . e e e e e e e 173
C.29Version 0.98.31. . . . . . . e e e e e e e e e 173
C.2.10Version 0.98.30 . . . . . . e e e e e e e e e e e 173
C.2.11Version 0.98.28 . . . . . . . e e e e e e e e e 173
C.2.12Version 0.98.26 . . . . . . . e e e e e e e e e e e 173
C.2.13Version 0.98.25alt. . . . . . . .. e 174
C.2.14Version 0.98.25 . . . . . . L e e e e 174
C.2.15Version 0.98.24p1 . . . . . . .. e e e e e e e e e e e e e 174



14

C.2.16Version 0.98.24 . . . . . . . e e e e e e e e e 174

C.2.17Version 0.98.23 . . . . . . L e e e e e e e e e 174
C.2.18Version 0.98.22 . . . . . L L e e e e e e e e e e e 174
C.2.19Version 0.98.21 . . . . . . e e e e e e e e e e e e e e e 174
C.2.20Version 0.98.20 . . . . . . . . e e e e e e e e e e 174
C.2.21Version 0.98.19 . . . . . . L e e e e e e e e e e e 174
C.2.22Version 0.98.18 . . . . . . . e e e e e e e e e e 174
C.2.23Version 0.98.17 . . . . . . o o e e e e e e e e e e e e 174
C.2.24Version 0.98.16 . . . . . . . e e e e e e e e e e e 174
C.2.25Version 0.98.15 . . . . . . L e e e e e e 174
C.2.26Version 0.98.14 . . . . . . . e e e e e e e e e e e 174
C.2.27Version 0.98.13 . . . . . . L e e e e e e e 175
C.2.28Version 0.98.12 . . . . . . L e e e e e e e e e e e e 175
C.2.29Version 0.98.11 . . . . . . L e e e e e e e e e e 175
C.2.30Version 0.98.10 . . . . . . . e e e e e e e e e e e e e 175
C.2.31Version0.98.09 . . . . . . . e e e e e e e 175
C.2.32Version 0.98.08 . . . . . . L. e e e e e e e e 175
C.2.33 Version 0.98.09b with John Coffman patches released 28-Oct-2001. . . . . . . ... .. 175
C.2.34 Version 0.98.07 released 01/28/01. . . . . . . . . o v v i i e 176
C.2.35Version 0.98.06f released 01/18/01 . . . . . . . . . . . . . . i e 176
C.2.36 Version 0.98.06e released 01/09/01 . . . . . . . . . . v v i i i e 176
C.2.37Version 0.98pl . . . . . . e e e e e e e 176
C.2.38Version 0.98bf (bug-fixed). . . . . . . . . . .. 176
C.2.39 Version 0.98.03 with John Coffman’s changes released 27-Jul-2000. . . . . . . ... .. 176
C.2.40Version 0.98.03 . . . . . . L e e e e e e e e 177
C.2.41Version0.98. . . . . . L e e e e e e e e 180
C.2.42Version 0.98p9 . . . . . . e e e e e e e 180
C.2.43Version 0.98p8 . . . . . . e e e e e e 180
C.2.44Version 0.98p7 . . . . L e e e e e e e e e e e 180
C.2.45Version 0.98p6 . . . . . . e e e e e e e e e e e 181
C.2.46Version 0.98p3.7 . . . . . . e e e e e e e e e e 181
C.2.47Version 0.98p3.6 . . . . . . e e e e e e e e e e 181
C.2.48Version 0.98p3.5 . . . . . L e e e 181
C.2.49Version 0.98p3.4 . . . . . e e e e e e e e e 182
C.2.50Version 0.98p3.3 . . . . . e e e e e e e e e 182
C.2.51Version 0.98p3.2 . . . . . L e e e e e e e e e 182



C.2.52Version 0.98p3-hpa . . . . . . . . e 182

C.2.53Version 0.98 pre-release3. . . . . . . . . e e 183
C.2.54Version 0.98 pre-release2. . . . . . . . . . e e 183
C.2.55Version 0.98 pre-release 1. . . . . . . . . .o e e 183
C3NASMO.9Series. . . . . o o e e e e e e e e e e e e 184
C.3.1Version 0.97 released December1997 . . . . . . . . . . . ... 184
C.3.2Version 0.96 released November1997 . . . . . . . . . . . .. e 185
C.3.3Version0.95released July 1997 . . . . . . . . . .. 187
C.3.4Version 0.94 released April 1997 . . . . . . . . . L 188
C.3.5Version0.93released January 1997 . . . . . . . . . ... 189
C.3.6Version 0.92released January 1997 . . . . . . . . . ... 189
C.3.7Version 0.91 released November1996 . . . . . . . . . . . . . e 189
C.3.8Version 0.90 released October1996 . . . . . . . . . . . . .. . 190
Appendix D: Building NASM from Source. . . . . . . . .. L L 191
D.1Buildingfroma Source Archive . . . . . . . . ... L 191
D.2 Building fromthe git Repository . . . . . . . . . . ... 191
D.3 Buildingthedocumentation . . . . . . . . . ... L 191
Appendix E: Contact Information . . . . . . .. L L 193
ElWebsite . . . . . . . e e e 193
E.LLIUSerFOrums . . . . . o o o o e e e e e e e e e e e e e e e e 193
E.1.2 Development Community . . . . . . . . . L L 193
E2ReportingBugs . . . . . . . . L e 193
Appendix F: Instruction List . . . . . . . . L L 195
F.llintroduction. . . . . . o o L o e e e e 195
F.1.1 Special instructions (pseudo-ops) . . . . . . . . . . L Lo 195
F.1.2 Conventionalinstructions . . . . . . . . . . . . L 195
F.1.3 Katmai Streaming SIMD instructions (SSE —— a.k.a. KNI, XMM, MMX2). . . . . . .. .. .. 217
F.1.4 Introduced in Deschutes but necessary for SSEsupport . . . . . . . . . ... ... ... 218
F.1.5 XSAVE group (AVXand extendedstate) . . . . . . . . . ... ... 218
F.1.6 Genericmemoryoperations . . . . . . . . . L Lo e e e 218
F.1.7 New MMX instructions introducedinKatmai . . . . . . . .. .. .. ... ... ..... 218
F.1.8 AMD Enhanced 3DNow! (Athlon) instructions. . . . . . . . . .. . .. ... ....... 219
F.1.9 Willamette SSE2 Cacheability Instructions . . . . . . . ... ... .. .. ... 219
F.1.10 Willamette MMX instructions (SSE2 SIMD Integer Instructions) . . . . . . ... ... .. 219
F.1.11 Willamette Streaming SIMD instructions (SSE2). . . . . . . . . . . .. . ... ... .. 220
F.1.12 Prescott New Instructions (SSE3) . . . . . . . . . . . . . . i i i e 222



16

F.L1I3VMX/SVM Instructions. . . . . . . . . . . . . e e e e 222

F.1.14 Extended Page TablesVMXinstructions. . . . . . . . . . . ... ... ... ..., 222
F.1.L15SEV-SNP AMD instructions. . . . . . . . . . . . . . e 222
F.1.16 Tejas New Instructions (SSSE3) . . . . . . . . . . . i i i it e e e e 222
F.LI7TAMD SSEAA . . . o o e e e e e e e e e e 223
F.1.18 New instructionsin Barcelona. . . . . . . . . . . . . . . e 223
F.1.19 Penryn New Instructions (SSE4.1) . . . . . . . . . . . . o i i it 223
F.1.20 Nehalem New Instructions (SSE4.2) . . . . . . . . . . . . . i i i i e i e e 224
F.1.21Intel SMX . . . . e e e e e 224
F.1.22 Geode (Cyrix) 3DNow! additions. . . . . . . . . . . . . ... 224
F.1.23 Intel new instructionsin 222, . . . . . . . . L e e e e e e 224
F.1.24 Intel AESinstructions . . . . . . . . . L e e e e 225
F.1.25Intel AVX AES instructions .. . . . . . . . . . L e e e e 225
F.1.26 Intel instruction extension based on pub number 319433-030 dated October 2017 . . . .225
F.1.27 Intel AVXinstructions . . . . . . . . . L e e e e e e e 225
F.1.28 Intel Carry-Less Multiplication instructions (CLMUL) . . . . . . . ... ... ... ... 235
F.1.29 Intel AVX Carry-Less Multiplication instructions (CLMUL) . . . . . . . . ... ... ... 235
F.1.30 Intel Fused Multiply-Add instructions (FMA) . . . . . . . . . .. . ... . ... .. 236
F.1.31 Intel post-32 nm processorinstructions. . . . . . . . ... . Lo 239
F.1.32VIA (Centaur) security instructions . . . . . . . . . . . .. .. 239
F.1.33 AMD Lightweight Profiling (LWP) instructions . . . . . . . . ... ... ... .. .... 239
F.1.34 AMD XOP and FMA4 instructions (SSE5) . . . . . . . . . . . i i i e 240
F.1.35Intel AVX2 instructions . . . . . . . . L e e e e e 242
F.1.36 Intel Transactional Synchronization Extensions (TSX). . . . . . . . .. . ... ... .. 244
F.1.37 Intel BMI1 and BMI2 instructions, AMD TBM instructions . . . . . . . . ... ... ... 245
F.1.38 Intel Memory Protection Extensions (MPX) . . . . . . . . . . . .. . ... .. .. ... 246
F.1.39 Intel SHA accelerationinstructions . . . . . . . . . .. .. ... o 246
F.1.40 AVX-512 mask registerinstructions . . . . . . . ... L Lo oo 246
F.1.41 AVX-512 mask register instructions (aliases requiring explicit size support) . . . . . . .. 247
F.1.42 AVX-512instructions . . . . . . . . . . L L e e e e e e e e e 248
F.1.43 Intel memory protection keys for userspace (PKU aka PKEYs). . . . . . .. . ... ... 279
F.1.44Read ProcessorID. . . . . o . o i e e e e e e e e e e e e 280
F.1.45 New memory instructions. . . . . . . . .. .. L Lo 280
F.1.46 Processortracewrite . . . . . . . . . L L e e e e e e 280
F.1.47 Instructions from the Intel Instruction Set Extensions, . . . . . . .. .. ... .. ... 280
F.1.48doc 319433-034 May 2018 . . . . . . . . i e e e e e e e e e e e e 280



F.1.49 Galois field operations (GFNI) . . . . . . . . . . . . . . e 280

F.1.50 AVX512 Vector Bit Manipulation Instructions2 . . . . . . ... ... ... 280
F.LBLTAVXS12VNNI . o e e e e e e e e e e 281
F.1.52 AVX512 Bit Algorithms. . . . . . . . . e e e e e 282
F.1.53 AVX512 4-iteration Multiply-Add. . . . . . . . . . . .. 282
F.1.54 AVX512 4-iteration Dot Product . . . . . . . . . .. . L Lo 282
F.1.55 Intel Software Guard Extensions (SGX) . . . . . . . . . . . . . . .. e 282
F.1.56 Intel Control-Flow Enforcement Technology (CET) . . . . . . . . .. . ... ... ... 282
F.1.57 Instructions from ISE doc 319433-040,June 2020 . . . . . . . . . . . . v v vt o .. 282
F.1.58 AVX512 Bfloatl6instructions . . . . . . . . . . ... L L 283
F.1.59 AVX512 mask intersectinstructions . . . . . . . ... L. Lo oL 283
F.1.60 Intel Advanced Matrix Extensions (AMX). . . . . . . . . . . . . . . . 283
F.1.61 Intel AVX512-FP16 instructions . . . . . . . . . . . . L 283
F.1.62 AVX no exception CONVErSIONS. . . . . . . . o . vt vt v ittt e e e e e 287
F.1.63 AVX Vector Neural Network Instructions. . . . . . . . ... ... . . ... .. 287
F.1.64 AVX Integer Fused Multiply-Add . . . . . . . . . .. L 287
F.1.65 RAO-INT weakly ordered atomic operations. . . . . . ... ... ... ... ...... 287
F.1.66 Userinterrupts . . . . . . . . . . e e e e e e e 287
F.1.67 Compare, exchange and add conditional . . . . . . . ... ... ... ... ... .. 288
F.1.68 WRMSRNS and MSRLIST instructions . . . . . . . . . ... .. .. ... ... 288
F.1.69 Historyreset. . . . . . . . . e e e e e 288
F.1.70 Systematic names for the hinting nop instructions . . . . . . .. ... ... ... ... 288

17



18



1.1

1.1.1

Chapter 1: Introduction

What Is NASM?

The Netwide Assembler, NASM, is an 80x86 and x86-64 assembler designed for portability and
modularity. It supports a range of object file formats, including Linux and *BSD a.out, ELF, Mach-O,
16-bit and 32-bit .obj (OMF) format, COFF (including its Win32 and Win64 variants.) It can also output
plain binary files, Intel hex and Motorola S-Record formats. Its syntax is designed to be simple and easy
to understand, similar to the syntax in the Intel Software Developer Manual with minimal complexity. It
supports all currently known x86 architectural extensions, and has strong support for macros.

License
NASM is under the so-called 2-clause BSD license, also known as the simplified BSD license:
Copyright 1996-2022 the NASM Authors - All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

+ Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

+ Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

19



20



2.1

2.1.1

Chapter 2: Running NASM

NASM Command-Line Syntax

To assemble a file, you issue a command of the form

nasm -f <format> <filename> [-o <output>]

For example,

nasm -f elf myfile.asm

will assemble myfile.asminto an ELF object file myfile.o. And

nasm -f bin myfile.asm -o myfile.com
will assemble myfile.asminto a raw binary file myfile.com.

To produce a listing file, with the hex codes output from NASM displayed on the left of the original
sources, use the -1 option to give a listing file name, for example:

nasm -f coff myfile.asm -1 myfile.lst

To get further usage instructions from NASM, try typing

nasm -h
The option --help is an alias for the -h option.

If you use Linux but aren’t sure whether your systemis a.out or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like
nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1

then your system is ELF, and you should use the option -f elf when you want NASM to produce Linux
object files. If it says

nasm: Linux/i386 demand-paged executable (QMAGIC)

or something similar, your system is a.out, and you should use -f aout instead (Linux a.out systems
have long been obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won’t see any output at
all, unless it gives error messages.

The -0 Option: Specifying the Output File Name

NASM will normally choose the name of your output file for you; precisely how it does this is dependent
on the object file format. For Microsoft object file formats (obj, win32 and wine4), it will remove the .asm
extension (or whatever extension you like to use - NASM doesn’t care) from your source file name and
substitute .obj. For Unix object file formats (aout, as86, coff, elf32, elf64, elfx32, ieee, macho32 and
macho64) it will substitute .o. For dbg, ith and srec, it will use .dbg, .ith and .srec, respectively, and
for the bin format it will simply remove the extension, so that myfile.asm produces the output file
myfile.

If the output file already exists, NASM will overwrite it, unless it has the same name as the input file, in
which case it will give a warning and use nasm.out as the output file name instead.

For situations in which this behaviour is unacceptable, NASM provides the -o command-line option,
which allows you to specify your desired output file name. You invoke -o by following it with the name
you wish for the output file, either with or without an intervening space. For example:

21



2.1.2

2.1.3

214

22

nasm -f bin program.asm -o program.com
nasm -f bin driver.asm -odriver.sys

Note that this is a small o, and is different from a capital O , which is used to specify the number of
optimization passes required. See section 2.1.24.

The -f Option: Specifying the Output File Format

If you do not supply the -f option to NASM, it will choose an output file format for you itself. In the
distribution versions of NASM, the default is always b1in; if you’ve compiled your own copy of NASM, you
can redefine oOF _DEFAULT at compile time and choose what you want the default to be.

Like -o, the intervening space between -f and the output file format is optional; so -f elf and -felf
are both valid.

A complete list of the available output file formats can be given by issuing the command nasm -h.
The -1 Option: Generating a Listing File

If you supply the -1 option to NASM, followed (with the usual optional space) by a file name, NASM will
generate a source-listing file for you, in which addresses and generated code are listed on the left, and
the actual source code, with expansions of multi-line macros (except those which specifically request
no expansion in source listings: see section 4.5.11) on the right. For example:

nasm -f elf myfile.asm -1 myfile.lst

If a list file is selected, you may turn off listing for a section of your source with [1ist -], and turn it
back on with [list +], (the default, obviously). There is no "user form" (without the brackets). This can
be used to list only sections of interest, avoiding excessively long listings.

The -L Option: Additional or Modified Listing Info

Use this option to specify listing output details.

Supported options are:

+ -Lb show builtin macro packages (standard and %use)

+ -Ld show byte and repeat counts in decimal, not hex

+ -Le show the preprocessed input

+ -Lfignore .nolist and force listing output

+ -Lmshow multi-line macro calls with expanded parameters

« -Lpoutput a list file in every pass, in case of errors

» -Ls show all single-line macro definitions

+ -Lw flush the output after every line (very slow, mainly useful to debug NASM crashes)
+ -L+enable all listing options except -Lw (very verbose)

These options can be enabled or disabled at runtime using the %pragma 1ist options directive:
%pragma list options [+|-]flags...

For example, to turn on the d and m flags but disable the s flag:

%pragma list options +dm -s

For forward compatility reasons, an undefined flag will be ignored. Thus, a new flag introduced in a
newer version of NASM can be specified without breaking older versions. Listing flags will always be a
single alphanumeric character and are case sensitive.



2.1.5

2.1.6

2.1.7

2.1.8

2.19

2.1.10

2.1.11

2.1.12

The -m Option: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This can be redirected to a file
for further processing. For example:

nasm -M myfile.asm > myfile.dep
The -mG Option: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This differs from the -M option in
that if a nonexisting file is encountered, it is assumed to be a generated file and is added to the
dependency list without a prefix.

The -MF Option: Set Makefile Dependency File

This option can be used with the -M or -MG options to send the output to a file, rather than to stdout. For
example:

nasm -M -MF myfile.dep myfile.asm
The -mMD Option: Assemble and Generate Dependencies

The -MD option acts as the combination of the -m and -MF options (i.e. a filename has to be specified.)
However, unlike the - or -MG options, -MD does not inhibit the normal operation of the assembler. Use
this to automatically generate updated dependencies with every assembly session. For example:

nasm -f elf -o myfile.o -MD myfile.dep myfile.asm

If the argument after -MD is an option rather than a filename, then the output filename is the first
applicable one of:

» thefilename set in the -MF option;
» the output filename from the -o option with .d appended;

+ theinput filename with the extension set to .d.

The -mMT Option: Dependency Target Name

The -MT option can be used to override the default name of the dependency target. This is normally the
same as the output filename, specified by the -o option.

The -mQ Option: Dependency Target Name (Quoted)

The -MQ option acts as the -MT option, except it tries to quote characters that have special meaning in
Makefile syntax. This is not foolproof, as not all characters with special meaning are quotable in Make.
The default output (if no -MT or -MQ option is specified) is automatically quoted.

The -mp Option: Emit phony targets

When used with any of the dependency generation options, the -Mp option causes NASM to emit a
phony target without dependencies for each header file. This prevents Make from complaining if a
header file has been removed.

The -Mw Option: Watcom Make quoting style

This option causes NASM to attempt to quote dependencies according to Watcom Make conventions
rather than POSIX Make conventions (also used by most other Make variants.) This quotes # as $# rather
than \#, uses & rather than \ for continuation lines, and encloses filenames containing whitespace in
double quotes.

23



2.1.13 The -F Option: Selecting a Debug Information Format

This option is used to select the format of the debug information emitted into the output file, to be used
by a debugger (or will be). Prior to version 2.03.01, the use of this switch did not enable output of the
selected debug info format. Use -g, see section 2.1.14, to enable output. Versions 2.03.01 and later
automatically enable -g if -F is specified.

A complete list of the available debug file formats for an output format can be seen by issuing the
command nasm -h. Not all output formats currently support debugging output.

This should not be confused with the -f dbg output format option, see section 8.13.

2.1.14 The -g Option: Enabling Debug Information.

2.1.15

2.1.16

2.1.17

24

This option can be used to generate debugging information in the specified format. See section 2.1.13.
Using -g without -F results in emitting debug info in the default format, if any, for the selected output
format. If no debug information is currently implemented in the selected output format, -g is silently
ignored.

The -x Option: Selecting an Error Reporting Format

This option can be used to select an error reporting format for any error messages that might be
produced by NASM.

Currently, two error reporting formats may be selected. They are the -Xvc option and the -xgnu option.
The GNU format is the default and looks like this:

filename.asm:65: error: specific error message

where filename.asm is the name of the source file in which the error was detected, 65 is the source file
line number on which the error was detected, error is the severity of the error (this could be warning),
and specific error message is a more detailed text message which should help pinpoint the exact
problem.

The other format, specified by -xvc is the style used by Microsoft Visual C++ and some other programs.
It looks like this:

filename.asm(65) : error: specific error message
where the only difference is that the line number is in parentheses instead of being delimited by colons.

See also the visual c++ output format, section 8.5.

The -z Option: Send Errors to a File

Under Ms-Dos it can be difficult (though there are ways) to redirect the standard-error output of a
program to a file. Since NASM usually produces its warning and error messages on stderr, this can
make it hard to capture the errors if (for example) you want to load them into an editor.

NASM therefore provides the -z option, taking a filename argument which causes errors to be sent to
the specified files rather than standard error. Therefore you can redirect the errors into a file by typing

nasm -Z myfile.err -f obj myfile.asm

In earlier versions of NASM, this option was called -E, but it was changed since -E is an option
conventionally used for preprocessing only, with disastrous results. See section 2.1.22.

The -s Option: Send Errors to stdout

The -s option redirects error messages to stdout rather than stderr, so it can be redirected under
MS-DOS. To assemble the file myfile.asm and pipe its output to the more program, you can type:

nasm -s -f obj myfile.asm | more

See also the -z option, section 2.1.16.



2.1.18

2.1.19

2.1.20

2.1.21

The -1i Option: Include File Search Directories

When NASM sees the %include or %pathsearch directive in a source file (see section 4.8.1, section 4.8.2
or section 3.2.3), it will search for the given file not only in the current directory, but also in any
directories specified on the command line by the use of the -1 option. Therefore you can include files
from a macro library, for example, by typing

nasm -ic:\macrolib\ -f obj myfile.asm
(As usual, a space between -1i and the path name is allowed, and optional).

Prior NASM 2.14 a path provided in the option has been considered as a verbatim copy and providing a
path separator been up to a caller. One could implicitly concatenate a search path together with a
filename. Still this was rather a trick than something useful. Now the trailing path separator is made to
always present, thus -1 foo will be considered as the -1 foo/ directory.

If you want to define a standard include search path, similar to /usr/include on Unix systems, you
should place one or more -1 directives in the NASMENV environment variable (see section 2.1.35).

For Makefile compatibility with many C compilers, this option can also be specified as -1.

The -p Option: Pre-Include a File

NASM allows you to specify files to be pre-included into your source file, by the use of the -p option. So
running

nasm myfile.asm -p myinc.inc

is equivalent to running nasm myfile.asm and placing the directive %include "myinc.inc" at the start
of the file.

--include option is also accepted.

For consistency with the -1, -D and -u options, this option can also be specified as -p.

The -d Option: Pre-Define a Macro

Just as the -p option gives an alternative to placing %include directives at the start of a source file, the
-d option gives an alternative to placing a ¥def4ine directive. You could code

nasm myfile.asm -dF00=100

as an alternative to placing the directive
%define FOO 100

at the start of the file. You can miss off the macro value, as well: the option -dFoo is equivalent to coding
%define F00. This form of the directive may be useful for selecting assembly-time options which are
then tested using %1 fdef, for example -dDEBUG.

For Makefile compatibility with many C compilers, this option can also be specified as -D.

The -u Option: Undefine a Macro

The -u option undefines a macro that would otherwise have been pre-defined, either automatically or
by a -p or -d option specified earlier on the command lines.

For example, the following command line:
nasm myfile.asm -dF00=100 -uFO0O

would result in Foo not being a predefined macro in the program. This is useful to override options
specified at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can also be specified as -u.

25



2.1.22

2.1.23

2.1.24

2.1.25

26

The -E Option: Preprocess Only

NASM allows the preprocessor to be run on its own, up to a point. Using the -E option (which requires
no arguments) will cause NASM to preprocess its input file, expand all the macro references, remove all
the comments and preprocessor directives, and print the resulting file on standard output (or save it to
afile, if the -o option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate expressions
which depend on the values of symbols: so code such as

%assign tablesize ($-tablestart)
will cause an error in preprocess-only mode.

For compatibility with older version of NASM, this option can also be written -e. -E in older versions of
NASM was the equivalent of the current -z option, section 2.1.16.

The -a Option: Don’t Preprocess At All

If NASM is being used as the back end to a compiler, it might be desirable to suppress preprocessing
completely and assume the compiler has already done it, to save time and increase compilation
speeds. The -a option, requiring no argument, instructs NASM to replace its powerful preprocessor with
a stub preprocessor which does nothing.

The -0 Option: Specifying Multipass Optimization

Using the -0 option, you can tell NASM to carry out different levels of optimization. Multiple flags can be
specified after the -0 options, some of which can be combined in a single option, e.g. -0xv.

+ -00: No optimization. All operands take their long forms, if a short form is not specified, except
conditional jumps. This is intended to match NASM 0.98 behavior.

+ -01: Minimal optimization. As above, but immediate operands which will fit in a signed byte are
optimized, unless the long form is specified. Conditional jumps default to the long form unless
otherwise specified.

+ -0x (where x is the actual letter x): Multipass optimization. Minimize branch offsets and signed
immediate bytes, overriding size specification unless the strict keyword has been used (see section
3.7). For compatibility with earlier releases, the letter x may also be any number greater than one.
This number has no effect on the actual number of passes.

+ -0v: At the end of assembly, print the number of passes actually executed.
The -0x mode is recommended for most uses, and is the default since NASM 2.09.

Note that this is a capital 0, and is different from a small o, which is used to specify the output file name.
See section 2.1.1.

The -t Option: Enable TASM Compatibility Mode

NASM includes a limited form of compatibility with Borland’s TasM. When NASM’s -t option is used, the
following changes are made:

+ local labels may be prefixed with ee instead of .

+ size override is supported within brackets. In TASM compatible mode, a size override inside square
brackets changes the size of the operand, and not the address type of the operand as it does in
NASM syntax. E.g. mov eax, [DWORD val] is valid syntax in TASM compatibility mode. Note that you
lose the ability to override the default address type for the instruction.

+ unprefixed forms of some directives supported (arg, elif, else, endif, if, ifdef, ifdifi, ifndef,
include, local)



2.1.26

2.1.27

2.1.28

2.1.29

The -w and -w Options: Enable or Disable Assembly Warnings

NASM can observe many conditions during the course of assembly which are worth mentioning to the
user, but not a sufficiently severe error to justify NASM refusing to generate an output file. These
conditions are reported like errors, but come up with the word ‘warning’ before the message. Warnings
do not prevent NASM from generating an output file and returning a success status to the operating
system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the user.
Therefore NASM supports the -w command-line option, which enables or disables certain classes of
assembly warning. Such warning classes are described by a name, for example label-orphan; you can
enable warnings of this class by the command-line option -w+label-orphan and disable it by
-w-label-orphan.

Since version 2.15, NASM has group aliases for all prefixed warnings, so they can be used to enable or
disable all warnings in the group. For example, -w+float enables all warnings with names starting with
float-*.

Since version 2.00, NASM has also supported the gcc-like syntax -wwarning-class and
-Wno-warning-class instead of -w+warning-class and -w-warning-class, respectively; both syntaxes
work identically.

The option -w+error or -Werror can be used to treat warnings as errors. This can be controlled on a per
warning class basis (-w+error=warning-class or -werror=warning-class); if no warning-class is specified
NASM treats it as -w+error=all; the same applies to -w-error or -wno-error, of course.

In addition, you can control warnings in the source code itself, using the [WARNING] directive. See
section 7.13.

See appendix A for the complete list of warning classes.

The -v Option: Display Version Info

Typing NAsM -v will display the version of NASM which you are using, and the date on which it was
compiled.

You will need the version number if you report a bug.

For command-line compatibility with Yasm, the form --v is also accepted for this option starting in
NASM version 2.11.05.

The --(g|1)prefix, --(g|1)postfix Options.

The --(g)prefix options prepend the given argument to all extern, common, static, and global
symbols, and the --1prefix option prepends to all other symbols. Similarly, --(g)postfix and
--lpostfix options append the argument in the exactly same way as the --xxprefix options does.

Running this:
nasm -f macho --gprefix _

is equivalent to place the directive with %pragma macho gprefix _ at the start of the file (section 7.10).
It will prepend the underscore to all global and external variables, as C requires it in some, but not all,
system calling conventions.

The —--pragma Option

NASM accepts an argument as %pragma option, which is like placing a %pragma preprocess statement at
the beginning of the source. Running this:

nasm -f macho --pragma "macho gprefix _"

is equivalent to the example in section 2.1.28. See section 4.12.

27



2.1.30

2.1.31

2.1.32

2.1.33

2.1.34

2.1.35

28

The --before Option

A preprocess statement can be accepted with this option. The example shown in section 2.1.29 is the
same as running this:

nasm -f macho --before "%pragma macho gprefix _"
The --1imit-x Option

This option allows user to setup various maximum values after which NASM will terminate with a fatal
error rather than consume arbitrary amount of compute time. Each limit can be set to a positive
number or unlimited.

+ —-limit-passes: Number of maximum allowed passes. Default is unlimited.
+ --limit-stalled-passes: Maximum number of allowed unfinished passes. Default is 1000.
+ —-limit-macro-levels: Define maximum depth of macro expansion (in preprocess). Default is 10000

+ --limit-macro-tokens: Maximum number of tokens processed during single-line macro expansion.
Default is 10000000.

+ —-limit-mmacros: Maximum number of multi-line macros processed before returning to the
top-level input. Default is 100000.

s —-limit-rep: Maximum number of allowed preprocessor loop, defined under %rep. Default is
1000000.

+ --limit-eval: This number sets the boundary condition of allowed expression length. Default is
8192 on most systems.

+ --limit-lines: Total number of source lines allowed to be processed. Default is 2000000000.

For example, set the maximum line count to 1000:

nasm --limit-lines 1000

Limits can also be set via the directive %pragma limit, for example:

%pragma limit lines 1000

The --keep-all Option

This option prevents NASM from deleting any output files even if an error happens.
The --no-1ine Option

If this option is given, all %line directives in the source code are ignored. This can be useful for
debugging already preprocessed code. See section 4.13.1.

The --reproducible Option

If this option is given, NASM will not emit information that is inherently dependent on the NASM version
or different from run to run (such as timestamps) into the output file.

The NASMENV Environment Variable

If you define an environment variable called NASMENV, the program will interpret it as a list of extra
command-line options, which are processed before the real command line. You can use this to define
standard search directories for include files, by putting -1 options in the NASMENV variable.

The value of the variable is split up at white space, so that the value -s -ic:\nasmlib\ will be treated
as two separate options. However, that means that the value -dNAME="my name" won’t do what you
might want, because it will be split at the space and the NASM command-line processing will get
confused by the two nonsensical words -dNAME="my and name".



2.2

2.2.1

2.2.2

2.2.3

To get round this, NASM provides a feature whereby, if you begin the NASMENV environment variable
with some character that isn’t a minus sign, then NASM will treat this character as the separator
character for options. So setting the NASMENV variable to the value !-s!-ic:\nasmlib\ is equivalent to
settingitto -s -ic:\nasmlib\, but ! -dNAME="my name" will work.

This environment variable was previously called NASM. This was changed with version 0.98.31.

Quick Start for MASM Users

If you’re used to writing programs with MASM, or with TASM in MASM-compatible (non-ldeal) mode, or
with a8s, this section attempts to outline the major differences between MASM’s syntax and NASM’s. If
you’re not already used to MASM, it’s probably worth skipping this section.

NASM Is Case-Sensitive

One simple difference is that NASM is case-sensitive. It makes a difference whether you call your label
foo, Foo or FOO. If you’re assembling to Dos or 0s/2 .0B3J files, you can invoke the UPPERCASE directive
(documented in section 8.4) to ensure that all symbols exported to other code modules are forced to be
upper case; but even then, within a single module, NASM will distinguish between labels differing only
in case.

NASM Requires Square Brackets For Memory References

NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that it should
be possible, as far as is practical, for the user to look at a single line of NASM code and tell what opcode
is generated by it. You can’t do this in MASM: if you declare, for example,

foo equ 1
bar dw 2

then the two lines of code

mov ax, foo
mov ax,bar

generate completely different opcodes, despite having identical-looking syntaxes.

NASM avoids this undesirable situation by having a much simpler syntax for memory references. The
rule is simply that any access to the contents of a memory location requires square brackets around the
address, and any access to the address of a variable doesn’t. So an instruction of the form mov ax, foo
will always refer to a compile-time constant, whether it’s an EQu or the address of a variable; and to
access the contents of the variable bar, you must code mov ax, [bar].

This also means that NASM has no need for MASM’s OFFSET keyword, since the MASM code
mov ax,offset bar means exactly the same thing as NASM’s mov ax,bar. If you’re trying to get large
amounts of MASM code to assemble sensibly under NASM, you can always code %idefine offset to
make the preprocessor treat the oFFSeT keyword as a no-op.

This issue is even more confusing in a86, where declaring a label with a trailing colon defines it to be a
‘label’ as opposed to a ‘variable’ and causes age6 to adopt NASM-style semantics; so in age6, mov ax,var
has different behaviour depending on whether var was declared as var: dw o (a label) or var dw o (a
word-size variable). NASM is very simple by comparison: everything is a label.

NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by MASM and
its clones, such as mov ax,table[bx], where a memory reference is denoted by one portion outside
square brackets and another portion inside. The correct syntax for the above is mov ax, [table+bx].
Likewise, mov ax,es:[di] iswrongandmov ax,[es:di] isright.

NASM Doesn’t Store Variable Types

NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM will
remember, on seeing var dw ©, that you declared var as a word-size variable, and will then be able to

29



224

2.2.5

2.2.6

2.2.7

2.2.8

30

fill in the ambiguity in the size of the instruction mov var,2, NASM will deliberately remember nothing
about the symbol var except where it begins, and so you must explicitly code mov word [var],2.

For this reason, NASM doesn’t support the LoDS, MOVS, STOS, SCAS, CMPS, INS, or OUTS instructions, but
only supports the forms such as LoDsB, Movsw, and ScAsD, which explicitly specify the size of the
components of the strings being manipulated.

NASM Doesn’t ASSUME

As part of NASM’s drive for simplicity, it also does not support the AssumME directive. NASM will not keep
track of what values you choose to put in your segment registers, and will never automatically generate
a segment override prefix.

NASM Doesn’t Support Memory Models

NASM also does not have any directives to support different 16-bit memory models. The programmer
has to keep track of which functions are supposed to be called with a far call and which with a near call,
and is responsible for putting the correct form of RET instruction (RETN or RETF; NASM accepts RET itself
as an alternate form for RETN); in addition, the programmer is responsible for coding CALL FAR
instructions where necessary when calling external functions, and must also keep track of which
external variable definitions are far and which are near.

Floating-Point Differences

NASM uses different names to refer to floating-point registers from MASM: where MASM would call them
ST (@), ST(1) and so on, and age would call them simply o, 1 and so on, NASM chooses to call them sto,
stl etc.

As of version 0.96, NASM now treats the instructions with ‘nowait’ forms in the same way as
MASM-compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was based on
a misunderstanding by the authors.

Other Differences

For historical reasons, NASM uses the keyword TworD where MASM and compatible assemblers use
TBYTE.

Historically, NASM does not declare uninitialized storage in the same way as MASM: where a MASM
programmer might use stack db 64 dup (?), NASM requires stack resb 64, intended to be read as
‘reserve 64 bytes’. For a limited amount of compatibility, since NASM treats ? as a valid character in
symbol names, you can code ? equ 6 and then writing dw ? will at least do something vaguely useful.

As of NASM 2.15, the MASM syntax is also supported.

In addition to all of this, macros and directives work completely differently to MASM. See chapter 4 and
chapter 7 for further details.

MASM compatibility package

See section 6.5.



Chapter 3: The NASM Language

3.1 Layout of a NASM Source Line

Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor directive or
an assembler directive: see chapter 4 and chapter 7) some combination of the four fields

label: instruction operands ; comment

As usual, most of these fields are optional; the presence or absence of any combination of a label, an
instruction and a comment is allowed. Of course, the operand field is either required or forbidden by
the presence and nature of the instruction field.

NASM uses backslash (\) as the line continuation character; if a line ends with backslash, the next line is
considered to be a part of the backslash-ended line.

NASM places no restrictions on white space within a line: labels may have white space before them, or
instructions may have no space before them, or anything. The colon after a label is also optional. (Note
that this means that if you intend to code lodsb alone on a line, and type lodab by accident, then that’s
still a valid source line which does nothing but define a label. Running NASM with the command-line
option -w+orphan-labels will cause it to warn you if you define a label alone on a line without a trailing
colon.)

Valid characters in labels are letters, numbers, _, §, #, @, ~, ., and 2. The only characters which may be
used as the first character of an identifier are letters, . (with special meaning: see section 3.9), _and 2.
An identifier may also be prefixed with a $ to indicate that it is intended to be read as an identifier and
not a reserved word; thus, if some other module you are linking with defines a symbol called eax, you
can refer to $eax in NASM code to distinguish the symbol from the register. Maximum length of an
identifier is 4095 characters.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU
instructions, MMX instructions and even undocumented instructions are all supported. The instruction
may be prefixed by LoCk, REP, REPE/REPZ, REPNE/REPNZ, XACQUIRE/XRELEASE or BND/NOBND, in the usual
way. Explicit address-size and operand-size prefixes A16, A32, A64, 016 and 032, 064 are provided - one
example of their use is given in chapter 11. You can also use the name of a segment register as an
instruction prefix: coding es mov [bx],ax is equivalent to coding mov [es:bx],ax. We recommend the
latter syntax, since it is consistent with other syntactic features of the language, but for instructions
such as LoDsB, which has no operands and yet can require a segment override, there is no clean
syntactic way to proceed apart from es lodsb.

An instruction is not required to use a prefix: prefixes such as cs, A32, LOCK or REPE can appear on a line
by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM also supports a number of pseudo-instructions,
described in section 3.2.

Instruction operands may take a number of forms: they can be registers, described simply by the
register name (e.g. ax, bp, ebx, cro: NASM does not use the gas-style syntax in which register names
must be prefixed by a % sign), or they can be effective addresses (see section 3.3), constants (section
3.4) or expressions (section 3.5).

For x87 floating-point instructions, NASM accepts a wide range of syntaxes: you can use two-operand
forms like MASM supports, or you can use NASM’s native single-operand forms in most cases. For
example, you can code:

fadd stl ; this sets st0 := st0® + stl
fadd stO,stl ; so does this

31



fadd stl,stoO ; this sets stl := stl + sto
fadd to stl ; so does this

Almost any x87 floating-point instruction that references memory must use one of the prefixes DworbD,
QWORD or TWORD to indicate what size of memory operand it refers to.

3.2 Pseudo-Instructions

Pseudo-instructions are things which, though not real x86 machine instructions, are used in the
instruction field anyway because that’s the most convenient place to put them. The current
pseudo-instructions are DB, DW, DD, DQ, DT, DO, DY and Dz; their uninitialized counterparts RESB, RESW, RESD,
RESQ, REST, RESO, RESY and RESZ; the INCBIN command, the EQUu command, and the TIMES prefix.

In this documentation, the notation "Dx
directives, respectively.

and "REsx" is used to indicate all the pB and RESB type

3.2.1 px: Declaring Initialized Data

DB, DW, DD, DQ, DT, DO, DY and Dz (collectively "Dx" in this documentation) are used, much as in MASM, to
declare initialized data in the output file. They can be invoked in a wide range of ways:

db 0x55 ; just the byte 0x55

db 0x55,0x56,0x57 three bytes in succession

db ’a’,0x55 character constants are 0K

db ’hello’,13,10,’$’ so are string constants

dw 0x1234 0x34 0x12

dw ’a’ Ox61 Ox00 (it’s just a number)
dw ’ab’ 0x61 0x62 (character constant)
dw >abc’ 0x61 0x62 0x63 0x00 (string)

dd 0x12345678
dd 1.234567e20
dq 0x123456789abcdefo
dq 1.234567e20
dt 1.234567e20

0x78 Ox56 0x34 0x12
floating-point constant
eight byte constant
double-precision float
extended-precision float

DT, DO, DY and Dz do not accept integer numeric constants as operands.
Starting in NASM 2.15, a the following MASM-like features have been implemented:
» A?argument to declare uninitialized storage:

db ? 3 uninitialized

+ A superset of the DuP syntax. The NASM version of this has the following syntax specification; capital
letters indicate literal keywords:

dx =DB | DW | DD | DQ | DT | DO | DY | DZ

type = BYTE | WORD | DWORD | QWORD | TWORD | OWORD | YWORD | ZWORD
atom = expression | string | float | 72’

parlist := ’(’ value [, value ...] )’

duplist := expression DUP [type] [’%’] parlist

list = duplist | ’%’ parlist | type [’%’] parlist

value = atom | type value | list

stmt := dx value [, value...]

Note that a list needs to be prefixed with a % sign unless prefixed by either bup or a type in order to
avoid confusing it with a parenthesis starting an expression. The following expressions are all valid:

db 33
db (44) ; Integer expression
; db (44,55) ; Invalid - error

db %(44,55)
db %(’XX?,’YY?)

db (’AA’) ; Integer expression - outputs single byte
db %(’BB’) ; List, containing a string
db ?

32



3.2.2

3.2.3

db 6 dup (33)

db 6 dup (33, 34)

db 6 dup (33, 34), 35

db 7 dup (99)

db 7 dup dword (?, word ?, ?)

dw byte (?7,44)

dw 3 dup (0xcc, 4 dup byte (’PQR’), ?), Oxabcd
dd 16 dup (Oxaaaa, ?, Oxbbbbbb)

dd 64 dup (?)

The use of $ (current address) in a bx statement is undefined in the current version of NASM, except in
the following cases:

+ For thefirst expression in the statement, either a bup or a data item.
+ An expression of the form "value - $", which is converted to a self-relative relocation.
Future versions of NASM is likely to produce a different result or issue an error this case.

There is no such restriction on using $$ or section-relative symbols.

RESB and Friends: Declaring Uninitialized Data

RESB, RESW, RESD, RESQ, REST, RESO, RESY and RESZ are designed to be used in the BSS section of a
module: they declare uninitialized storage space. Each takes a single operand, which is the number of
bytes, words, doublewords or whatever to reserve. The operand to a RESB-type pseudo-instruction
would be a critical expression (see section 3.8), except that for legacy compatibility reasons forward
references are permitted, however the code will be extremely fragile and this should be considered a
severe programming error. A warning will be issued; code generating this warning should be remedied
as quickly as possible (see the forward class in appendix A.)

For example:

buffer: resb 64 ; reserve 64 bytes
wordvar: resw 1 ; reserve a word
realarray resq 10 ; array of ten reals
ymmval: resy 1 ; one YMM register
zmmvals: resz 32 ; 32 ZMM registers

Since NASM 2.15, the MASM syntax of using ? and DuP in the Dx directives is also supported. Thus, the
above example could also be written:

buffer: db 64 dup (?) ; reserve 64 bytes
wordvar: dw ? ; reserve a word
realarray dq 10 dup (?) ; array of ten reals
ymmval: dy ? ; one YMM register
zmmvals: dz 32 dup (?) ; 32 ZMM registers

INCBIN: Including External Binary Files

INCBIN includes binary file data verbatim into the output file. This can be handy for (for example)
including graphics and sound data directly into a game executable file. It can be called in one of these
three ways:

incbin "file.dat" ; include the whole file

incbin "file.dat",1024 ; skip the first 1024 bytes

incbin "file.dat",1024,512 ; skip the first 1024, and
actually 1include at most 512

INCBIN is both a directive and a standard macro; the standard macro version searches for the file in the
include file search path and adds the file to the dependency lists. This macro can be overridden if
desired.

33



3.24

3.25

3.3

34

EQU: Defining Constants

EQU defines a symbol to a given constant value: when EQu is used, the source line must contain a label.
The action of EQu is to define the given label name to the value of its (only) operand. This definition is
absolute, and cannot change later. So, for example,

message db ’hello, world’
msglen equ $-message

defines msglen to be the constant 12. msglen may not then be redefined later. This is not a preprocessor
definition either: the value of msglen is evaluated once, using the value of $ (see section 3.5 for an
explanation of $) at the point of definition, rather than being evaluated wherever it is referenced and
using the value of $ at the point of reference.

TIMES: Repeating Instructions or Data

The TIMES prefix causes the instruction to be assembled multiple times. This is partly present as NASM’s
equivalent of the bup syntax supported by MASM-compatible assemblers, in that you can code

zerobuf: times 64 db 0

or similar things; but TIMES is more versatile than that. The argument to TIMES is not just a numeric
constant, but a numeric expression, so you can do things like

buffer: db ’hello, world’
times 64-$+buffer db ’ °

which will store exactly enough spaces to make the total length of buffer up to 64. Finally, TIMES can be
applied to ordinary instructions, so you can code trivial unrolled loopsin it:

times 100 movsb

Note that there is no effective difference between times 100 resb 1 and resb 100, except that the
latter will be assembled about 100 times faster due to the internal structure of the assembler.

The operand to TIMES is a critical expression (section 3.8).

Note also that TIMES can’t be applied to macros: the reason for this is that TIMES is processed after the
macro phase, which allows the argument to TIMES to contain expressions such as 64-$+buffer as
above. To repeat more than one line of code, or a complex macro, use the preprocessor %rep directive.

Effective Addresses

An effective address is any operand to an instruction which references memory. Effective addresses, in
NASM, have a very simple syntax: they consist of an expression evaluating to the desired address,
enclosed in square brackets. For example:

wordvar dw 123
mov ax, [wordvar]
mov ax, [wordvar+1]
mov ax, [es:wordvar+bx]

Anything not conforming to this simple system is not a valid memory reference in NASM, for example
es:wordvar[bx].

More complicated effective addresses, such as those involving more than one register, work in exactly
the same way:

mov eax, [ebxx2+ecx+offset]
mov ax, [bp+di+8]

NASM is capable of doing algebra on these effective addresses, so that things which don’t necessarily
look legal are perfectly all right:

mov eax, [ebx*5] ; assembles as [ebxx4+ebx]
mov eax, [labell*2-Tlabel2] ; ie [labell+(labell-label2)]



3.4

Some forms of effective address have more than one assembled form; in most such cases NASM will
generate the smallest form it can. For example, there are distinct assembled forms for the 32-bit
effective addresses [eaxx2+0] and [eax+eax], and NASM will generally generate the latter on the
grounds that the former requires four bytes to store a zero offset.

NASM has a hinting mechanism which will cause [eax+ebx] and [ebx+eax] to generate different
opcodes; this is occasionally useful because [esi+ebp] and [ebp+esi] have different default segment
registers.

However, you can force NASM to generate an effective address in a particular form by the use of the
keywords BYTE, WORD, DWORD and NOSPLIT. If you need [eax+3] to be assembled using a double-word
offset field instead of the one byte NASM will normally generate, you can code [dword eax+3].
Similarly, you can force NASM to use a byte offset for a small value which it hasn’t seen on the first pass
(see section 3.8 for an example of such a code fragment) by using [byte eax+offset]. As special cases,
[byte eax] will code [eax+0] with a byte offset of zero, and [dword eax] will code it with a
double-word offset of zero. The normal form, [eax], will be coded with no offset field.

The form described in the previous paragraph is also useful if you are trying to access data in a 32-bit
segment from within 16 bit code. For more information on this see the section on mixed-size
addressing (section 11.2). In particular, if you need to access data with a known offset that is larger than
will fit in a 16-bit value, if you don’t specify that it is a dword offset, nasm will cause the high word of the
offset to be lost.

Similarly, NASM will split [eaxx2] into [eax+eax] because that allows the offset field to be absent and
space to be saved; in fact, it will also split [eax*2+offset] into [eax+eax+offset]. You can combat this
behaviour by the use of the NosPLIT keyword: [nosplit eax*2] will force [eax*2+0] to be generated
literally. [nosplit eaxx1] also has the same effect. In another way, a split EA form [0, eax*2] can be
used, too. However, NOSPLIT in [nosplit eax+eax] will be ignored because user’s intention here is
considered as [eax+eax].

In 64-bit mode, NASM will by default generate absolute addresses. The REL keyword makes it produce
RIP-relative addresses. Since this is frequently the normally desired behaviour, see the DEFAULT
directive (section 7.2). The keyword ABS overrides REL.

A new form of split effective address syntax is also supported. This is mainly intended for mib operands
as used by MPX instructions, but can be used for any memory reference. The basic concept of this form
is splitting base and index.

mov eax, [ebx+8,ecx*4] ; ebx=base, ecx=index, 4=scale, 8=disp

For mib operands, there are several ways of writing effective address depending on the tools. NASM
supports all currently possible ways of mib syntax:

5 bndstx

; next 5 lines are parsed same

; base=rax, index=rbx, scale=1, displacement=3

bndstx [rax+0x3,rbx], bndo ;5 NASM - split EA

bndstx [rbxxl+rax+0x3], bnd0@ ; GAS - ’x1’ indecates an index reg
bndstx [rax+rbx+3], bndo ;5 GAS - without hints
bndstx [rax+0x3], bnd0, rbx ; ICC-1
bndstx [rax+0x3], rbx, bndo ; ICC-2

When broadcasting decorator is used, the opsize keyword should match the size of each element.

VDIVPS zmm4, zmm5, dword [rbx]{ltol6} ; single-precision float
VDIVPS zmm4, zmm5, zword [rbx] ; packed 512 bit memory
Constants

NASM understands four different types of constant: numeric, character, string and floating-point.

35



3.4.1 Numeric Constants

A numeric constant is simply a number. NASM allows you to specify numbers in a variety of number
bases, in a variety of ways: you can suffix H or x, D or T, Q or 0, and B or Y for hexadecimal, decimal, octal
and binary respectively, or you can prefix ox, for hexadecimal in the style of C, or you can prefix $ for
hexadecimal in the style of Borland Pascal or Motorola Assemblers. Note, though, that the $ prefix does
double duty as a prefix on identifiers (see section 3.1), so a hex number prefixed with a $ sign must have
a digit after the $ rather than a letter. In addition, current versions of NASM accept the prefix oh for
hexadecimal, od or ot for decimal, 6o or oq for octal, and eb or ey for binary. Please note that unlike C, a
o prefix by itself does not imply an octal constant!

Numeric constants can have underscores (_) interspersed to break up long strings.

Some examples (all producing exactly the same code):

mov ax,200 ; decimal
mov ax,0200 ; still decimal
mov ax,0200d ; explicitly decimal
mov ax,0d200 ; also decimal
mov ax,0c8h 5 hex
mov ax,$0c8 ; hex again: the 0 1is required
mov ax,0xc8 ; hex yet again
mov ax,0hc8 3 still hex
mov ax,310q ; octal
mov ax,3100 ; octal again
mov ax,00310 ; octal yet again
mov ax,0q310 ; octal yet again
mov ax,11001000b 3 binary
mov ax,1100_100060b ; same binary constant
mov ax,1100_1000y ; same binary constant once more
mov ax,0b1100_1000 ; same binary constant yet again
mov ax,0yl100_1000 ; same binary constant yet again
3.4.2 Character Strings
A character string consists of up to eight characters enclosed in either single quotes (’...’), double
quotes ("...") or backquotes (¢...¢). Single or double quotes are equivalent to NASM (except of

course that surrounding the constant with single quotes allows double quotes to appear within it and
vice versa); the contents of those are represented verbatim. Strings enclosed in backquotes support
C-style \~escapes for special characters.

The following escape sequences are recognized by backquoted strings:

\’ single quote (’)

\" double quote (")

\¢ backquote (¢)

\\ backslash (\)

\? question mark (?)

\a BEL (ASCII 7)

\b BS (ASCII 8)

\t TAB (ASCII 9)

\n LF (ASCII 10)

\v VT (ASCII 11)

\f FF  (ASCII 12)

\r CR (ASCII 13)

\e ESC (ASCII 27)

\377 Up to 3 octal digits - literal byte

\xFF Up to 2 hexadecimal digits - literal byte
\ul234 4 hexadecimal digits - Unicode character

\U12345678 8 hexadecimal digits - Unicode character

All other escape sequences are reserved. Note that \0, meaning a NUL character (ASCII 0), is a special
case of the octal escape sequence.

36



3.4.3

344

3.4.5

3.4.6

Unicode characters specified with \u or \u are converted to UTF-8. For example, the following lines are
all equivalent:

db ‘\u263a‘ ; UTF-8 smiley face

db ‘\xe2\x98\xba*¢ ; UTF-8 smiley face

db 0E2h, 098h, 0BAh ; UTF-8 smiley face
Character Constants

A character constant consists of a string up to eight bytes long, used in an expression context. It is
treated as if it was an integer.

A character constant with more than one byte will be arranged with little-endian order in mind: if you
code

mov eax, ’abcd’
then the constant generated is not 0x61626364, but 0x64636261, so that if you were then to store the

value into memory, it would read abcd rather than dcba. This is also the sense of character constants
understood by the Pentium’s cPUID instruction.

String Constants

String constants are character strings used in the context of some pseudo-instructions, namely the DB
family and INCBIN (where it represents a filename.) They are also used in certain preprocessor
directives.

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum-size character constants for the conditions. So the following are equivalent:

db ’hello’ ; string constant
db ’h?,’e’,’1°,’1’,%0° ; equivalent character constants

And the following are also equivalent:

dd ’ninechars’ ; doubleword string constant
dd ’nine’,’char’,’s’ ; becomes three doublewords
db ’ninechars’,0,0,0 ; and really looks like this

Note that when used in a string-supporting context, quoted strings are treated as a string constants
even if they are short enough to be a character constant, because otherwise db ’ab’ would have the
same effect as db ’a’, which would be silly. Similarly, three-character or four-character constants are
treated as strings when they are operands to bw, and so forth.

Unicode Strings

The special operators __?utf16?__, __?utfiele?__, __?utflébe?__, __?utf32?__, __?utf32le?__ and
__?utf32be?__ allows definition of Unicode strings. They take a string in UTF-8 format and converts it
to UTF-16 or UTF-32, respectively. Unless the be forms are specified, the output is littleendian.

For example:

%define u(x) __?utfle?__(x)
%define w(x) __?utf32?__(x)

dw u(’C:\WINDOWS’), @ ; Pathname in UTF-16
dd w(‘A + B = \u206a‘), 0 ; String in UTF-32

The UTF operators can be applied either to strings passed to the ps family instructions, or to character
constants in an expression context.

Floating-Point Constants

Floating-point constants are acceptable only as arguments to DB, bw, DD, DQ, DT, and DO, or as arguments
to the special operators __?float8?__, __?floatl6?__, __?bfloatl6?__, __?float32?__,

37



38

__?floate4?__, __?float80m?__,
section 6.3.

_?float80e?__, __?float1281?__, and __?float128h?__. See also

Floating-point constants are expressed in the traditional form: digits, then a period, then optionally
more digits, then optionally an E followed by an exponent. The period is mandatory, so that NASM can
distinguish between dd 1, which declares an integer constant, and dd 1.e which declares a
floating-point constant.

NASM also support C99-style hexadecimal floating-point: ex, hexadecimal digits, period, optionally
more hexadeximal digits, then optionally a P followed by a binary (not hexadecimal) exponent in
decimal notation. As an extension, NASM additionally supports the eh and $ prefixes for hexadecimal,
as well binary and octal floating-point, using the ob or ey and 6o or oq prefixes, respectively.

Underscores to break up groups of digits are permitted in floating-point constants as well.

Some examples:

db -0.2 "Quarter precision"
dw -0.5 IEEE 754r/SSE5 half precision
dd 1.2 an easy one

)
)
>
dd 1.222_222_222 ; underscores are permitted
dd Ox1p+2 ; 1.0x272 = 4.0
dq Ox1p+32 5 1.0x27232 = 4 294 967 296.0

>

)

)

)

)

dq 1.el0 10 000 000 000.0

dq l.e+10 synonymous with 1.el0

dq 1l.e-10 0.000 000 000 1

dt 3.141592653589793238462 pi

do 1.e+4000 IEEE 754r quad precision

The 8-bit "quarter-precision” floating-point format is sign:exponent:mantissa = 1:4:3 with an exponent
bias of 7. This appears to be the most frequently used 8-bit floating-point format, although it is not
covered by any formal standard. This is sometimes called a "minifloat."

The bfloat1i6 format is effectively a compressed version of the 32-bit single precision format, with a
reduced mantissa. It is effectively the same as truncating the 32-bit format to the upper 16 bits, except
for rounding. There is no dx directive that corresponds to bfloat16 as it obviously has the same size as
the IEEE standard 16-bit half precision format, see however section 6.3.

The special operators are used to produce floating-point numbers in other contexts. They produce the
binary representation of a specific floating-point number as an integer, and can use anywhere integer
constants are used in an expression. __?floatg8em?__ and __?float80e?__ produce the 64-bit mantissa
and 16-bit exponent of an 80-bit floating-point number, and __?float1281?__ and __?float128h?__
produce the lower and upper 64-bit halves of a 128-bit floating-point number, respectively.

For example:
mov rax,__?float64?__(3.141592653589793238462)

... would assign the binary representation of pi as a 64-bit floating point number into rRax. This is exactly
equivalent to:

mov rax,0x400921fb54442d18

NASM cannot do compile-time arithmetic on floating-point constants. This is because NASM is designed
to be portable - although it always generates code to run on x86 processors, the assembler itself can
run on any system with an ANSI C compiler. Therefore, the assembler cannot guarantee the presence of
a floating-point unit capable of handling the Intel number formats, and so for NASM to be able to do
floating arithmetic it would have to include its own complete set of floating-point routines, which
would significantly increase the size of the assembler for very little benefit.

The special tokens __?Infinity?__, __?QNaN?__ (or __?NaN?__) and __?SNaN?__ can be used to
generate infinities, quiet NaNs, and signalling NaNs, respectively. These are normally used as macros:



3.4.7

3.5

3.5.1

%define Inf __?Infinity?__
%define NaN __?QNaN?__

dq +1.5, -Inf, NaN ; Double-precision constants

The %use fp standard macro package contains a set of convenience macros. See section 6.3.

Packed BCD Constants

x87-style packed BCD constants can be used in the same contexts as 80-bit floating-point numbers.
They are suffixed with p or prefixed with ep, and can include up to 18 decimal digits.

As with other numeric constants, underscores can be used to separate digits.

For example:

dt 12_345_678_901_245_678p
dt -12_345_678_901_245_678p
dt +0p33

dt 33p

Expressions

Expressions in NASM are similar in syntax to those in C. Expressions are evaluated as 64-bit integers
which are then adjusted to the appropriate size.

NASM supports two special tokens in expressions, allowing calculations to involve the current assembly
position: the $ and $$ tokens. $ evaluates to the assembly position at the beginning of the line
containing the expression; so you can code an infinite loop using JMP 3. $$ evaluates to the beginning
of the current section; so you can tell how far into the section you are by using ($-$$).

The arithmetic operators provided by NASM are listed here, in increasing order of precedence.

A boolean value is true if nonzero and false if zero. The operators which return a boolean value always
return 1 for true and 0 for false.

? ... :: Conditional Operator

The syntax of this operator, similar to the C conditional operator, is:
boolean 2 trueval : falseval

This operator evaluates to trueval if boolean is true, otherwise to falseval.

Note that NASM allows ? characters in symbol names. Therefore, it is highly advisable to always put
spaces around the ? and : characters.

3.5.2 : | |: Boolean OR Operator

The || operator gives a boolean OR: it evaluates to 1 if both sides of the expression are nonzero,
otherwise 0.

3.5.3 : ~r: Boolean XOR Operator

The ~~ operator gives a boolean XOR: it evaluates to 1 if any one side of the expression is nonzero,
otherwise 0.

3.5.4 : &&: Boolean AND Operator

The && operator gives a boolean AND: it evaluates to 1 if both sides of the expression is nonzero,
otherwise 0.

3.5.5 : Comparison Operators

NASM supports the following comparison operators:

39



3.5.6

3.5.7

3.5.8

3.5.9

3.5.10

3.5.11

3.5.12

40

+ =or==compare for equality.

+ I=or <> compare for inequality.

+ < compares signed less than.

+ <=compares signed less than or equal.

« >compares signed greater than.

« >=compares signed greater than or equal.

These operators evaluate to 0 for false or 1 for true.

» <=>does a signed comparison, and evaluates to -1 for less than, 0 for equal, and 1 for greater than.

At this time, NASM does not provide unsigned comparison operators.

| : Bitwise OR Operator

The | operator gives a bitwise OR, exactly as performed by the or machine instruction.

A: Bitwise XOR Operator

~ provides the bitwise XOR operation.

&: Bitwise AND Operator

& provides the bitwise AND operation.

Bit Shift Operators

<< gives a bit-shift to the left, just as it does in C. So 5<<3 evaluates to 5 times 8, or 40. >> gives an
unsigned (logical) bit-shift to the right; the bits shifted in from the left are set to zero.

<<< gives a bit-shift to the left, exactly equivalent to the << operator; it is included for completeness. >>>
gives an signed (arithmetic) bit-shift to the right; the bits shifted in from the left are filled with copies of
the most significant (sign) bit.

+ and -: Addition and Subtraction Operators

The + and - operators do perfectly ordinary addition and subtraction.

Multiplication, Division and Modulo

 is the multiplication operator.

/ and // are both division operators: / is unsigned division and // is signed division.
Similarly, % and %% provide unsigned and signed modulo operators respectively.

Since the % character is used extensively by the macro preprocessor, you should ensure that both the
signed and unsigned modulo operators are followed by white space wherever they appear.

NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo operator.
On most systems it will match the signed division operator, such that:

b* (a//b)+ (a%%sb)=a (b 1= 0)
Unary Operators

The highest-priority operators in NASM’s expression grammar are those which only apply to one
argument. These are:

+ - negates (2’s complement) its operand.

+ +does nothing; it’s provided for symmetry with -.



3.6

3.7

+ ~computes the bitwise negation (1’s complement) of its operand.
+ !isthe boolean negation operator. It evaluates to 1 if the argument is 0, otherwise 0.
+ SEG provides the segment address of its operand (explained in more detail in section 3.6).

+ Aset of additional operators with leading and trailing double underscores are used to implement the
integer functions of the ifunc macro package, see section 6.4.

SEG and WRT

When writing large 16-bit programs, which must be split into multiple segments, it is often necessary to
be able to refer to the segment part of the address of a symbol. NASM supports the SeEG operator to
perform this function.

The SeG operator evaluates to the preferred segment base of a symbol, defined as the segment base
relative to which the offset of the symbol makes sense. So the code

mov ax,seg symbol
mov es,ax
mov bx,symbol

will load ES:BX with a valid pointer to the symbol symbo.

Things can be more complex than this: since 16-bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one.
NASM lets you do this, by the use of the wrT (With Reference To) keyword. So you can do things like

mov ax,weird_seg ; weird_seg is a segment base
mov es,ax
mov bx,symbol wrt weird_seg

to load Es:Bx with a different, but functionally equivalent, pointer to the symbol symbo.

NASM supports far (inter-segment) calls and jumps by means of the syntax call segment:offset,
where segment and offset both represent immediate values. So to call a far procedure, you could code
either of

call (seg procedure) :procedure
call weird_seg: (procedure wrt weird_seg)

(The parentheses are included for clarity, to show the intended parsing of the above instructions. They
are not necessary in practice.)

NASM supports the syntax call far procedure as a synonym for the first of the above usages. Jwp
works identically to cALL in these examples.

To declare a far pointer to a data item in a data segment, you must code
dw symbol, seg symbol
NASM supports no convenient synonym for this, though you can always invent one using the macro
processor.
STRICT: Inhibiting Optimization

When assembling with the optimizer set to level 2 or higher (see section 2.1.24), NASM will use size
specifiers (BYTE, WORD, DWORD, QWORD, TWORD, OWORD, YWORD or ZwORD), but will give them the smallest
possible size. The keyword STRICT can be used to inhibit optimization and force a particular operand to
be emitted in the specified size. For example, with the optimizer on, and in BITS 16 mode,

push dword 33

is encoded in three bytes 66 6A 21, whereas

push strict dword 33

41



3.8

3.9

42

is encoded in six bytes, with a full dword immediate operand 66 68 21 06 00 oo.

With the optimizer off, the same code (six bytes) is generated whether the sTrRICT keyword was used or
not.

Critical Expressions

Although NASM has an optional multi-pass optimizer, there are some expressions which must be
resolvable on the first pass. These are called Critical Expressions.

The first pass is used to determine the size of all the assembled code and data, so that the second pass,
when generating all the code, knows all the symbol addresses the code refers to. So one thing NASM
can’t handle is code whose size depends on the value of a symbol declared after the code in question.
For example,

times (label-$) db 0
label: db ’Where am I?’

The argument to TIMES in this case could equally legally evaluate to anything at all; NASM will reject this
example because it cannot tell the size of the TIMES line when it first sees it. It will just as firmly reject
the slightly paradoxical code

times (label-$+1) db ©
label: db ’NOW where am I?’

in which any value for the TIMES argument is by definition wrong!

NASM rejects these examples by means of a concept called a critical expression, which is defined to be
an expression whose value is required to be computable in the first pass, and which must therefore
depend only on symbols defined before it. The argument to the TIMES prefix is a critical expression.

Local Labels

NASM gives special treatment to symbols beginning with a period. A label beginning with a single
period is treated as a local label, which means that it is associated with the previous non-local label. So,
for example:

labell ; some code

. loop
; some more code
jne . loop
ret

label2 ; some code

. loop
; some more code
jne . loop

ret

In the above code fragment, each JINE instruction jumps to the line immediately before it, because the
two definitions of .loop are kept separate by virtue of each being associated with the previous
non-local label.

This form of local label handling is borrowed from the old Amiga assembler DevPac; however, NASM
goes one step further, in allowing access to local labels from other parts of the code. This is achieved by
means of defining a local label in terms of the previous non-local label: the first definition of .1loop
above is really defining a symbol called 1labeli.loop, and the second defines a symbol called
label2.loop. So, if you really needed to, you could write



label3

; some more code
; and some more

jmp labell.loop

Sometimes it is useful - in a macro, for instance - to be able to define a label which can be referenced
from anywhere but which doesn’t interfere with the normal local-label mechanism. Such a label can’t
be non-local because it would interfere with subsequent definitions of, and references to, local labels;
and it can’t be local because the macro that defined it wouldn’t know the label’s full name. NASM
therefore introduces a third type of label, which is probably only useful in macro definitions: if a label
begins with the special prefix . . g, then it does nothing to the local label mechanism. So you could code

labell:
.local:
..@foo:
label2:
.local:

jmp

..@foo

3

)
)
)
)

)

a non-local label

this is really labell.local
this is a special symbol
another non-local label
this is really label2.local

; this will jump three lines up

NASM has the capacity to define other special symbols beginning with a double period: for example,
..start is used to specify the entry point in the obj output format (see section 8.4.6), ..imagebase is
used to find out the offset from a base address of the current image in the wine4 output format (see
section 8.6.1). So just keep in mind that symbols beginning with a double period are special.

43



44



4