NASM - The Netwide Assembler
version 2.16rc0-20201104

© 1996-2020 The NASM Development Team — All Rights Reserved

This document is redistributable under the license given in the section "License".

Contents

Chapter 1: Introduction L 17
L1WhatIsNASM?. . . . L e e e e e e e e e e e e e 17
LLILICENSE . . . o o v it e e e e e e e e e 17
Chapter 2: Running NASM e e 19
2.1NASM Command-LineSyntax L 19
2.1.1 The -o Option: Specifying the Output FileName 19
2.1.2 The -f Option: Specifying the Output FileFormat 20
2.1.3The -1 Option: Generatinga ListingFile 20
2.1.4 The -L Option: Additional or Modified ListingInfo 20
2.1.5The -M Option: Generate Makefile Dependencies. 21
2.1.6 The -MG Option: Generate Makefile Dependencies 21
2.1.7 The -MF Option: Set Makefile Dependency File 21
2.1.8 The -MD Option: Assemble and Generate Dependencies 21
2.1.9 The -MT Option: Dependency TargetName. 21
2.1.10 The -MQ Option: Dependency Target Name (Quoted) 21
2.1.11The-Mp Option: Emitphony targets. 21
2.1.12 The -Mw Option: Watcom Make quotingstyle 21
2.1.13 The -F Option: Selecting a Debug InformationFormat 22
2.1.14The -g Option: Enabling Debug Information. 22
2.1.15The -x Option: Selecting an Error Reporting Format 22
2.1.16 The-z Option: Send ErrorstoaFile. 22
2.1.17The-sOption: Send Errorstostdout o . 22
2.1.18 The -1 Option: Include File Search Directories 23
2.1.19The-p Option: Pre-IncludeaFile 23
2.1.20 The-d Option: Pre-DefineaMacro 23
2.1.21The-uOption: UndefineaMacro 23
2.1.22The-EOption: PreprocessOnly ittt 24
2.1.23The -a Option: Don’t Preprocess AtAIl 24
2.1.24 The -0 Option: Specifying Multipass Optimization 24
2.1.25The -t Option: Enable TASM CompatibilityMode 24
2.1.26 The -w and -w Options: Enable or Disable Assembly Warnings. 25
2.1.27The -v Option: Display VersionInfo 29
2.1.28 The --(g| U prefix, --(g|)postfixOptions. 29

2.1.29The—-pragmaOption e 29

2.130The—-beforeOption i 29
2.131The—-limit-xOption. e 29
2.1.32The—-keep-allOption o it 30
2.1.33The-—-no-lineOption. 30
2.1.34The —-reproducibleOption. e 30
2.1.35 The NASMENV EnvironmentVariable oo oL 30
2.2Quick Start for MASM USEIS o i e e e e e e e e e e 30
22.1NASMIsCase-Sensitive. L Lo e 30
2.2.2 NASM Requires Square Brackets For Memory References. 30
2.2.3NASM Doesn’t Store Variable Types 31
224NASMDOESNEASSUME. . o . v v vt et e e e e e e e e e e e e e e e 31
2.2.5NASM Doesn’t Support MemoryModels L oL 31
2.2.6 Floating-Point Differences L 31
2.2.70ther Differences. L 32
2.2.8 MASM compatibilitypackage. L 32
Chapter3: The NASM Language o v v v v i it et e e e e e e e e e e 33
3.1LayoutofaNASM Sourceline. L e e 33
3.2Pseudo-Instructions. L L L L 34
3.2.1Dx: Declaring Initialized Data L 34
3.2.2rResB and Friends: Declaring UninitializedData 35
3.2.3 INCBIN: Including External Binary Files oo 35
3.2.4€eQu: DefiningConstants L L 35
3.2.5 TIMES: Repeating InstructionsorData L. 36
33 Effective Addresses L L e 36
34Constants oL L e e e 37
34 1NumericConstants. L. 37
3.4.2Character Strings. L L e e e 38
3.43CharacterConstants L L e e e 39
344StringConstants Lo 39
3.45UnicodeStrings L L e e e e e 39
3.4.6Floating-PointConstants. e 39
347PackedBCDConstants e e e 41
35EXPressions L L e e e e e e 41
3.5.12..::ConditionalOperator e 41

3.5.2:|]:Boolean OROperator o i e e 41

3.5.3: 720 Boolean XOROperator. o v v v i e e e 41

3.5.4:88: Boolean AND Operator. o v i e e 41
3.5.5:Comparison Operators e e e e e e e e e 41
3.5.6 |:Bitwise OROperator e e e e e e e 42
3.5.7 A~ Bitwise XOROperator o e e e e e 42
3.5.8& Bitwise AND Operator e e e 42
3.59BitShiftOperators e 42
3.5.10 + and -: Addition and Subtraction Operators 42
3.5.11 Multiplication, Divisionand Modulo. 42
3.5.12UnaryOperators e e e e e e e e e e e e e e e 42
36SEGANAWRT . . . o o o e e e e e e e e e e e 43
3.7 sTRICT: Inhibiting Optimization 43
3.8Critical EXpressions L e e e e e 44
39Locallabels. e 44
Chapter 4: The NASM Preprocessor v v v v v v v vt e e e e e e e e e e e e 47
4.1Single-LineMacros e e e e 47
4.1.1TheNormalWay: %define v v i i i it i e s e e e e e 47
4.1.2 Resolving %definer%xdefine v v v i i e e e e e 48
4.13MacroIndirection: %[...7 e e e e 49
4.1.4 Concatenating Single Line MacroTokens: %+ oo 49
4.1.5TheMacroNameltself:%2and %22 i i 50
4.1.6 The Single-Line MacroName: %x2and %*22. v v v v i v v i v v v o 50
4.1.7 Undefining Single-Line Macros: sundef. o . o 51
4.1.8 Preprocessor Variables: %assign Lo 51
4.1.9Defining Strings: %defstr. o o i e e e e e e e 51
4.1.10 Defining Tokens: %deftok« v v v v v v i e e e e e e e 52
4.1.11 Defining Aliases: sdefalias« v v v v i i i e e e e e 52
4.1.12 Conditional Comma Operator: %, o v v i i it e e e e 52
4.2 String ManipulationinMacros. L 52
4.2.1Concatenating Strings: %strcat L o 53
422Stringlength:%strien L L L e e e e 53
4.2.3 Extracting Substrings: %substr. L. Lo e e 53
43 Multi-Line Macros: %macro. v v v v v e e e e e e e e e e e e e e e e e e e 53
4.3.10verloading Multi-LineMacros o e e e 54
4.3.2Macro-LocalLabels. e 55
433 Greedy MacroParameters e e e e 55

4.3.4Macro ParametersRange. o oL s 56

4.3.5 Default Macro Parameters L 56
4.3.6 %0: Macro ParameterCounter. Lo oo e 57
4.3.7%00: Label PreceedingMacro L 57
4.3.8%rotate: RotatingMacro Parameters. L o oL 57
4.3.9 Concatenating Macro Parameters e 58
4.3.10 Condition Codes as Macro Parameters i e 59
4.3.11 Disabling Listing Expansion L e e e 59
4.3.12 Undefining Multi-Line Macros: %unmacro v ..o e e 60
4.4 Conditional Assembly L 60
4.4.1 %ifdef: Testing Single-Line MacroExistence 60
4.4.2 %ifmacro: Testing Multi-Line Macro Existence 61
443 %ifctx: TestingtheContextStack L oo 61
4.4.4%if: Testing Arbitrary Numeric Expressions o oo 61
4.45%ifidnand %ifidni: Testing Exact TextIdentity 61
4.4.6%ifid, %ifnum, %ifstr: Testing TokenTypes o oo 62
447 %iftoken: TestforaSingleToken. 62
4.48%ifempty: Testfor Empty Expansion Lo e 63
4.49%ifenv: Test If EnvironmentVariable Exists. 63
4.5 Preprocessor LOOPS: %rep .« v v v v v vt e 63
4.6 Source Filesand Dependencieso e e 64
4.6.1%include: IncludingOtherFiles. 64
4.6.2 %pathsearch: SearchthelncludePath 64
4.6.3 %depend: Add DependentFiles L 64
4.6.4%use: Include Standard MacroPackage. oL 65
47TheContextStack. o e 65
4.7.1 %push and %pop: Creating and RemovingContexts 65
4.7.2Context-Locallabels. L 65
4.7.3 Context-Local Single-LineMacros e 66
4.7.4 Context Fall-Through Lookup (deprecated). 66
4.75%repl:RenamingaContext. L L L 67
4.7.6 Example Use of the Context Stack:Block IFs 67
4.8 Stack Relative Preprocessor Directives L 68
4.8 1%argDirective e e e e e e 68
4.82%stacksizeDirective. L e e 69

4.83%localDirective L e e e e e e e 69

4.9 Reporting User-Defined Errors: %error, %warning,%fatal. 70

4.10%pragma: Setting Options. L 70
4.10.1 Preprocessor Pragmas oo e e e e e e e e e 71
4.11 Other Preprocessor Directives o e 71
4.11.1%lineDirective oL 71
4.11.2 %tvariable: Read an EnvironmentVariable. o 0oL 72
4.11.3 %clear: Clear All Macro Definitions oo 72
Chapter5:Standard Macros o e e e e e e e e e e 73
5. 1NASMVersion Macros o o oo e e e e e e e e 73
5.1.1 __?NASM_VERSION_ID?__:NASMVersionID 73
5.1.2 __?NASM_VER?__:NASMVersionString o 73
5.2 __?FILE?__and __?LINE?__:FileNameand LineNumber. 73
5.3 __?BITS?__:Current Code GenerationMode 74
5.4 __?0UTPUT_FORMAT?__: CurrentOutputFormat, 74
5.5 __?DEBUG_FORMAT?__:CurrentDebugFormat 74
5.6 Assembly Dateand Time Macros o v i v i i i it e 74
5.7 __?USE_package?__:PackagelncludeTest 75
5.8 __7PASS?__:AssemblyPass 75
5.9StructureDataTypes L e e e e e e e e e 75
5.9.1 sTRUC and ENDSTRUC: Declaring StructureData Types. 75
5.9.2 ISTRUC, AT and IEND: Declaring Instances of Structures. 76
5.10AlignmentControl L e e 77
5.10.1 ALIGN and ALIGNB: Code and Data Alignment 77
5.10.2 SECTALIGN: Section Alignment. e 78
Chapter 6: Standard Macro Packages i e e e e e e 79
6.1 altreg: Alternate RegisterNames. L L 79
6.2 smartalign: SMart ALIGNMAcCro. o o i v i e e e e e e e 79
6.3 fp: Floating-pointmacros. L. 80
6.4ifunc:Integerfunctions. L. L 80
6.4.1Integer logarithms L 80
6.5 masm: MASM compatibility L 80
Chapter 7: Assembler Directives o 83
7.1B1TS: Specifying Target ProcessorMode. L Lo o 83
7.1.1usEl6 & USE32: AliasesforBITS L 84
7.2 DEFAULT: Change theassemblerdefaults o . 84
7.2.1REL & ABS: RIP-relativeaddressing 84

T.22BND&NOBND: BND prefix o o o o 84

7.3 SECTION or SEGMENT: Changing and Defining Sections 84
7.3.1The __?2SECT?__MacCro v v vt i e e e e e 84
7.4 ABSOLUTE: Defining Absolute Labels o 85
7.5 EXTERN: Importing Symbols from OtherModules 86
7.6 REQUIRED: Unconditionally Importing Symbols from Other Modules. 86
7.7 GLOBAL: Exporting Symbolsto OtherModules L. 86
7.8 commoN: Defining Common DataAreas. 87
7.9 STATIC: Local SymbolswithinModules 87
7.10 (G|L)PREFIX, (G|L)POSTFIX: ManglingSymbols 87
7.11cpu: Defining CPU Dependencies. o o i i i e e 88
7.12 FLOAT: Handling of floating-pointconstants oL, 88
7.13 [WARNING]: Enable ordisablewarnings. Lo o o 89
Chapter8: OQutput Formats. e e e e e e e e 91
8.1bin:Flat-FormBinaryOutput 91
8.1.10RG: Binary File Program Origin. 91
8.1.2 bin Extensions to the SECTION Directive, bin extensionsto} 91
8.1.3 Multisection Support forthebinFormat 92
8.14MapFiles. e 92
8.24th:IntelHexOutput 92
8.3 srec:Motorola S-RecordsQutput L 92
8.4 obj: Microsoft OMF Object Files 93
8.4.1 obj Extensions to the SEGMENT Directive, 93
8.4.2 GRouP: Defining Groupsof Segments L Lo 94
8.4.3 UPPERCASE: Disabling Case SensitivityinOutput 94
8.4.4 IMPORT: Importing DLLSymbols 95
8.4.5 EXPORT: Exporting DLLSymbols. 95
8.4.6 . .start: Defining the Program Entry Point. 95
8.4.7 obj Extensionstothe EXTERN Directive 96
8.4.8 obj Extensions to the coMmoN Directive 96
8.4.9 Embedded File Dependency Information. L oL 97
8.5win32: Microsoft Win32 ObjectFiles 97
8.5.1win32 Extensions to the SECTION Directive 97
8.5.2 win32: Safe Structured Exception Handling. 98
8.5.3 Debugging formatsforWindows Lo o 99

8.6 wine4: Microsoft Win64 Object Files 99

8.6.1 wine4: Writing Position-IndependentCode. 99

8.6.2wine64: Structured ExceptionHandling L Lo oL 100
8.7 coff:Common Object FileFormat. 102
8.8 macho32 and macho64: Mach Object FileFormat 102

8.8.1 macho extensions to the SECTION Directive 103

8.8.2 Thread Local Storage in Mach-O: macho special symbolsandwrT. 103

8.8.3 macho specfic directive subsections_via_symbols 103

8.8.4 macho specfic directive no_dead_strip oL 103

8.8.5 macho specific extensions to the GLOBAL Directive: private_extern. 104
8.9 e1f32, elf64, elfx32: Executable and Linkable Format Object Files. 104

8.9.1 ELF specificdirectiveosabi. L 104

8.9.2 ELF extensions to the SECTION Directive 104

8.9.3 Position-Independent Code: ELF Special SymbolsandwrT. 105

8.9.4 Thread Local Storage in ELF: e1f Special SymbolsandwrT. 106

8.9.5 elf Extensionsto the GLOBAL Directive L L L. 106

8.9.6 elf Extensionsto the EXTERN Directive oL 107

8.9.7 elf Extensions to the coMMON Directive Lo 107

8.9.816-bitcodeandELF e 107

8.9.9Debugformatsand ELF 107
8.10 aout: Linuxa.out ObjectFiles L 107
8.11 aoutb: NetBSD/FreeBSD/OpenBSD a.out ObjectFiles 107
8.12 asg86: Minix/Linux asge Object Files. 108
8.13 rdf: Relocatable Dynamic Object File Format (deprecated) 108

8.13.1 Requiring a Library: The LIBRARY Directive 108

8.13.2 Specifying a Module Name: The MODULE Directive 108

8.13.3 rdf Extensions to the GLOBAL Directive 108

8.13.4 rdf Extensions to the EXTERN Directive L. 109
8.14dbg: Debugging Format L 109

Chapter 9: Writing 16-bit Code (DOS, Windows 3/3.1) o v i v i vt v i 111
9.1Producing .EXEFiles. L e e 111

9.1.1 Using the obj Format To Generate .ExEFiles. 111

9.1.2 Using the bin Format To Generate .ExEFiles. 112
9.2Producing .COMFiles. L e e 113

9.2.1 Using the bin Format To Generate .CoMFiles. 113

9.2.2 Using the obj Format To Generate .CoMFiles. 113
9.3Producing .SYSFiles. L e e 114

10

9.4 Interfacingto 16-bit CPrograms. L L 114

9.4.1 External SymbolNames 114
9.42MemoryModels. 115

9.4.3 Function Definitionsand FunctionCalls 115
9.4.4AccessingDataltems. L L 117

9.4.5 c16.mac: Helper Macros for the 16-bitCInterface. 118

9.5 Interfacing to Borland Pascal Programs.. Lo o 119
9.5.1ThePascal CallingConvention 119

9.5.2 Borland Pascal Segment Name Restrictions 120
9.5.3Using c16.mac With Pascal Programs. 120
Chapter 10: Writing 32-bit Code (Unix, Win32,DJGPP) v v v 123
10.1Interfacingto 32-bit CPrograms L e 123
10.1.1 External SymbolNames. e 123
10.1.2 Function Definitions and FunctionCalls. 123
10.1.3 AccessingDataltems L 124
10.1.4 c32.mac: Helper Macros for the 32-bitCinterface 125

10.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries. 126
10.2.1 Obtaining the Addressof the GOT. 126
10.2.2 Finding Your Local Dataltems. L 127
10.2.3 Finding Externaland Common Dataltems, 127
10.2.4 Exporting Symbols tothe LibraryUser oL 127
10.2.5 Calling Procedures Outside the Library 128
10.2.6 Generating the LibraryFile L 128
Chapter 11: Mixing 16-and 32-bitCode 131
111 Mixed-Size JUMPS L L e e e e e e 131
11.2 Addressing Between Different-Size Segments L oo oo 131
11.3 Other Mixed-Size Instructions e 132
Chapter 12: Writing 64-bit Code (Unix, Win64) o i v i it it et et e 133
12.1 Register Namesin 64-bitMode. 133
12.2 Immediates and Displacementsin 64-bitMode Lo 133
12.3 Interfacing to 64-bit C Programs (Unix). o e 134
12.4 Interfacing to 64-bit C Programs (Win64). e 135
Chapter 13: Troubleshooting. 137
13.1Common Problems L e e e e 137
13.1.1 NASM Generates InefficientCode L L o oL 137
13.1.2MyJumpsareOutofRange L 137

13.1.30rRG Doesn'tWork e e e e 137

13.14T7IMES Doesn’tWork oL 138
Appendix A: Ndisasm. e e e e e 139
Allntroduction. L e e e e 139
A2Running NDISASM. L e e e e e e e 139
A.2.1COMFiles: Specifyingan Origin. i 139
A.2.2 Code Following Data: Synchronization. 139
A.2.3 Mixed Code and Data: Automatic (Intelligent) Synchronization 140
A2.40therOptions L e 140
Appendix B: Instruction List L e 143
B.lIntroduction e e 143
B.1.1 Special instructions (pseudo-ops) Lo 143
B.1.2 Conventionalinstructions L e 143
B.1.3 Katmai Streaming SIMD instructions (SSE —— a.k.a. KNI, XMM, MMX2) 165
B.1.4 Introduced in Deschutes but necessary for SSEsupport 166
B.1.5 XSAVE group (AVX and extended state). Lo L. 166
B.1.6 Genericmemoryoperations L Lo e e e e e 166
B.1.7 New MMX instructions introducedinKatmai. 166
B.1.8 AMD Enhanced 3DNow! (Athlon) instructions 167
B.1.9 Willamette SSE2 Cacheability Instructions 167
B.1.10 Willamette MMX instructions (SSE2 SIMD Integer Instructions) 167
B.1.11 Willamette Streaming SIMD instructions (SSE2). 168
B.1.12 Prescott New Instructions (SSE3) e 170
B.L.13VMX/SVM Instructions. e e e e e e 170
B.1.14 Extended Page Tables VMXinstructions. L. 170
B.1.15 Tejas New Instructions (SSSE3) i o i e e e 170
B.1LI6AMD SSE4A e e e e e e e e e e e e e e e 171
B.1.17 New instructionsin Barcelona e 171
B.1.18 Penryn New Instructions (SSE4.1). i i i e e e 171
B.1.19 Nehalem New Instructions (SSE4.2). i i i i it e i e e 172
B.1.20 Intel SMX e e e e 172
B.1.21 Geode (Cyrix) 3DNow! additions e 172
B.1.22 Intel new instructionsin 222. L L e e e e e 172
B.1.23 Intel AESinstructions L e e e e e e e e 172
B.1.24 Intel AVX AES instructions. L e e e 173

B.1.25 Intel instruction extension based on pub number 319433-030 dated October 2017. . . .173

11

B.1.26 Intel AVXinstructions e e 173

B.1.27 Intel Carry-Less Multiplication instructions (CLMUL) 183
B.1.28 Intel AVX Carry-Less Multiplication instructions (CLMUL) 183
B.1.29 Intel Fused Multiply-Add instructions (FMA). 184
B.1.30 Intel post-32 nm processorinstructions. L oo 187
B.1.31VIA (Centaur) security instructions e 187
B.1.32 AMD Lightweight Profiling (LWP) instructions. 187
B.1.33 AMD XOP and FMA4 instructions (SSE5) e 187
B.1.34 Intel AVX2 instructions L e e e e e 190
B.1.35 Intel Transactional Synchronization Extensions (TSX). 192
B.1.36 Intel BMI1 and BMI2 instructions, AMD TBM instructions 193
B.1.37 Intel Memory Protection Extensions (MPX) 193
B.1.38 Intel SHA accelerationinstructions L L 194
B.1.39 AVX-512 mask registerinstructions oL L Lo 194
B.1.40 AVX-512 mask register instructions (aliases requiring explicit size support) 195
B.1.41 AVX-512instructions L e e e e e e e e 196
B.1.42 Intel memory protection keys for userspace (PKU aka PKEYs). 227
B.1.43Read ProcessorID. L e e e e e e e e e e e e e 227
B.1.44 New memory instructions. L Lo 227
B.1.45Processortracewrite L L e e e e e e e e 228
B.1.46 Instructions from the Intel Instruction Set Extensions, 228
B.1.47doc 319433-034 May 2018. e e e e e e e e e e e e e 228
B.1.48 Galois field operations (GFNI) e 228
B.1.49 AVX512 Vector Bit Manipulation Instructions2 Lo 228
B.1.50 AVXSI12VNNI . . . o o e e e e e e e e e e e e e e e 229
B.1.51 AVX512 Bit Algorithms. e e e e e 229
B.1.52 AVX512 4-iteration Multiply-Add 230
B.1.53 AVX512 4-iteration Dot Product e 230
B.1.54 Intel Software Guard Extensions (SGX) 230
B.1.55 Intel Control-Flow Enforcement Technology (CET) 230
B.1.56 Instructions from ISE doc 319433-040,June2020. oo 230
B.1.57 AVX512 Bfloatl6instructions L 230
B.1.58 AVX512 mask intersectinstructions. Lo L oo 231
B.1.59 Intel Advanced Matrix Extensions (AMX). 231
B.1.60 Systematic names for the hinting nop instructions 231

Appendix C: NASM Version History L L e 235

C.INASM 2 Series. . . v v o e e e e e e e e e e e e e e e 235

C.L1Version2.15.06. o i i e e e e e e e e e e e e e e e e 235
C.12Version2.15.05. L e e e e e e e e e e e e e 235
C.13Version2.15.04. e e e e e e e e e e 235
C.1l4Version2.15.03. L e e e e e e e e e e e e e 235
C.15Version2.15.02. L e e e e e e e e e e e e e e 236
C.16Version2.15.01. L e e e e e e e e e e e e e e 236
C.L7Version2.15 L L e e e e e e e e e e e e 236
C.18Version2.14.03. o i e e e e e e e e e e e e e e 237
C.1OVersion2.14.02. L e e e e e e e e e e e e e e e e e 237
C.L10Version 2.14.01 L o e e e e e e e e e e e e e e e 238
C.L11Version2.14. . . . L o e e e e e e e e e e e e 238
C.L12Version2.13.03 o e e e e e e e e e e e e e e e e e e 239
C.LI3Version2.13.02 o vt e e e e e e e e e e e e e e e e e e 239
C.1.14Version 2.13.01 o o e e e e e e e e e e e e e e e 240
C.LA5Version2.13. . . . L L e e e e e e e e e e e e e e e e 240
C.L16Version2.12.02 ot e e e e e e e e e e e e e e e e e e e 241
C.LI7Version2.12.01 o ot e e e e e e e e e e e e e e e e 241
C.LIBVErsion2.12. . . . L o it e e e e e e e e e e e e e e e e e e e 241
C.L19Version 2.11.09 L o e e e e e e e e e e e e e e 242
C.1.20Version 2.11.08 i e e e e e e e e e e e e e e e e e e 242
C.121Version 2.11.07 v v e 242
C.1.22Version 2.11.06 o o e e e e e e e e e e e e e e e e e e 242
C.1.23Version 2.11.05 e e e e e e e e e e e e e e 242
C.1.24Version 2.11.04 o e e e e e e e e e e e e e e 242
C.1.25Version 2.11.03 L e e e e e e e e e e e e e e e e e e e 243
C.1.26Version 2.11.02 o o e 243
C.127Version 2.11.01 o o e e e e e e e e e e e e e e e 243
C.L28Version2.11. . . . L v it s e e e e e e e e e e e e e e e e e e e 243
C.1.29Version 2.10.09 e e e e e e e e e e e e e 244
C.1.30Version2.10.08 e e e e e e e e e e e e e e 244
C.1.31Version 2.10.07 o v v e e e e e e e e e e e e e e e e e e e 244
C.1.32Version 2.10.06 o e e e e e e e e e e e e e e e e 244
C.1.33Version2.10.05 L e e e e e e e e e e e e 244
C.1.34Version 2.10.04 L e e e e e e e e e e e 244
C.1.35Version 2.10.03 e e e e e e e e e e e e e e e e 245

14

C.1.36Version 2.10.02 e e e e e e e e e e 245

C.137Version2.10.01 o . e e e e e e e e e e e e e e 245
C.138Version2.10. . . . o ot e e e e e e e e e e e e e e e e e e e 245
C.1.39Version 2.09.10 e e e e e e e e e e e e e e e e 245
C.1.40Version 2.09.09 e e e e e e e e e e e 245
C.1.41Version2.09.08 e e e e e e e e e e e e 245
C.1.42Version 2.09.07 o o i e e e e e e e e e e e e e e e 245
C.1.43Version2.09.06 e e e e e e e e e e e e e 245
C.1.44Version 2.09.05 e e e e e e e e 246
C.1.45Version 2.09.04 e e e e e e e e e e e 246
C.1.46Version 2.09.03 e e e e e e e e e e e e 246
C.LATVersion2.09.02 o it e e e e e e e e e e e e 246
C.1.48Version 2.09.01 e e e e e e e e e e e 246
C.149Version2.09. e e e e e e e e e e e 246
C.1.50Version 2.08.02 e e e e e e e e e e e e e 247
C.1.51Version2.08.01 e e e e e e e e e e e e e e 247
C.1.52Version 2.08. e e e e e e e e e e 247
C.L53Version2.07. o v vt e e e e e e e e e e e e e e e e e 248
C.154Version2.06. i i e e e e e e e e e e e e e e e e 248
C.1.55Version 2.05.01 e e e e e e e e e e e 249
C.156Version2.05. L e e e e e e e e e e e e e e 249
C.L57Version2.04. o e e e e e e e e e e e 249
C.1.58Version2.03.01 e e e e e e e e e e e e 250
C.159Version2.03. L e e e e e e e e e e e e e 250
C.LB0Version2.02. i e e e e e e e e e e e e e e e e 251
C.161Version2.01. o i e e e e e e e e e e e e e e e e 251
C.1.62Version2.00. L e e e e e e e e e e e e e e e e e 252
C.2NASMO0.98SEries . . . v v v e e e e e e e e e e e e e e e e 252
C.2.1Version 0.98.39. L e e e e e e e e 252
C.2.2Version 0.98.38 L e e e e e e e e 253
C.2.3Version 0.98.37 o i e e e e e e e e e e e 253
C.2.4Version0.98.36. i e e e e e e e e e e e e e e 253
C.2.5Version 0.98.35. e e e e e e e e e 254
C.2.6Version0.98.34. L e e e e e e e 254
C.2.7Version 0.98.33 L e e e e e e e e 254
C.2.8Version 0.98.32. e e e e e e e e e 254

C.2.9Version 0.98.31 e e e e e e e e 255

C.2.10Version 0.98.30 e e e e e e e e e e e e e e e 255
C.2.11Version 0.98.28 e e e e e e e e e e 255
C.2.12Version 0.98.26 e e e e e e e e e e e e e e e e 255
C.2.13Version 0.98.25alt. e e 255
C.2.14Version 0.98.25 L e e e e e e e 255
C.2.15Version 0.98.24p1 e e e e e e 255
C.2.16Version 0.98.24 e e e e e e e e e e 256
C.2.17Version 0.98.23 L e e e e e e e e e 256
C.2.18Version 0.98.22 L L e e e e e e e e e e e 256
C.2.19Version 0.98.21 L L e e e e e e e e e e e e e 256
C.2.20Version 0.98.20 e e e e e e e e e e e e 256
C.2.21Version 0.98.19 L e e e e e e e e e e 256
C.2.22Version 0.98.18 e e e e e e e e e e e 256
C.2.23Version 0.98.17 e e e e e e e e e e e e 256
C.2.24Version 0.98.16 e e e e e e e e e e e e e e 256
C.2.25Version 0.98.15 L e e e e e e e e 256
C.2.26Version 0.98.14 L. e e e e e e e e 256
C.2.27Version 0.98.13 L e e e e e e e e e e 256
C.2.28Version 0.98.12 L e e e e e e e e e e e e 256
C.2.29Version 0.98.11 e e e e e e e e e e e e e 256
C.2.30Version 0.98.10 e e e e e e e e e e e e e e 256
C.2.31Version 0.98.09 e e e e e e e e 257
C.2.32Version 0.98.08 L e e e e e e e e e e 257
C.2.33 Version 0.98.09b with John Coffman patches released 28-Oct-2001. 257
C.2.34Version 0.98.07 released 01/28/01. o i v i i i e e e e 257
C.2.35Version 0.98.06f released 01/18/01 e 258
C.2.36 Version 0.98.06e released 01/09/01 i i i i e 258
C.2.37Version 0.98p1 L e e e e 258
C.2.38Version 0.98bf (bug-fixed). 258
C.2.39 Version 0.98.03 with John Coffman’s changes released 27-Jul-2000. 258
C.2.40Version 0.98.03 e e e e e e e e e e 259
C.2.41Version 0.98. L e e e e e e e e 261
C.2.42Version 0.98Pp9 L e e e e e 262
C.2.43Version 0.98Pp8 L e e 262
C.2.44Version 0.98Pp7 L e e e e e 262

C.2.45Version 0.98p6 L e e e e e e 263

C.2.46Version 0.98P3.7 L e e e e e e e 263
C.247Version 0.98Pp3.6 L e e e e 263
C.2.48Version 0.98p3.5 L L e 263
C.2.49Version 0.98Pp3.4 L L e e e 264
C.2.50Version 0.98p3.3 L L e e e 264
C.2.51Version 0.98Pp3.2 L e e e e e 264
C.2.52Version 0.98p3-hpa 264
C.2.53Version 0.98 pre-release3. e e 264
C.2.54Version 0.98 pre-release2. o i e 265
C.2.55Version 0.98 pre-release 1. o .o e e e 265
C3NASMO0.9Series. v o e e e e e e e e e e e e e e e e 266
C.3.1Version 0.97 released December1997o 266
C.3.2Version 0.96 released November1997 oL 266
C.3.3Version 0.95released July 1997 268
C.3.4Version 0.94 released April 1997 270
C.3.5Version 0.93 released January 1997 e 270
C.3.6Version 0.92released January 1997 271
C.3.7Version 0.91 released November1996 271
C.3.8Version 0.90 released October1996 271
Appendix D: Building NASM from Source. L Lo 273
D.1Building froma Source Archive L 273
D.2 Building fromthe git Repository 273
D.3 Buildingthedocumentation 273
Appendix E: Contact Information L L 275
ElWebsite e e e 275
E.LLIUSerFOrums o o o o e 275
E.1.2 Development Community L e 275

E2ReportingBugs 275

1.1

1.1.1

Chapter 1: Introduction

What Is NASM?

The Netwide Assembler, NASM, is an 80x86 and x86-64 assembler designed for portability and
modularity. It supports a range of object file formats, including Linux and *BSD a.out, ELF, Mach-O,
16-bit and 32-bit .obj (OMF) format, COFF (including its Win32 and Win64 variants.) It can also output
plain binary files, Intel hex and Motorola S-Record formats. Its syntax is designed to be simple and easy
to understand, similar to the syntax in the Intel Software Developer Manual with minimal complexity. It
supports all currently known x86 architectural extensions, and has strong support for macros.

License
NASM is under the so-called 2-clause BSD license, also known as the simplified BSD license:
Copyright 1996-2020 the NASM Authors - All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

+ Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

+ Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

17

18

2.1

2.1.1

Chapter 2: Running NASM

NASM Command-Line Syntax

To assemble a file, you issue a command of the form
nasm -f <format> <filename> [-o <output>]

For example,

nasm -f elf myfile.asm

will assemble myfile.asminto an ELF object file myfile.o. And

nasm -f bin myfile.asm -o myfile.com
will assemble myfile.asminto a raw binary file myfile.com.

To produce a listing file, with the hex codes output from NASM displayed on the left of the original
sources, use the -1 option to give a listing file name, for example:

nasm -f coff myfile.asm -1 myfile.lst

To get further usage instructions from NASM, try typing

nasm -h
The option --help is an alias for the -h option.

If you use Linux but aren’t sure whether your system is a.out or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like
nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1

then your system is ELF, and you should use the option -f elf when you want NASM to produce Linux
object files. If it says

nasm: Linux/i386 demand-paged executable (QMAGIC)

or something similar, your system is a.out, and you should use -f aout instead (Linux a.out systems
have long been obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won’t see any output at
all, unless it gives error messages.

The -o Option: Specifying the Output File Name

NASM will normally choose the name of your output file for you; precisely how it does this is dependent
on the object file format. For Microsoft object file formats (obj, win32 and winé4), it will remove the .asm
extension (or whatever extension you like to use - NASM doesn’t care) from your source file name and
substitute .obj. For Unix object file formats (aout, as86, coff, elf32, elf64, elfx32, ieee, macho32 and
macho64) it will substitute .o. For dbg, rdf, ith and srec, it will use .dbg, .rdf, .ith and .srec,
respectively, and for the bin format it will simply remove the extension, so that myfile.asm produces
the output file myfite.

If the output file already exists, NASM will overwrite it, unless it has the same name as the input file, in
which case it will give a warning and use nasm. out as the output file name instead.

For situations in which this behaviour is unacceptable, NASM provides the -o command-line option,
which allows you to specify your desired output file name. You invoke -o by following it with the name
you wish for the output file, either with or without an intervening space. For example:

19

2.1.2

2.1.3

2.1.4

20

nasm -f bin program.asm -o program.com
nasm -f bin driver.asm -odriver.sys

Note that this is a small o, and is different from a capital O , which is used to specify the number of
optimization passes required. See section 2.1.24.

The -f Option: Specifying the Output File Format

If you do not supply the -f option to NASM, it will choose an output file format for you itself. In the
distribution versions of NASM, the default is always b1in; if you’ve compiled your own copy of NASM, you
can redefine OF_DEFAULT at compile time and choose what you want the default to be.

Like -o, the intervening space between -f and the output file format is optional; so -f elf and -felf
are both valid.

A complete list of the available output file formats can be given by issuing the command nasm -h.
The -1 Option: Generating a Listing File

If you supply the -1 option to NASM, followed (with the usual optional space) by a file name, NASM wiill
generate a source-listing file for you, in which addresses and generated code are listed on the left, and
the actual source code, with expansions of multi-line macros (except those which specifically request
no expansion in source listings: see section 4.3.11) on the right. For example:

nasm -f elf myfile.asm -1 myfile.lst

If a list file is selected, you may turn off listing for a section of your source with [1ist -1, and turn it
back on with [list +], (the default, obviously). There is no "user form" (without the brackets). This can
be used to list only sections of interest, avoiding excessively long listings.

The -L Option: Additional or Modified Listing Info

Use this option to specify listing output details.

Supported options are:

+ -Lbshow builtin macro packages (standard and %use)

+ -Ld show byte and repeat counts in decimal, not hex

+ -Le show the preprocessed input

« -Lfignore .nolist and force listing output

+ -Lmshow multi-line macro calls with expanded parameters

« -Lpoutput a list file in every pass, in case of errors

+ -Ls show all single-line macro definitions

« -Lw flush the output after every line (very slow, mainly useful to debug NASM crashes)
+ -L+enable all listing options except -Lw (very verbose)

These options can be enabled or disabled at runtime using the %pragma 1ist options directive:
%pragma list options [+|-]flags...

For example, to turn on the d and m flags but disable the s flag:

%pragma list options +dm -s

For forward compatility reasons, an undefined flag will be ignored. Thus, a new flag introduced in a
newer version of NASM can be specified without breaking older versions. Listing flags will always be a
single alphanumeric character and are case sensitive.

2.1.5

2.1.6

2.1.7

2.1.8

2.19

2.1.10

2.1.11

2.1.12

The -m Option: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This can be redirected to a file
for further processing. For example:

nasm -M myfile.asm > myfile.dep
The -MG Option: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This differs from the -M option in
that if a nonexisting file is encountered, it is assumed to be a generated file and is added to the
dependency list without a prefix.

The -MF Option: Set Makefile Dependency File

This option can be used with the -M or -MG options to send the output to a file, rather than to stdout. For
example:

nasm -M -MF myfile.dep myfile.asm
The -Mp Option: Assemble and Generate Dependencies

The -MD option acts as the combination of the -m and -MF options (i.e. a filename has to be specified.)
However, unlike the - or -MG options, -MD does not inhibit the normal operation of the assembler. Use
this to automatically generate updated dependencies with every assembly session. For example:

nasm -f elf -o myfile.o -MD myfile.dep myfile.asm

If the argument after -MD is an option rather than a filename, then the output filename is the first
applicable one of:

» thefilename setin the -MF option;
» the output filename from the -o option with .d appended;

+ theinput filename with the extension set to .d.

The -MT Option: Dependency Target Name

The -MT option can be used to override the default name of the dependency target. This is normally the
same as the output filename, specified by the -o option.

The -mQ Option: Dependency Target Name (Quoted)

The -MQ option acts as the -MT option, except it tries to quote characters that have special meaning in
Makefile syntax. This is not foolproof, as not all characters with special meaning are quotable in Make.
The default output (if no -MT or -MQ option is specified) is automatically quoted.

The -mp Option: Emit phony targets

When used with any of the dependency generation options, the -Mp option causes NASM to emit a
phony target without dependencies for each header file. This prevents Make from complaining if a
header file has been removed.

The -mw Option: Watcom Make quoting style

This option causes NASM to attempt to quote dependencies according to Watcom Make conventions
rather than POSIX Make conventions (also used by most other Make variants.) This quotes # as $# rather
than \#, uses & rather than \ for continuation lines, and encloses filenames containing whitespace in
double quotes.

21

2.1.13 The -F Option: Selecting a Debug Information Format

This option is used to select the format of the debug information emitted into the output file, to be
used by a debugger (or will be). Prior to version 2.03.01, the use of this switch did not enable output of
the selected debug info format. Use -g, see section 2.1.14, to enable output. Versions 2.03.01 and later
automatically enable -g if -F is specified.

A complete list of the available debug file formats for an output format can be seen by issuing the
command nasm -h. Not all output formats currently support debugging output.

This should not be confused with the -f dbg output format option, see section 8.14.

2.1.14 The -g Option: Enabling Debug Information.

2.1.15

2.1.16

2.1.17

22

This option can be used to generate debugging information in the specified format. See section 2.1.13.
Using -g without -F results in emitting debug info in the default format, if any, for the selected output
format. If no debug information is currently implemented in the selected output format, -g is silently
ignored.

The -x Option: Selecting an Error Reporting Format

This option can be used to select an error reporting format for any error messages that might be
produced by NASM.

Currently, two error reporting formats may be selected. They are the -xvc option and the -xgnu option.
The GNU format is the default and looks like this:

filename.asm:65: error: specific error message

where filename.asm is the name of the source file in which the error was detected, 65 is the source file
line number on which the error was detected, error is the severity of the error (this could be warning),
and specific error message is a more detailed text message which should help pinpoint the exact
problem.

The other format, specified by -xvc is the style used by Microsoft Visual C++ and some other programs.
It looks like this:

filename.asm(65) : error: specific error message
where the only difference is that the line number is in parentheses instead of being delimited by colons.

See also the visual c++ output format, section 8.5.

The -z Option: Send Errors to a File

Under Ms-Dos it can be difficult (though there are ways) to redirect the standard-error output of a
program to a file. Since NASM usually produces its warning and error messages on stderr, this can
make it hard to capture the errors if (for example) you want to load them into an editor.

NASM therefore provides the -z option, taking a filename argument which causes errors to be sent to
the specified files rather than standard error. Therefore you can redirect the errors into a file by typing

nasm -Z myfile.err -f obj myfile.asm

In earlier versions of NASM, this option was called -, but it was changed since -E is an option
conventionally used for preprocessing only, with disastrous results. See section 2.1.22.

The -s Option: Send Errors to stdout

The -s option redirects error messages to stdout rather than stderr, so it can be redirected under
MS-D0S. To assemble the file myfile.asmand pipe its output to the more program, you can type:

nasm -s -f obj myfile.asm | more

See also the -z option, section 2.1.16.

2.1.18

2.1.19

2.1.20

2.1.21

The -1 Option: Include File Search Directories

When NASM sees the %include or %pathsearch directive in a source file (see section 4.6.1, section 4.6.2
or section 3.2.3), it will search for the given file not only in the current directory, but also in any
directories specified on the command line by the use of the -i option. Therefore you can include files
from a macro library, for example, by typing

nasm -ic:\macrolib\ -f obj myfile.asm
(As usual, a space between -1i and the path name is allowed, and optional).

Prior NASM 2.14 a path provided in the option has been considered as a verbatim copy and providing a
path separator been up to a caller. One could implicitly concatenate a search path together with a
filename. Still this was rather a trick than something useful. Now the trailing path separator is made to
always present, thus -1 foo will be considered as the -1 foo/ directory.

If you want to define a standard include search path, similar to /usr/include on Unix systems, you
should place one or more -1 directives in the NASMENV environment variable (see section 2.1.35).

For Makefile compatibility with many C compilers, this option can also be specified as -1.

The -p Option: Pre-Include aFile

NASM allows you to specify files to be pre-included into your source file, by the use of the -p option. So
running

nasm myfile.asm -p myinc.inc

is equivalent to running nasm myfile.asm and placing the directive %include "myinc.inc" at the start
of thefile.

--include option is also accepted.

For consistency with the -1, -b and -u options, this option can also be specified as -p.

The -d Option: Pre-Define a Macro

Just as the —p option gives an alternative to placing %include directives at the start of a source file, the
-d option gives an alternative to placing a %define directive. You could code

nasm myfile.asm -dF00=100

as an alternative to placing the directive
%define FOO 100

at the start of the file. You can miss off the macro value, as well: the option -dFoo is equivalent to
coding %define F00. This form of the directive may be useful for selecting assembly-time options which
are then tested using %1 fdef, for example -dDEBUG.

For Makefile compatibility with many C compilers, this option can also be specified as -D.

The -u Option: Undefine a Macro

The -u option undefines a macro that would otherwise have been pre-defined, either automatically or
by a -p or -d option specified earlier on the command lines.

For example, the following command line:
nasm myfile.asm -dF00=100 -uFO0O

would result in Foo not being a predefined macro in the program. This is useful to override options
specified at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can also be specified as -u.

23

2.1.22

2.1.23

2.1.24

2.1.25

24

The -E Option: Preprocess Only

NASM allows the preprocessor to be run on its own, up to a point. Using the -E option (which requires
no arguments) will cause NASM to preprocess its input file, expand all the macro references, remove all
the comments and preprocessor directives, and print the resulting file on standard output (or save it to
afile, if the -o option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate expressions
which depend on the values of symbols: so code such as

%assign tablesize ($-tablestart)
will cause an error in preprocess-only mode.

For compatiblity with older version of NASM, this option can also be written -e. -E in older versions of
NASM was the equivalent of the current -z option, section 2.1.16.

The -a Option: Don’t Preprocess At All

If NASM is being used as the back end to a compiler, it might be desirable to suppress preprocessing
completely and assume the compiler has already done it, to save time and increase compilation
speeds. The -a option, requiring no argument, instructs NASM to replace its powerful preprocessor with
a stub preprocessor which does nothing.

The -0 Option: Specifying Multipass Optimization

Using the -0 option, you can tell NASM to carry out different levels of optimization. Multiple flags can be
specified after the -0 options, some of which can be combined in a single option, e.g. -0xv.

« -00: No optimization. All operands take their long forms, if a short form is not specified, except
conditional jumps. This is intended to match NASM 0.98 behavior.

« -01: Minimal optimization. As above, but immediate operands which will fit in a signed byte are
optimized, unless the long form is specified. Conditional jumps default to the long form unless
otherwise specified.

» -0x (where x is the actual letter x): Multipass optimization. Minimize branch offsets and signed
immediate bytes, overriding size specification unless the strict keyword has been used (see section
3.7). For compatibility with earlier releases, the letter x may also be any number greater than one.
This number has no effect on the actual number of passes.

« -0v: At the end of assembly, print the number of passes actually executed.
The -ox mode is recommended for most uses, and is the default since NASM 2.09.

Note that this is a capital 0, and is different from a small o, which is used to specify the output file name.
See section 2.1.1.

The -t Option: Enable TASM Compatibility Mode

NASM includes a limited form of compatibility with Borland’s TasM. When NASM’s -t option is used, the
following changes are made:

+ local labels may be prefixed with ee instead of .

+ size override is supported within brackets. In TASM compatible mode, a size override inside square
brackets changes the size of the operand, and not the address type of the operand as it does in
NASM syntax. E.g. mov eax, [DWORD val] is valid syntax in TASM compatibility mode. Note that you
lose the ability to override the default address type for the instruction.

+ unprefixed forms of some directives supported (arg, elif, else, endif, if, ifdef, ifdifi, ifndef,
include, local)

2.1.26 The -wand -w Options: Enable or Disable Assembly Warnings

NASM can observe many conditions during the course of assembly which are worth mentioning to the
user, but not a sufficiently severe error to justify NASM refusing to generate an output file. These
conditions are reported like errors, but come up with the word ‘warning’ before the message. Warnings
do not prevent NASM from generating an output file and returning a success status to the operating
system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the user.
Therefore NASM supports the -w command-line option, which enables or disables certain classes of
assembly warning. Such warning classes are described by a name, for example label-orphan; you can
enable warnings of this class by the command-line option -w+label-orphan and disable it by
-w-label-orphan.

The current warning classes are:

« allisan group alias for all warning classes. Thus, -w+all enables all available warnings, and -w-al1l
disables warnings entirely (since NASM 2.13).

+ bad-pragma is a backwards compatibility alias for pragma-bad.

+ bnd warns about ineffective use of the BND prefix when the auMp instruction is converted to the sHorT
form. This should be extremely rare since the short aMp only is applicable to jumps inside the same
module, but if it is legitimate, it may be necessary to use bnd jmp dword.

Enabled by default.

+ db-empty warns about a DB, Dw, etc declaration with no operands, producing no output. This is
permitted, but often indicative of an error. See section 3.2.1.

Enabled by default.

+ environment warns if a nonexistent environment variable is accessed using the %! preprocessor
construct (see section 4.11.2.) Such environment variables are treated as empty (with this warning
issued) starting in NASM 2.15; earlier versions of NASM would treat this as an error.

Enabled by default.

+ float is a group alias for all warning classes prefixed by float-; currently float-denorm,
float-overflow, float-toolong, and float-underflow.

+ float-denormwarns about denormal floating point constants.
Disabled by default.
+ float-overflow warns about floating point underflow.
Enabled by default.
+ float-toolong warns about too many digits in floating-point numbers.
Enabled by default.
+ float-underflow warns about floating point underflow (a nonzero constant rounded to zero.)
Disabled by default.
+ hlewarns about invalid use of the HLE XACQUIRE or XRELEASE prefixes.
Enabled by default.

+ label is a group alias for all warning classes prefixed by label-; currently label-orphan,
label-redef, and label-redef-late.

25

26

label-orphan warns about source lines which contain no instruction but define a label without a
trailing colon. This is most likely indicative of a typo, but is technically correct NASM syntax (see
section 3.1.)

Enabled by default.

label-redef warns if a label is defined more than once, but the value is identical. It is an
unconditional error to define the same label more than once to different values.

Disabled by default.

label-redef-late the value of a label changed during the final, code-generation pass. This may be
the result of strange use of the preprocessor. This is very likely to produce incorrect code and may
end up being an unconditional error in a future version of NASM.

Enabled and promoted to error by default.
lock warns about Lock prefixes on unlockable instructions.
Enabled by default.

macro is a group alias for all warning classes prefixed by macro-; currently macro-def-case-single,
macro-def-greedy-single, macro-def-param-single, macro-defaults, macro-params-legacy,
macro-params-multi, and macro-params-single.

macro-def is a group alias for all warning classes prefixed by macro-def-; currently
macro-def-case-single, macro-def-greedy-single, and macro-def-param-single.

macro-def-case-single warns when a single-line macro is defined both case sensitive and case
insensitive. The new macro definition will override (shadow) the original one, although the original
macro is not deleted, and will be re-exposed if the new macro is deleted with %undef, or, if the
original macro is the case insensitive one, the macro call is done with a different case.

Enabled by default.

macro-def-greedy-single definition shadows greedy macro warns when a single-line macro is
defined which would match a previously existing greedy definition. The new macro definition will
override (shadow) the original one, although the original macro is not deleted, and will be
re-exposed if the new macro is deleted with %undef, and will be invoked if called with a parameter
count that does not match the new definition.

Enabled by default.

macro-def-param-single warns if the same single-line macro is defined with and without
parameters. The new macro definition will override (shadow) the original one, although the original
macro is not deleted, and will be re-exposed if the new macro is deleted with %undef.

Enabled and promoted to error by default.

macro-defaults warns when a macro has more default parameters than optional parameters. See
section 4.3.5 for why might want to disable this warning.

Enabled by default.

macro-params is a group alias for all warning classes prefixed by macro-params-; currently
macro-params-legacy, macro-params-multi, and macro-params-single.

macro-params-legacy warns about multi-line macros being invoked with the wrong number of
parameters, but for bug-compatibility with NASM versions older than 2.15, NASM tried to fix up the
parameters to match the legacy behavior and call the macro anyway. This can happen in certain
cases where there are empty arguments without braces, sometimes as a result of macro expansion.

The legacy behavior is quite strange and highly context-dependent, and can be disabled with:

%pragma preproc sane_empty_expansion true
It is highly recommended to use this option in new code.
Enabled by default.

macro-params-multi warns about multi-line macros being invoked with the wrong number of
parameters. See section 4.3.1 for an example of why you might want to disable this warning.

Enabled by default.

macro-params-single warns about single-line macros being invoked with the wrong number of
parameters.

Enabled by default.

negative-rep warns about negative counts given to the %rep preprocessor directive.
Enabled by default.

not-my-pragma is a backwards compatibility alias for pragma-na.

number-overflow covers warnings about numeric constants which don’t fit in 64 bits.
Enabled by default.

obsolete is a group alias for all warning classes prefixed by obsolete-; currently obsolete-nop,
obsolete-removed, and obsolete-valid.

obsolete-nop warns for an instruction which has been removed from the architecture, but has been
architecturally defined to be a noop for future CPUs.

Enabled by default.

obsolete-removed warns for an instruction which has been removed from the architecture, and is no
longer included in the CPU definition given in the [cpu] directive, for example pop cs, the opcode
for which, eFh, instead is an opcode prefix on CPUs newer than the first generation 8086.

Enabled by default.

obsolete-valid warns for an instruction which has been removed from the architecture, but is still
valid on the specific CPU given in the cpu directive. Code using these instructions is most likely not
forward compatible.

Enabled by default.

orphan-labels is a backwards compatibility alias for label-orphan.
other specifies any warning not included in any specific warning class.
Enabled by default.

phase warns about symbols having changed values during the second-to-last assembly pass. This is
not inherently fatal, but may be a source of bugs.

Disabled by default.

pragma is a group alias for all warning classes prefixed by pragma-; currently pragma-bad,
pragma-empty, pragma-na, and pragma-unknown.

pragma-bad warns about a malformed or otherwise unparsable %pragma directive.
Disabled by default.

pragma—empty warns about a %pragma directive containing nothing. This is treated identically to
%pragma ignore except for this optional warning.

Disabled by default.

27

28

+ pragma-na warns about a %pragma directive which is not applicable to this particular assembly
session. This is not yet implemented.

Disabled by default.

+ pragma-unknown warns about an unknown %pragma directive. This is not yet implemented for most
cases.

Disabled by default.

+ ptr warns about keywords used in other assemblers that might indicate a mistake in the source
code. Currently only the MASM pPTR keyword is recognized. See also section 6.5.

Enabled by default.

+ regsize warns about a register with implicit size (such as Eax, which is always 32 bits) been given an
explicit size specification which is inconsistent with the size of the named register, e.g. WoRD EAX.
DWORD EAX Or WORD AX are permitted, and do not trigger this warning. Some registers which do not
imply a specific size, such as ke, may need this specification unless the instruction itself implies the
instruction size:

KMOVW K@, [foo] ; Permitted, KMOVW implies 16 bits

KMOV WORD KO, [foo] ; Permitted, WORD KO specifies instruction size
KMOV KO,WORD [foo] ; Permitted, WORD [foo] specifies instruction size
KMOV K@, [foo] ; Not permitted, instruction size ambiguous

Enabled by default.
» unknown-pragma is a backwards compatibility alias for pragma-unknown.

+ unknown-warning warns about a -w or -w option or a [WARNING] directive that contains an unknown
warning name or is otherwise not possible to process.

Disabled by default.
+ user controls output of swarning directives (see section 4.9).
Enabled by default.

+ warn-stack-empty a [WARNING POP] directive was executed when the warning stack is empty. This
is treated as a [WARNING *all] directive.

Enabled by default.

+ zeroing a RESx directive was used in a section which contains initialized data, and the output format
does not support this. Instead, this will be replaced with explicit zero content, which may produce a
large output file.

Enabled by default.
+ zext-reloc warns that a relocation has been zero-extended due to limitations in the output format.
Enabled by default.

Since version 2.15, NASM has group aliases for all prefixed warnings, so they can be used to enable or
disable all warnings in the group. For example, -w+float enables all warnings with names starting with
float-*.

Since version 2.00, NASM has also supported the gcc-like syntax -wWwarning-class and
-Wno-warning-class instead of -w+warning-class and -w-warning-class, respectively; both syntaxes
work identically.

The option -w+error or -Werror can be used to treat warnings as errors. This can be controlled on a per
warning class basis (-w+error=warning-class or -werror=warning-class); if no warning-class is specified
NASM treats it as -w+error=all; the same applies to -w-error or -wno-error, of course.

2.1.27

2.1.28

2.1.29

2.1.30

2.1.31

In addition, you can control warnings in the source code itself, using the [WARNING] directive. See
section 7.13.

The -v Option: Display Version Info

Typing NAsM -v will display the version of NASM which you are using, and the date on which it was
compiled.

You will need the version number if you report a bug.

For command-line compatibility with Yasm, the form --v is also accepted for this option starting in
NASM version 2.11.05.

The --(g|1)prefix, -—(g| 1) postfix Options.

The --(g)prefix options prepend the given argument to all extern, common, static, and global
symbols, and the --1prefix option prepends to all other symbols. Similarly, --(g)postfix and
--lpostfix options append the argument in the exactly same way as the --xxprefix options does.

Running this:
nasm -f macho --gprefix _

is equivalent to place the directive with %pragma macho gprefix _ atthe start of the file (section 7.10).
It will prepend the underscore to all global and external variables, as C requires it in some, but not all,
system calling conventions.

The --pragma Option

NASM accepts an argument as %pragma option, which is like placing a %pragma preprocess statement at
the beginning of the source. Running this:

nasm -f macho --pragma "macho gprefix _"

is equivalent to the example in section 2.1.28. See section 4.10.

The --before Option

A preprocess statement can be accepted with this option. The example shown in section 2.1.29 is the
same as running this:

nasm -f macho --before "%pragma macho gprefix _"
The --1imit-x Option

This option allows user to setup various maximum values after which NASM will terminate with a fatal
error rather than consume arbitrary amount of compute time. Each limit can be set to a positive
number or unlimited.

+ —-limit-passes: Number of maximum allowed passes. Default is unlimited.
+ --limit-stalled-passes: Maximum number of allowed unfinished passes. Default is 1000.
+ --limit-macro-levels: Define maximum depth of macro expansion (in preprocess). Default is 10000

+ --limit-macro-tokens: Maximum number of tokens processed during single-line macro expansion.
Default is 10000000.

+ —-limit-mmacros: Maximum number of multi-line macros processed before returning to the
top-level input. Default is 100000.

+ —-limit-rep: Maximum number of allowed preprocessor loop, defined under %rep. Default is
1000000.

+ --limit-eval: This number sets the boundary condition of allowed expression length. Default is
8192 on most systems.

29

2.1.32

2.1.33

2.1.34

2.1.35

2.2

2.2.1

2.2.2

30

+ --limit-lines: Total number of source lines allowed to be processed. Default is 2000000000.

For example, set the maximum line count to 1000:

nasm --limit-lines 1000

Limits can also be set via the directive %pragma 1imit, for example:

%pragma limit lines 1000

The --keep-all Option

This option prevents NASM from deleting any output files even if an error happens.
The --no-11ine Option

If this option is given, all %line directives in the source code are ignored. This can be useful for
debugging already preprocessed code. See section 4.11.1.

The --reproducible Option

If this option is given, NASM will not emit information that is inherently dependent on the NASM version
or different from run to run (such as timestamps) into the output file.

The NASMENV Environment Variable

If you define an environment variable called NASMENV, the program will interpret it as a list of extra
command-line options, which are processed before the real command line. You can use this to define
standard search directories for include files, by putting -i options in the NASMENV variable.

The value of the variable is split up at white space, so that the value -s -ic:\nasmlib\ will be treated
as two separate options. However, that means that the value -dNAME="my name" won’t do what you
might want, because it will be split at the space and the NASM command-line processing will get
confused by the two nonsensical words -dNAME="my and name".

To get round this, NASM provides a feature whereby, if you begin the NASMENV environment variable
with some character that isn’t a minus sign, then NASM will treat this character as the separator
character for options. So setting the NASMENV variable to the value !-s!-ic:\nasmlib\ is equivalent to
settingitto -s -ic:\nasmlib\, but ! -dNAME="my name" will work.

This environment variable was previously called NASM. This was changed with version 0.98.31.

Quick Start for MASM Users

If you’re used to writing programs with MASM, or with TASM in MASM-compatible (non-Ideal) mode, or
with age, this section attempts to outline the major differences between MASM’s syntax and NASM’s. If
you’re not already used to MASM, it’s probably worth skipping this section.

NASM Is Case-Sensitive

One simple difference is that NASM is case-sensitive. It makes a difference whether you call your label
foo, Foo or FOO. If you’re assembling to Dos or 0s/2 .0BJ files, you can invoke the UPPERCASE directive
(documented in section 8.4) to ensure that all symbols exported to other code modules are forced to be
upper case; but even then, within a single module, NASM will distinguish between labels differing only
in case.

NASM Requires Square Brackets For Memory References

NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that it should
be possible, as far as is practical, for the user to look at a single line of NASM code and tell what opcode
is generated by it. You can’t do this in MASM: if you declare, for example,

foo equ 1
bar dw 2

2.2.3

2.2.4

2.2.5

2.2.6

then the two lines of code

mov ax, foo
mov ax,bar

generate completely different opcodes, despite having identical-looking syntaxes.

NASM avoids this undesirable situation by having a much simpler syntax for memory references. The
rule is simply that any access to the contents of a memory location requires square brackets around the
address, and any access to the address of a variable doesn’t. So an instruction of the form mov ax, foo
will always refer to a compile-time constant, whether it’s an EQu or the address of a variable; and to
access the contents of the variable bar, you must code mov ax, [bar].

This also means that NASM has no need for MASM’s OFFSET keyword, since the MASM code
mov ax,offset bar means exactly the same thing as NASM’s mov ax,bar. If you’re trying to get large
amounts of MASM code to assemble sensibly under NASM, you can always code %idefine offset to
make the preprocessor treat the oFFSET keyword as a no-op.

This issue is even more confusing in age, where declaring a label with a trailing colon defines it to be a
‘label’ as opposed to a ‘variable’ and causes ag6 to adopt NASM-style semantics; so in ag6,mov ax,var has
different behaviour depending on whether var was declared as var: dw o (a label) or var dw o (a
word-size variable). NASM is very simple by comparison: everything is a label.

NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by MASM and
its clones, such as mov ax,table[bx], where a memory reference is denoted by one portion outside
square brackets and another portion inside. The correct syntax for the above is mov ax, [table+bx].
Likewise, mov ax,es:[di] iswrongandmov ax,[es:di] isright.

NASM Doesn’t Store Variable Types

NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM will
remember, on seeing var dw 0, that you declared var as a word-size variable, and will then be able to
fill in the ambiguity in the size of the instruction mov var,2, NASM will deliberately remember nothing
about the symbol var except where it begins, and so you must explicitly code mov word [var],2.

For this reason, NASM doesn’t support the LoDS, MOVS, STOS, SCAS, CMPS, INS, or OUTS instructions, but
only supports the forms such as LoDsB, Movsw, and ScAsD, which explicitly specify the size of the
components of the strings being manipulated.

NASM Doesn’t ASSUME

As part of NASM’s drive for simplicity, it also does not support the AssumME directive. NASM will not keep
track of what values you choose to put in your segment registers, and will never automatically generate
a segment override prefix.

NASM Doesn’t Support Memory Models

NASM also does not have any directives to support different 16-bit memory models. The programmer
has to keep track of which functions are supposed to be called with a far call and which with a near call,
and is responsible for putting the correct form of RET instruction (RETN or RETF; NASM accepts RET itself
as an alternate form for RETN); in addition, the programmer is responsible for coding CALL FAR
instructions where necessary when calling external functions, and must also keep track of which
external variable definitions are far and which are near.

Floating-Point Differences

NASM uses different names to refer to floating-point registers from MASM: where MASM would call them
ST (@), ST(1) and so on, and age would call them simply o, 1 and so on, NASM chooses to call them sto,
stl etc.

31

2.2.7

2.2.8

32

As of version 0.96, NASM now treats the instructions with ‘nowait’ forms in the same way as
MASM-compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was based on
a misunderstanding by the authors.

Other Differences

For historical reasons, NASM uses the keyword TworD where MASM and compatible assemblers use
TBYTE.

Historically, NASM does not declare uninitialized storage in the same way as MASM: where a MASM
programmer might use stack db 64 dup (?), NASM requires stack resb 64, intended to be read as
‘reserve 64 bytes’. For a limited amount of compatibility, since NASM treats ? as a valid character in
symbol names, you can code ? equ © and then writing dw ? will at least do something vaguely useful.

As of NASM 2.15, the MASM syntax is also supported.

In addition to all of this, macros and directives work completely differently to MASM. See chapter 4 and
chapter 7 for further details.

MASM compatibility package

See section 6.5.

Chapter 3: The NASM Language

3.1 Layout of a NASM Source Line

Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor directive or
an assembler directive: see chapter 4 and chapter 7) some combination of the four fields

label: instruction operands ; comment

As usual, most of these fields are optional; the presence or absence of any combination of a label, an
instruction and a comment is allowed. Of course, the operand field is either required or forbidden by
the presence and nature of the instruction field.

NASM uses backslash (\) as the line continuation character; if a line ends with backslash, the next line is
considered to be a part of the backslash-ended line.

NASM places no restrictions on white space within a line: labels may have white space before them, or
instructions may have no space before them, or anything. The colon after a label is also optional. (Note
that this means that if you intend to code lodsb alone on a line, and type lodab by accident, then that’s
still a valid source line which does nothing but define a label. Running NASM with the command-line
option -w+orphan-1labels will cause it to warn you if you define a label alone on a line without a trailing
colon.)

Valid characters in labels are letters, numbers, _, $, #, @, ~, ., and ?. The only characters which may be
used as the first character of an identifier are letters, . (with special meaning: see section 3.9), _and 2.
An identifier may also be prefixed with a $ to indicate that it is intended to be read as an identifier and
not a reserved word; thus, if some other module you are linking with defines a symbol called eax, you
can refer to $eax in NASM code to distinguish the symbol from the register. Maximum length of an
identifier is 4095 characters.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU
instructions, MMX instructions and even undocumented instructions are all supported. The instruction
may be prefixed by LOCK, REP, REPE/REPZ, REPNE/REPNZ, XACQUIRE/XRELEASE or BND/NOBND, in the usual
way. Explicit address-size and operand-size prefixes A16, A32, A64, 016 and 032, 064 are provided - one
example of their use is given in chapter 11. You can also use the name of a segment register as an
instruction prefix: coding es mov [bx],ax is equivalent to coding mov [es:bx],ax. We recommend the
latter syntax, since it is consistent with other syntactic features of the language, but for instructions
such as LoDsB, which has no operands and yet can require a segment override, there is no clean
syntactic way to proceed apart from es 1lodsb.

An instruction is not required to use a prefix: prefixes such as cs, A32, LOCK or REPE can appear on a line
by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM also supports a number of pseudo-instructions,
described in section 3.2.

Instruction operands may take a number of forms: they can be registers, described simply by the
register name (e.g. ax, bp, ebx, cro: NASM does not use the gas-style syntax in which register names
must be prefixed by a % sign), or they can be effective addresses (see section 3.3), constants (section
3.4) or expressions (section 3.5).

For x87 floating-point instructions, NASM accepts a wide range of syntaxes: you can use two-operand
forms like MASM supports, or you can use NASM’s native single-operand forms in most cases. For
example, you can code:

fadd stl ; this sets stO := st® + stl
fadd stO,stl ; so does this

33

fadd stl,stoO ; this sets stl := stl + sto
fadd to stl ; so does this

Almost any x87 floating-point instruction that references memory must use one of the prefixes bworDp,
QWORD or TWORD to indicate what size of memory operand it refers to.

3.2 Pseudo-Instructions

Pseudo-instructions are things which, though not real x86 machine instructions, are used in the
instruction field anyway because that’s the most convenient place to put them. The current
pseudo-instructions are DB, Dw, DD, DQ, DT, DO, DY and Dz; their uninitialized counterparts RESB, RESW,
RESD, RESQ, REST, RESO, RESY and RESZ; the INCBIN command, the EQU command, and the TIMES prefix.

In this documentation, the notation "bx
directives, respectively.

and "Resx" is used to indicate all the pB and RESB type

3.2.1 px: Declaring Initialized Data

DB, DW, DD, DQ, DT, DO, DY and Dz (collectively "Dx" in this documentation) are used, much as in MASM, to
declare initialized data in the output file. They can be invoked in a wide range of ways:

db 0x55 ; just the byte 0x55

db 0x55,0x56,0x57 three bytes in succession

db ’a’,0x55 character constants are OK

db ’hello’,13,10,’$’ so are string constants

dw 0x1234 0x34 0x12

dw ’a’ Ox61 Ox00 (it’s just a number)
dw ’ab’ 0x61 0x62 (character constant)
dw >abc’ 0x61 0x62 0x63 0x00 (string)

dd 0x12345678
dd 1.234567e20
dq 0x123456789%abcdefo
dq 1.234567e20
dt 1.234567e20

0x78 Ox56 0x34 0x12
floating-point constant
eight byte constant
double-precision float
extended-precision float

DT, DO, DY and Dz do not accept integer numeric constants as operands.
Starting in NASM 2.15, a the following MASM-like features have been implemented:
» A?argumentto declare uninitialized storage:

db ? 3 uninitialized

+ A superset of the bup syntax. The NASM version of this has the following syntax specification; capital
letters indicate literal keywords:

dx =DB | DW | DD | DQ | DT | DO | DY | DZ

type = BYTE | WORD | DWORD | QWORD | TWORD | OWORD | YWORD | ZWORD
atom = expression | string | float | ’?’

parlist := ’(’ value [, value ...])’

duplist := expression DUP [type] [’%’] parlist

list = duplist | ’%’ parlist | type [’%’] parlist

value = atom | type value | list

stmt := dx value [, value...]

Note that a list needs to be prefixed with a % sign unless prefixed by either bup or a type in order to
avoid confusing it with a parentesis starting an expression. The following expressions are all valid:

db 33
db (44) ; Integer expression
; db (44,55) ; Invalid - error

db %(44,55)
db %(’XX?,’YY?)

db (’AA’) ; Integer expression - outputs single byte
db %(’BB’) ; List, containing a string
db ?

34

3.2.2

3.2.3

3.24

db
db

dup (33)
dup (33, 34)

db 7 dup (99)

db 7 dup dword (?, word ?, ?)

dw byte (?7,44)

6
6

db 6 dup (33, 34), 35
7

dw 3 dup (0xcc, 4 dup byte (’PQR’), ?), Oxabcd
dd 16 dup (Oxaaaa, ?, Oxbbbbbb)

dd 64 dup (2)

The use of $ (current address) in a bx statement is undefined in the current version of NASM, except in

the following cases:

+ For thefirst expression in the statement, either a bup or a data item.

+ An expression of the form "value - $", which is converted to a self-relative relocation.

Future versions of NASM is likely to produce a different result or issue an error this case.

There is no such restriction on using $$ or section-relative symbols.

RESB and Friends: Declaring Uninitialized Data

RESB, RESW, RESD, RESQ, REST, RESO, RESY and RESZ are designed to be used in the BSS section of a
module: they declare uninitialized storage space. Each takes a single operand, which is the number of
bytes, words, doublewords or whatever to reserve. The operand to a RESB-type pseudo-instruction is a

critical expression: see section 3.8.

For example:

buffer: resb
wordvar: resw
realarray resq
ymmval: resy
zmmvals: resz

64
1
10
1
32

reserve 64 bytes
reserve a word
array of ten reals
one YMM register
32 ZMM registers

Since NASM 2.15, the MASM syntax of using ? and DuP in the Dx directives is also supported. Thus, the

above example could also be written:

buffer: db
wordvar: dw
realarray dq
ymmval: dy
zmmvals: dz

64 dup (?)
?
10 dup (?)
2

32 dup (?)

; reserve 64 bytes

; reserve a word

; array of ten reals
; one YMM register

; 32 ZMM registers

INCBIN: Including External Binary Files

INCBIN includes binary file data verbatim into the output file. This can be handy for (for example)
including graphics and sound data directly into a game executable file. It can be called in one of these

three ways:

incbin "file.dat"

incbin "file.dat",1024
incbin "file.dat",1024,512

include the whole file

skip the first 1024 bytes
skip the first 1024, and
actually 1include at most 512

INCBIN is both a directive and a standard macro; the standard macro version searches for the file in the
include file search path and adds the file to the dependency lists. This macro can be overridden if

desired.

EQu: Defining Constants

EQU defines a symbol to a given constant value: when EQu is used, the source line must contain a label.
The action of EQu is to define the given label name to the value of its (only) operand. This definition is
absolute, and cannot change later. So, for example,

35

3.25

3.3

36

message db ’hello, world’
msglen equ $-message

defines msglen to be the constant 12. msglen may not then be redefined later. This is not a preprocessor
definition either: the value of msglen is evaluated once, using the value of $ (see section 3.5 for an
explanation of $) at the point of definition, rather than being evaluated wherever it is referenced and
using the value of $ at the point of reference.

TIMES: Repeating Instructions or Data

The TIMES prefix causes the instruction to be assembled multiple times. This is partly present as NASM’s
equivalent of the pup syntax supported by MASM-compatible assemblers, in that you can code

zerobuf: times 64 db 0

or similar things; but TIMES is more versatile than that. The argument to TIMES is not just a numeric
constant, but a numeric expression, so you can do things like

buffer: db ’hello, world’
times 64-$+buffer db ’ °

which will store exactly enough spaces to make the total length of buffer up to 64. Finally, TIMES can be
applied to ordinary instructions, so you can code trivial unrolled loops in it:

times 100 movsb

Note that there is no effective difference between times 100 resb 1 and resb 100, except that the
latter will be assembled about 100 times faster due to the internal structure of the assembler.

The operand to TIMES is a critical expression (section 3.8).

Note also that TIMES can’t be applied to macros: the reason for this is that TIMES is processed after the
macro phase, which allows the argument to TIMES to contain expressions such as 64-$+buffer as
above. To repeat more than one line of code, or a complex macro, use the preprocessor %rep directive.

Effective Addresses

An effective address is any operand to an instruction which references memory. Effective addresses, in
NASM, have a very simple syntax: they consist of an expression evaluating to the desired address,
enclosed in square brackets. For example:

wordvar dw 123
mov ax, [wordvar]
mov ax, [wordvar+1]
mov ax, [es:wordvar+bx]

Anything not conforming to this simple system is not a valid memory reference in NASM, for example
es:wordvar[bx].

More complicated effective addresses, such as those involving more than one register, work in exactly
the same way:

mov eax, [ebxx2+ecx+offset]
mov ax, [bp+di+8]

NASM is capable of doing algebra on these effective addresses, so that things which don’t necessarily
look legal are perfectly all right:

mov eax, [ebx*5] ; assembles as [ebxx4+ebx]
mov eax, [labell*2-Tlabel2] ; ie [labell+(labell-label2)]

Some forms of effective address have more than one assembled form; in most such cases NASM will
generate the smallest form it can. For example, there are distinct assembled forms for the 32-bit
effective addresses [eaxx2+0] and [eax+eax], and NASM will generally generate the latter on the
grounds that the former requires four bytes to store a zero offset.

3.4

34.1

NASM has a hinting mechanism which will cause [eax+ebx] and [ebx+eax] to generate different
opcodes; this is occasionally useful because [esi+ebp] and [ebp+esi] have different default segment
registers.

However, you can force NASM to generate an effective address in a particular form by the use of the
keywords BYTE, WORD, DWORD and NOSPLIT. If you need [eax+3] to be assembled using a double-word
offset field instead of the one byte NASM will normally generate, you can code [dword eax+3].
Similarly, you can force NASM to use a byte offset for a small value which it hasn’t seen on the first pass
(see section 3.8 for an example of such a code fragment) by using [byte eax+offset]. As special cases,
[byte eax] will code [eax+8] with a byte offset of zero, and [dword eax] will code it with a
double-word offset of zero. The normal form, [eax], will be coded with no offset field.

The form described in the previous paragraph is also useful if you are trying to access data in a 32-bit
segment from within 16 bit code. For more information on this see the section on mixed-size
addressing (section 11.2). In particular, if you need to access data with a known offset that is larger than
will fit in a 16-bit value, if you don’t specify that it is a dword offset, nasm will cause the high word of the
offset to be lost.

Similarly, NASM will split [eax*2] into [eax+eax] because that allows the offset field to be absent and
space to be saved; in fact, it will also split [eax*2+offset] into [eax+eax+offset]. You can combat this
behaviour by the use of the NosPLIT keyword: [nosplit eaxx2] will force [eax*2+0] to be generated
literally. [nosplit eaxx1] also has the same effect. In another way, a split EA form [0, eax*2] can be
used, too. However, NOSPLIT in [nosplit eax+eax] will be ignored because user’s intention here is
considered as [eax+eax].

In 64-bit mode, NASM will by default generate absolute addresses. The REL keyword makes it produce
RIP-relative addresses. Since this is frequently the normally desired behaviour, see the DEFAULT
directive (section 7.2). The keyword ABS overrides REL.

A new form of split effective addres syntax is also supported. This is mainly intended for mib operands
as used by MPX instructions, but can be used for any memory reference. The basic concept of this form
is splitting base and index.

mov eax, [ebx+8,ecx*4] ; ebx=base, ecx=index, 4=scale, 8=disp

For mib operands, there are several ways of writing effective address depending on the tools. NASM
supports all currently possible ways of mib syntax:

5 bndstx

; next 5 lines are parsed same

; base=rax, index=rbx, scale=1, displacement=3
bndstx [rax+0x3,rbx], bndo ;5 NASM - split EA

bndstx [rbxxl+rax+0x3], bnd0@ ; GAS - ’x1’ indecates an index reg
bndstx [rax+rbx+3], bndo ;5 GAS - without hints

bndstx [rax+0x3], bnd0, rbx ; ICC-1

bndstx [rax+0x3], rbx, bndo ; ICC-2

When broadcasting decorator is used, the opsize keyword should match the size of each element.

VDIVPS zmm4, zmm5, dword [rbx]{ltol6} ; single-precision float
VDIVPS zmm4, zmm5, zword [rbx] ; packed 512 bit memory
Constants

NASM understands four different types of constant: numeric, character, string and floating-point.

Numeric Constants

A numeric constant is simply a number. NASM allows you to specify numbers in a variety of number
bases, in a variety of ways: you can suffix H or x, D or T, Q or 0, and B or Y for hexadecimal, decimal, octal
and binary respectively, or you can prefix ox, for hexadecimal in the style of C, or you can prefix $ for
hexadecimal in the style of Borland Pascal or Motorola Assemblers. Note, though, that the $ prefix does

37

double duty as a prefix on identifiers (see section 3.1), so a hex number prefixed with a $ sign must have
a digit after the $ rather than a letter. In addition, current versions of NASM accept the prefix oh for
hexadecimal, od or ot for decimal, 6o or oq for octal, and eb or oy for binary. Please note that unlike C, a
o prefix by itself does not imply an octal constant!

Numeric constants can have underscores (_) interspersed to break up long strings.

Some examples (all producing exactly the same code):

mov ax,200 ; decimal
mov ax,0200 ; still decimal
mov ax,0200d ; explicitly decimal
mov ax,0d200 ; also decimal
mov ax,0c8h 5 hex
mov ax,$0c8 ; hex again: the 0 is required
mov ax,0xc8 ; hex yet again
mov ax,0hc8 3 still hex
mov ax,310q ; octal
mov ax,3100 ; octal again
mov ax,00310 ; octal yet again
mov ax,0q310 ; octal yet again
mov ax,11001000b 3 binary
mov ax,1100_100060b ; same binary constant
mov ax,1100_1000y ; same binary constant once more
mov ax,0b1100_1000 ; same binary constant yet again
mov ax,0yl100_1000 ; same binary constant yet again
3.4.2 Character Strings
A character string consists of up to eight characters enclosed in either single quotes (’...’), double

quotes ("...") or backquotes (¢..

.¢). Single or double quotes are equivalent to NASM (except of

course that surrounding the constant with single quotes allows double quotes to appear within it and
vice versa); the contents of those are represented verbatim. Strings enclosed in backquotes support
C-style \~escapes for special characters.

The following escape sequences are recognized by backquoted strings:

Up to 3 octal digits - literal byte
Up to 2 hexadecimal digits - literal byte

\’ single quote (’)
\" double quote (")
\¢ backquote (¢)

\\ backslash (\)

\? question mark (?)
\a BEL (ASCII 7)

\b BS (ASCII 8)

\t TAB (ASCII 9)

\n LF (ASCII 10)
\v VT (ASCII 11)
\f FF (ASCII 12)
\r CR (ASCII 13)
\e ESC (ASCII 27)
\377

\xFF

\ul234

4 hexadecimal digits - Unicode character

\U12345678 8 hexadecimal digits - Unicode character

All other escape sequences are reserved. Note that \o, meaning a NuL character (ASCII 0), is a special

case of the octal escape sequence.

Unicode characters specified with \u or \u are converted to UTF-8. For example, the following lines are

all equivalent:

db ¢\u263a‘
db ‘\xe2\x98\xba*¢
db OE2h, 098h, OBAh

38

; UTF-8 smiley face
; UTF-8 smiley face
; UTF-8 smiley face

3.4.3

344

3.45

3.4.6

Character Constants

A character constant consists of a string up to eight bytes long, used in an expression context. It is
treated as if it was an integer.

A character constant with more than one byte will be arranged with little-endian order in mind: if you
code

mov eax, ’abcd’
then the constant generated is not ox61626364, but 0x64636261, so that if you were then to store the

value into memory, it would read abcd rather than dcba. This is also the sense of character constants
understood by the Pentium’s cPUID instruction.

String Constants

String constants are character strings used in the context of some pseudo-instructions, namely the b8
family and INCBIN (where it represents a filename.) They are also used in certain preprocessor
directives.

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum-size character constants for the conditions. So the following are equivalent:

db ’hello’ ; string constant
db ’h?,’e’,’1°,’1°,%0° ; equivalent character constants

And the following are also equivalent:

dd ’ninechars’ ; doubleword string constant
dd ’nine’,’char’,’s’ ; becomes three doublewords
db ’ninechars’,0,0,0 ; and really looks like this

Note that when used in a string-supporting context, quoted strings are treated as a string constants
even if they are short enough to be a character constant, because otherwise db ’ab’ would have the
same effect as db ’a’, which would be silly. Similarly, three-character or four-character constants are
treated as strings when they are operands to bw, and so forth.

Unicode Strings

The special operators __?utfi16?__, __?utfiele?__, __?utflébe?__, __?utf32?__, __?utf32le?__ and
__?utf32be?__ allows definition of Unicode strings. They take a string in UTF-8 format and converts it
to UTF-16 or UTF-32, respectively. Unless the be forms are specified, the output is littleendian.

For example:

%define u(x) __?utfle?__(x)
%define w(x) __?utf32?__(x)

dw u(’C:\WINDOWS’), @ ; Pathname +in UTF-16
dd w(‘A + B = \u206a‘), 0 ; String in UTF-32

The UTF operators can be applied either to strings passed to the bs family instructions, or to character
constants in an expression context.

Floating-Point Constants

Floating-point constants are acceptable only as arguments to DB, bw, DD, DQ, DT, and DO, or as arguments
to the special operators __?float8?__, __?floatl6?__, __?bfloatl6?__, __?float32?__,
__?float64?__, __?float86m?__, __?float80e?__, __?float1281?__, and __?float128h?__. See also
section 6.3.

Floating-point constants are expressed in the traditional form: digits, then a period, then optionally
more digits, then optionally an E followed by an exponent. The period is mandatory, so that NASM can

39

40

distinguish between dd 1, which declares an integer constant, and dd 1.e which declares a
floating-point constant.

NASM also support C99-style hexadecimal floating-point: ex, hexadecimal digits, period, optionally
more hexadeximal digits, then optionally a p followed by a binary (not hexadecimal) exponent in
decimal notation. As an extension, NASM additionally supports the oh and $ prefixes for hexadecimal,
as well binary and octal floating-point, using the ob or oy and oo or aq prefixes, respectively.

Underscores to break up groups of digits are permitted in floating-point constants as well.

Some examples:

db -0.2 "Quarter precision"
dw -0.5 IEEE 754r/SSE5 half precision
dd 1.2 an easy one

)
)
>
dd 1.222_222_222 ; underscores are permitted
dd Ox1p+2 ; 1.0x272 = 4.0
dq Ox1p+32 5 1.0x2232 = 4 294 967 296.0

>

)

)

)

)

dq 1l.el0 10 000 000 000.0

dq l.e+10 synonymous with 1.el0

dq 1l.e-10 0.000 000 000 1

dt 3.141592653589793238462 pi

do 1.e+4000 IEEE 754r quad precision

The 8-bit "quarter-precision" floating-point format is sign:exponent:mantissa = 1:4:3 with an exponent
bias of 7. This appears to be the most frequently used 8-bit floating-point format, although it is not
covered by any formal standard. This is sometimes called a "minifloat."

The bfloat1i6 format is effectively a compressed version of the 32-bit single precision format, with a
reduced mantissa. It is effectively the same as truncating the 32-bit format to the upper 16 bits, except
for rounding. There is no Dx directive that corresponds to bfloat16 as it obviously has the same size as
the IEEE standard 16-bit half precision format, see however section 6.3.

The special operators are used to produce floating-point numbers in other contexts. They produce the
binary representation of a specific floating-point number as an integer, and can use anywhere integer
constants are used in an expression. __?float8em?__ and __?float80e?__ produce the 64-bit mantissa
and 16-bit exponent of an 80-bit floating-point number, and __?float1281?__ and __?float128h?__
produce the lower and upper 64-bit halves of a 128-bit floating-point number, respectively.

For example:

mov rax,__?float64?__(3.141592653589793238462)
... would assign the binary representation of pi as a 64-bit floating point number into rRaX. This is exactly
equivalent to:

mov rax,0x400921fb54442d18
NASM cannot do compile-time arithmetic on floating-point constants. This is because NASM is designed
to be portable - although it always generates code to run on x86 processors, the assembler itself can
run on any system with an ANSI C compiler. Therefore, the assembler cannot guarantee the presence of
a floating-point unit capable of handling the Intel number formats, and so for NASM to be able to do

floating arithmetic it would have to include its own complete set of floating-point routines, which
would significantly increase the size of the assembler for very little benefit.

The special tokens __?Infinity?__, __?QNaN?__ (or __?NaN?__) and __?SNaN?__ can be used to
generate infinities, quiet NaNs, and signalling NaNs, respectively. These are normally used as macros:

%define Inf __?Infinity?__
%define NaN __?QNaN?__

dq +1.5, -Inf, NaN ; Double-precision constants

The %use fp standard macro package contains a set of convenience macros. See section 6.3.

3.4.7

3.5

3.5.1

Packed BCD Constants

x87-style packed BCD constants can be used in the same contexts as 80-bit floating-point numbers.
They are suffixed with p or prefixed with ep, and can include up to 18 decimal digits.

As with other numeric constants, underscores can be used to separate digits.

For example:

dt 12_345_678_901_245_678p
dt -12_345_678_901_245_678p
dt +0p33

dt 33p

Expressions

Expressions in NASM are similar in syntax to those in C. Expressions are evaluated as 64-bit integers
which are then adjusted to the appropriate size.

NASM supports two special tokens in expressions, allowing calculations to involve the current assembly
position: the $ and $$ tokens. $ evaluates to the assembly position at the beginning of the line
containing the expression; so you can code an infinite loop using JMp $. $$ evaluates to the beginning
of the current section; so you can tell how far into the section you are by using ($-$3).

The arithmetic operators provided by NASM are listed here, in increasing order of precedence.

A boolean value is true if nonzero and false if zero. The operators which return a boolean value always
return 1 for true and 0 for false.

? ... :: Conditional Operator

The syntax of this operator, similar to the C conditional operator, is:
boolean ? trueval : falseval

This operator evaluates to trueval if boolean is true, otherwise to falseval.

Note that NASM allows ? characters in symbol names. Therefore, it is highly advisable to always put
spaces around the ? and : characters.

3.5.2 : | |: Boolean OR Operator

The || operator gives a boolean OR: it evaluates to 1 if both sides of the expression are nonzero,
otherwise 0.

3.5.3 : ~r: Boolean XOR Operator

The ~» operator gives a boolean XOR: it evaluates to 1 if any one side of the expression is nonzero,
otherwise 0.

3.5.4 : &&: Boolean AND Operator

The && operator gives a boolean AND: it evaluates to 1 if both sides of the expression is nonzero,
otherwise 0.

3.5.5 : Comparison Operators

NASM supports the following comparison operators:
« =or==compare for equality.

» I=or <> compare for inequality.

+ < compares signed less than.

« <=compares signed less than or equal.

41

3.5.6

3.5.7

3.5.8

3.5.9

3.5.10

3.5.11

3.5.12

42

« >compares signed greater than.

+ >=compares signed greather than or equal.

These operators evaluate to 0 for false or 1 for true.

+ <=>does a signed comparison, and evaluates to -1 for less than, 0 for equal, and 1 for greater than.

At this time, NASM does not provide unsigned comparison operators.

| : Bitwise OR Operator

The | operator gives a bitwise OR, exactly as performed by the or machine instruction.

A: Bitwise XOR Operator

» provides the bitwise XOR operation.

&: Bitwise AND Operator

& provides the bitwise AND operation.

Bit Shift Operators

<< gives a bit-shift to the left, just as it does in C. So 5<<3 evaluates to 5 times 8, or 40. >> gives an
unsigned (logical) bit-shift to the right; the bits shifted in from the left are set to zero.

<<< gives a bit-shift to the left, exactly equivalent to the << operator; it is included for completeness. >>>
gives an signed (arithmetic) bit-shift to the right; the bits shifted in from the left are filled with copies of
the most significant (sign) bit.

+and -: Addition and Subtraction Operators

The + and - operators do perfectly ordinary addition and subtraction.

Multiplication, Division and Modulo

* is the multiplication operator.

/ and // are both division operators: / is unsigned division and // is signed division.
Similarly, % and %% provide unsigned and signed modulo operators respectively.

Since the % character is used extensively by the macro preprocessor, you should ensure that both the
signed and unsigned modulo operators are followed by white space wherever they appear.

NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo operator.
On most systems it will match the signed division operator, such that:

b* (a//b)+ (a%%sb)=a (b 1= 0)
Unary Operators

The highest-priority operators in NASM’s expression grammar are those which only apply to one
argument. These are:

« - negates (2’s complement) its operand.

» +does nothing; it’s provided for symmetry with -.

» ~computes the bitwise negation (1’s complement) of its operand.

« ! isthe boolean negation operator. It evaluates to 1 if the argument is 0, otherwise 0.

+ SEG provides the segment address of its operand (explained in more detail in section 3.6).

3.6

3.7

+ A set of additional operators with leading and trailing double underscores are used to implement
the integer functions of the ifunc macro package, see section 6.4.

SEG and WRT

When writing large 16-bit programs, which must be split into multiple segments, it is often necessary to
be able to refer to the segment part of the address of a symbol. NASM supports the SEG operator to
perform this function.

The SeG operator evaluates to the preferred segment base of a symbol, defined as the segment base
relative to which the offset of the symbol makes sense. So the code

mov ax,seg symbol
mov es,ax
mov bx,symbol

will load ES:BX with a valid pointer to the symbol symbol.

Things can be more complex than this: since 16-bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one.
NASM lets you do this, by the use of the wrT (With Reference To) keyword. So you can do things like

mov ax,weird_seg ; weird_seg is a segment base
mov es,ax
mov bx,symbol wrt weird_seg

to load Es:Bx with a different, but functionally equivalent, pointer to the symbol symbol.

NASM supports far (inter-segment) calls and jumps by means of the syntax call segment:offset,
where segment and offset both represent immediate values. So to call a far procedure, you could code
either of

call (seg procedure) :procedure
call weird_seg: (procedure wrt weird_seg)

(The parentheses are included for clarity, to show the intended parsing of the above instructions. They
are not necessary in practice.)

NASM supports the syntax call far procedure as a synonym for the first of the above usages. Jwp
works identically to cALL in these examples.

To declare a far pointer to a data item in a data segment, you must code
dw symbol, seg symbol
NASM supports no convenient synonym for this, though you can always invent one using the macro
processor.
STRICT: Inhibiting Optimization

When assembling with the optimizer set to level 2 or higher (see section 2.1.24), NASM will use size
specifiers (BYTE, WORD, DWORD, QWORD, TWORD, OWORD, YWORD or ZwORD), but will give them the smallest
possible size. The keyword STRICT can be used to inhibit optimization and force a particular operand to
be emitted in the specified size. For example, with the optimizer on, and in BITS 16 mode,

push dword 33

is encoded in three bytes 66 6A 21, whereas

push strict dword 33
is encoded in six bytes, with a full dword immediate operand 66 68 21 60 00 o©o.

With the optimizer off, the same code (six bytes) is generated whether the sTRICT keyword was used or
not.

43

3.8

3.9

44

Critical Expressions

Although NASM has an optional multi-pass optimizer, there are some expressions which must be
resolvable on the first pass. These are called Critical Expressions.

The first pass is used to determine the size of all the assembled code and data, so that the second pass,
when generating all the code, knows all the symbol addresses the code refers to. So one thing NASM
can’t handle is code whose size depends on the value of a symbol declared after the code in question.
For example,

times (label-$) db 0
label: db ’Where am I?’

The argument to TIMES in this case could equally legally evaluate to anything at all; NASM will reject
this example because it cannot tell the size of the TIMES line when it first sees it. It will just as firmly
reject the slightly paradoxical code

times (label-$+1) db ©
label: db ’NOW where am I?’

in which any value for the TIMES argument is by definition wrong!

NASM rejects these examples by means of a concept called a critical expression, which is defined to be
an expression whose value is required to be computable in the first pass, and which must therefore
depend only on symbols defined before it. The argument to the TIMES prefix is a critical expression.

Local Labels

NASM gives special treatment to symbols beginning with a period. A label beginning with a single
period is treated as a local label, which means that it is associated with the previous non-local label. So,
for example:

labell ; some code

. loop
; some more code
jne . loop
ret

label2 ; some code

. loop
; some more code
jne . loop

ret

In the above code fragment, each JNE instruction jumps to the line immediately before it, because the
two definitions of .loop are kept separate by virtue of each being associated with the previous
non-local label.

This form of local label handling is borrowed from the old Amiga assembler DevPac; however, NASM
goes one step further, in allowing access to local labels from other parts of the code. This is achieved by
means of defining a local label in terms of the previous non-local label: the first definition of .1o0p
above is really defining a symbol called 1labeli.loop, and the second defines a symbol called
label2.loop. So, if you really needed to, you could write

label3 ; some more code
; and some more

jmp labell.loop

Sometimes it is useful - in a macro, for instance - to be able to define a label which can be referenced
from anywhere but which doesn’t interfere with the normal local-label mechanism. Such a label can’t be
non-local because it would interfere with subsequent definitions of, and references to, local labels; and
it can’t be local because the macro that defined it wouldn’t know the label’s full name. NASM therefore
introduces a third type of label, which is probably only useful in macro definitions: if a label begins with
the special prefix . . @, then it does nothing to the local label mechanism. So you could code

labell:
.local:
..@foo:
label2:
.local:

jmp

..@foo

3

3
)
)
)

)

a non-local label

this is really labell.local
this is a special symbol
another non-local label
this is really label2.local

; this will jump three lines up

NASM has the capacity to define other special symbols beginning with a double period: for example,
..start is used to specify the entry point in the obj output format (see section 8.4.6), . .1imagebase is
used to find out the offset from a base address of the current image in the wine4 output format (see
section 8.6.1). So just keep in mind that symbols beginning with a double period are special.

45

46

4.1
4.1.1

Chapter 4: The NASM Preprocessor

NASM contains a powerful macro processor, which supports conditional assembly, multi-level file
inclusion, two forms of macro (single-line and multi-line), and a ‘context stack’ mechanism for extra
macro power. Preprocessor directives all begin with a % sign.

The preprocessor collapses all lines which end with a backslash (\) character into a single line. Thus:

%define THIS_VERY_LONG_MACRO_NAME_IS_DEFINED_TO \
THIS_VALUE

will work like a single-line macro without the backslash-newline sequence.

Single-Line Macros
The Normal Way: %define

Single-line macros are defined using the %define preprocessor directive. The definitions work in a
similar way to C; so you can do things like
%define ctrl Ox1F &
%define param(a,b) ((a)+(a)x(b))
mov byte [param(2,ebx)], ctrl ’D’

which will expand to
mov byte [(2)+(2)*(ebx)], Ox1F & ’D’

When the expansion of a single-line macro contains tokens which invoke another macro, the expansion
is performed at invocation time, not at definition time. Thus the code

%define a(x) 1+b(x)
%define b(x) 2%Xx
mov ax,a(8)

will evaluate in the expected way to mov ax,1+2x8, even though the macro b wasn’t defined at the time
of definition of a.

Note that single-line macro argument list cannot be preceded by whitespace. Otherwise it will be
treated as an expansion. For example:

%define foo (a,b) ; no arguments, (a,b) is the expansion
%define bar(a,b) ; two arguments, empty expansion

Macros defined with %define are case sensitive: after %define foo bar, only foo will expand to bar: Foo
or Foo will not. By using %idefine instead of %define (the ‘i’ stands for ‘insensitive’) you can define all the
case variants of a macro at once, so that ¥idefine foo bar would cause foo, Foo, FOO, f00 and so on all
to expand to bar.

There is a mechanism which detects when a macro call has occurred as a result of a previous expansion
of the same macro, to guard against circular references and infinite loops. If this happens, the
preprocessor will only expand the first occurrence of the macro. Hence, if you code

%define a(x) 1+a(x)
mov ax,a(3)

the macro a(3) will expand once, becoming 1+a(3), and will then expand no further. This behaviour
can be useful: see section 10.1 for an example of its use.

You can overload single-line macros: if you write

47

4.1.2

48

%define foo(x) 1+x
%define foo(x,y) 1l+xxy

the preprocessor will be able to handle both types of macro call, by counting the parameters you pass;
so foo (3) will become 1+3 whereas foo (ebx,2) will become 1+ebxx2. However, if you define

%define foo bar

then no other definition of foo will be accepted: a macro with no parameters prohibits the definition of
the same name as a macro with parameters, and vice versa.

This doesn’t prevent single-line macros being redefined: you can perfectly well define a macro with
%define foo bar

and then re-define it later in the same source file with

%define foo baz

Then everywhere the macro foo is invoked, it will be expanded according to the most recent definition.
This is particularly useful when defining single-line macros with %assign (see section 4.1.8).

The following additional features were added in NASM 2.15:

It is possible to define an empty string instead of an argument name if the argument is never used. For
example:

%define ereg(foo,) e %+ foo
mov eax,ereg(dx,cx)

A single pair of parentheses is a subcase of a single, unused argument:

%define myreg() eax
mov edx,myreg()

This is similar to the behavior of the C preprocessor.
+ If declared with an =, NASM will evaluate the argument as an expression after expansion.

« If an argument declared with an &, a macro parameter will be turned into a quoted string after
expansion.

+ If declared with a +, it is a greedy or variadic parameter; it includes any subsequent commas and
parameters.

+ Ifdeclared with an !, NASM will not strip whitespace and braces (useful in conjunction with &).

For example:

%define xyzzy(=expr,&val) expr, str
%define plugh(x) xyzzy(x,x)
db plugh(3+5), “\0¢‘ ; Expands to: db 8, "3+5", ‘\0¢

You can pre-define single-line macros using the ‘-d’ option on the NASM command line: see section
2.1.20.

Resolving %define: %xdefine

To have a reference to an embedded single-line macro resolved at the time that the embedding macro
is defined, as opposed to when the embedding macro is expanded, you need a different mechanism to
the one offered by %define. The solution is to use %xdefine, or it’s case-insensitive counterpart
%ixdefine

Suppose you have the following code:

%define 1disTrue 1
%define 1disFalse isTrue
%define 1disTrue 0

4.1.3

4.1.4

vall: db isFalse
%define 1disTrue 1
val2: db isFalse

In this case, val1i is equal to 0, and val2 is equal to 1. This is because, when a single-line macro is
defined using %define, it is expanded only when it is called. As isFalse expands to isTrue, the
expansion will be the current value of isTrue. The first time it is called that is 0, and the second time it
is 1.

If you wanted isFalse to expand to the value assigned to the embedded macro isTrue at the time that
isFalse was defined, you need to change the above code to use %xdefine.

%xdefine isTrue 1
%xdefine isFalse isTrue
%xdefine isTrue 0
vall: db isFalse
%xdefine isTrue 1

val2: db isFalse

Now, each time that isFalse is called, it expands to 1, as that is what the embedded macro isTrue
expanded to at the time that isFalse was defined.

%xdefine and %ixdefine supports argument expansion exactly the same way that %define and
%idefine does.

Macro Indirection: %[...]

The %[...] construct can be used to expand macros in contexts where macro expansion would
otherwise not occur, including in the names other macros. For example, if you have a set of macros
named Foo16, Foo32 and Foo64, you could write:

mov ax,Foo%[__?BITS?__] ; The Foo value

to use the builtin macro __?B1TS?__ (see section 5.3) to automatically select between them. Similarly,
the two statements:

%xdefine Bar Quux ; Expands due to %xdefine
%define Bar %[Quux] ; Expands due to %[...]

have, in fact, exactly the same effect.

%[...] concatenates to adjacent tokens in the same way that multi-line macro parameters do, see
section 4.3.9 for details.

Concatenating Single Line Macro Tokens: %+

Individual tokens in single line macros can be concatenated, to produce longer tokens for later
processing. This can be useful if there are several similar macros that perform similar functions.

Please note that a space is required after %+, in order to disambiguate it from the syntax %+1 used in
multiline macros.

As an example, consider the following:

%define BDASTART 400h ; Start of BIOS data area
struc tBIOSDA ; its structure

.COMladdr RESW 1

.COM2addr RESW 1

; ..and so on
endstruc

49

Now, if we need to access the elements of tBIOSDA in different places, we can end up with:

mov ax,BDASTART + tBIOSDA.COMladdr
mov bx,BDASTART + tBIOSDA.COM2addr

This will become pretty ugly (and tedious) if used in many places, and can be reduced in size
significantly by using the following macro:
; Macro to access BIOS variables by their names (from tBDA):

%define BDA(x) BDASTART + tBIOSDA. %+ X

Now the above code can be written as:

mov ax,BDA(COMladdr)
mov bx ,BDA (COM2addr)

Using this feature, we can simplify references to a lot of macros (and, in turn, reduce typing errors).

4.1.5 The Macro Name Itself: ¥? and %22

The special symbols %? and %?? can be used to reference the macro name itself inside a macro
expansion, this is supported for both single-and multi-line macros. %? refers to the macro name as
invoked, whereas %22 refers to the macro name as declared. The two are always the same for
case-sensitive macros, but for case-insensitive macros, they can differ.

For example:

%imacro Foo 0
mov %?,%?7?
%endmacro

foo
FOO

will expand to:

mov foo,Foo
mov FOO,Foo

These tokens can be used for single-line macros if defined outside any multi-line macros. See below.

4.1.6 The Single-Line Macro Name: %x? and %x??

If the tokens %2 and %22 are used inside a multi-line macro, they are expanded before any directives are
processed. As a result,
%imacro Foo 0
%idefine Bar _%?
mov BAR,bAr
%endmacro

foo
mov eax,bar

will expand to:

mov _foo,_foo
mov eax,_foo

which may or may not be what you expected. The tokens %*? and %x2? behave like %? and %22 but are
only expanded inside single-line macros. Thus:
%imacro Foo 0
%idefine Bar _%x*?
mov BAR,bAr
%endmacro

foo
mov eax,bar

50

4.1.7

4.1.8

4.1.9

will expand to:

mov _BAR,_bAr
mov eax,_bar

The %x? can be used to make a keyword "disappear", for example in case a new instruction has been
used as a label in older code. For example:

%idefine pause $%x? ; Hide the PAUSE -[instruction

%x? and %x?? were introduced in NASM 2.15.04.

Undefining Single-Line Macros: %undef

Single-line macros can be removed with the %undef directive. For example, the following sequence:

%define foo bar
%undef foo

mov eax, foo
will expand to the instruction mov eax, foo, since after sundef the macro foo is no longer defined.

Macros that would otherwise be pre-defined can be undefined on the command-line using the ‘-u’
option on the NASM command line: see section 2.1.21.

Preprocessor Variables: %ass-ign

An alternative way to define single-line macros is by means of the %assign command (and its
case-insensitive counterpart %iassign, which differs from %assign in exactly the same way that
%idefine differs from %define).

%assign is used to define single-line macros which take no parameters and have a numeric value. This
value can be specified in the form of an expression, and it will be evaluated once, when the %assign
directive is processed.

Like %define, macros defined using %assign can be re-defined later, so you can do things like
%assign i i+l
to increment the numeric value of a macro.

%assign is useful for controlling the termination of %rep preprocessor loops: see section 4.5 for an
example of this. Another use for %assign is given in section 9.4 and section 10.1.

The expression passed to %assign is a critical expression (see section 3.8), and must also evaluate to a
pure number (rather than a relocatable reference such as a code or data address, or anything involving
aregister).

Defining Strings: %defstr

%defstr, and its case-insensitive counterpart %idefstr, define or redefine a single-line macro without
parameters but converts the entire right-hand side, after macro expansion, to a quoted string before
definition.

For example:
%defstr test TEST

is equivalent to
%define test ’TEST’

This can be used, for example, with the %! construct (see section 4.11.2):
%defstr PATH %!PATH ; The operating system PATH variable

51

4.1.10 Defining Tokens: %deftok

4.1.11

4.1.12

4.2

52

%deftok, and its case-insensitive counterpart %ideftok, define or redefine a single-line macro without
parameters but converts the second parameter, after string conversion, to a sequence of tokens.

For example:

%deftok test ’TEST’

is equivalent to
%define test TEST

Defining Aliases: %defalias

%defalias, and its case-insensitive counterpart %idefalias, define an alias to a macro, i.e. equivalent
of a symbolic link.

When used with various macro defining and undefining directives, it affects the aliased macro. This
functionality is intended for being able to rename macros while retaining the legacy names.

When an alias is defined, but the aliased macro is then undefined, the aliases can legitimately point to
nonexistent macros.

The alias can be undefined using the %undefalias directive. All aliases can be undefined using the
%clear defalias directive. Thisincludes backwards compatibility aliases defined by NASM itself.

To disable aliases without undefining them, use the %aliases off directive.
To check whether an alias is defined, regardless of the existence of the aliased macro, use %ifdefalias.

For example:

%defalias OLD NEW

; OLD and NEW both undefined
%define NEW 123

; OLD and NEW both 123
%undef OLD

;3 OLD and NEW both undefined
%define OLD 456

; OLD and NEW both 456
%undefalias OLD

; OLD undefined, NEW defined to 456

Conditional Comma Operator: %,

As of version 2.15, NASM has a conditional comma operator %, that expands to a comma unless
followed by a null expansion, which allows suppressing the comma before an empty argument. This is
especially useful with greedy single-line macros.

For example, all the expressions below are valid:

%define greedy(a,b,c+) a + 66 %, b x 3 %, c

db greedy(1,2) ; db 1 + 66, 2 x 3

db greedy(1,2,3) ; db 1 + 66, 2 * 3, 3

db greedy(1,2,3,4) ; db 1 + 66, 2 * 3, 3, 4

db greedy(1,2,3,4,5) ; db 1 + 66, 2 * 3, 3, 4, 5

String Manipulation in Macros

It’s often useful to be able to handle strings in macros. NASM supports a few simple string handling
macro operators from which more complex operations can be constructed.

All the string operators define or redefine a value (either a string or a numeric value) to a single-line
macro. When producing a string value, it may change the style of quoting of the input string or strings,
and possibly use \-escapes inside ¢<-quoted strings.

4.2.1

4.2.2

4.2.3

4.3

Concatenating Strings: %strcat

The %strcat operator concatenates quoted strings and assign them to a single-line macro.
For example:

%strcat alpha "Alpha: ", 12" screen’

... would assign the value *Alpha: 12" screen’ to alpha. Similarly:

%strcat beta ’"foo"\’, "’bar’"

...would assign the value <" foo"\\’bar’ ¢ t0 beta.

The use of commas to separate strings is permitted but optional.

String Length: %strlen

The %strlen operator assigns the length of a string to a macro. For example:
%strlen charcnt ’my string’

In this example, charcnt would receive the value 9, just as if an %assign had been used. In this example,
'my string’ was a literal string but it could also have been a single-line macro that expands to a string,
as in the following example:

%define sometext ’my string’
%strlen charcnt sometext

As in the first case, this would result in charcnt being assigned the value of 9.

Extracting Substrings: %substr

Individual letters or substrings in strings can be extracted using the %substr operator. An example of its
use is probably more useful than the description:

%substr mychar ’xyzw’ 1 equivalent to %define mychar ’x’

)
%substr mychar ’xyzw’ 2 ; equivalent to %define mychar ’y’
%substr mychar ’xyzw’ 3 ; equivalent to %define mychar ’z’
%substr mychar ’xyzw’ 2,2 ; equivalent to %define mychar ’yz’
%substr mychar ’xyzw’ 2,-1 ; equivalent to %define mychar ’yzw’
%substr mychar ’xyzw’ 2,-2 ; equivalent to %define mychar ’yz’

As with %strlen (see section 4.2.2), the first parameter is the single-line macro to be created and the
second is the string. The third parameter specifies the first character to be selected, and the optional
fourth parameter preceeded by comma) is the length. Note that the first index is 1, not 0 and the last
index is equal to the value that %strlen would assign given the same string. Index values out of range
result in an empty string. A negative length means "until N-1 characters before the end of string", i.e. -1
means until end of string, -2 until one character before, etc.

Multi-Line Macros: %macro

Multi-line macros are much more like the type of macro seen in MASM and TASM: a multi-line macro
definition in NASM looks something like this.

%macro prologue 1

push ebp

mov ebp,esp

sub esp,%l
%endmacro

This defines a C-like function prologue as a macro: so you would invoke the macro with a call such as:

myfunc: prologue 12

which would expand to the three lines of code

53

4.3.1

54

myfunc: push ebp
mov ebp,esp
sub esp,12

The number 1 after the macro name in the %macro line defines the number of parameters the macro
prologue expects to receive. The use of %1 inside the macro definition refers to the first parameter to
the macro call. With a macro taking more than one parameter, subsequent parameters would be
referred to as %2, %3 and so on.

Multi-line macros, like single-line macros, are case-sensitive, unless you define them using the
alternative directive %imacro.

If you need to pass a comma as part of a parameter to a multi-line macro, you can do that by enclosing
the entire parameter in braces. So you could code things like:

%macro silly 2

%2: db %1
%endmacro
silly ’a’, letter_a ; letter_a: db ’a’
silly ’ab’, string_ab ; string_ab: db ’ab’
silly {13,10}, crlf ; crlf: db 13,10

The behavior with regards to empty arguments at the end of multi-line macros before NASM 2.15 was
often very strange. For backwards compatibility, NASM attempts to recognize cases where the legacy
behavior would give unexpected results, and issues a warning, but largely tries to match the legacy
behavior. This can be disabled with the %pragma (see section 4.10.1):

%pragma preproc sane_empty_expansion
Overloading Multi-Line Macros

As with single-line macros, multi-line macros can be overloaded by defining the same macro name
several times with different numbers of parameters. This time, no exception is made for macros with no
parameters at all. So you could define

%macro prologue 0

push ebp
mov ebp,esp
%endmacro

to define an alternative form of the function prologue which allocates no local stack space.

Sometimes, however, you might want to ‘overload’ a machine instruction; for example, you might want
to define

%macro push 2

push %1
push %2
%endmacro

so that you could code

push ebx
push eax,ecx

; this line 1is not a macro call
; but this one is

Ordinarily, NASM will give a warning for the first of the above two lines, since push is now defined to be
a macro, and is being invoked with a number of parameters for which no definition has been given. The
correct code will still be generated, but the assembler will give a warning. This warning can be disabled
by the use of the -w-macro-params command-line option (see section 2.1.26).

4.3.2

4.3.3

Macro-Local Labels

NASM allows you to define labels within a multi-line macro definition in such a way as to make them
local to the macro call: so calling the same macro multiple times will use a different label each time.
You do this by prefixing %% to the label name. So you can invent an instruction which executes a ReT if
the z flag is set by doing this:

%macro retz 0

jnz %%skip
ret
%%skip:

%endmacro

You can call this macro as many times as you want, and every time you call it NASM will make up a
different ‘real’ name to substitute for the label %%sskip. The names NASM invents are of the form
..@2345.skip, where the number 2345 changes with every macro call. The ..@ prefix prevents
macro-local labels from interfering with the local label mechanism, as described in section 3.9. You
should avoid defining your own labels in this form (the . .e prefix, then a number, then another period)
in case they interfere with macro-local labels.

These labels are really macro-local tokens, and can be used for other purposes where a token unique to
each macro invocation is desired, e.g. to name single-line macros without using the context feature
(section 4.7.2).

Greedy Macro Parameters

Occasionally it is useful to define a macro which lumps its entire command line into one parameter
definition, possibly after extracting one or two smaller parameters from the front. An example might be
a macro to write a text string to a file in MS-DOS, where you might want to be able to write

writefile [filehandle],"hello, world",13,10
NASM allows you to define the last parameter of a macro to be greedy, meaning that if you invoke the

macro with more parameters than it expects, all the spare parameters get lumped into the last defined
one along with the separating commas. So if you code:

%macro writefile 2+

jmp %%endstr
%%str: db %2
%%endstr:
mov dx,%%str
mov cx,%%endstr-%%str
mov bx,%1
mov ah,0x40
int 0x21
%endmacro

then the example call to writefile above will work as expected: the text before the first comma,
[filehandle], is used as the first macro parameter and expanded when %1 is referred to, and all the
subsequent text is lumped into %2 and placed after the db.

The greedy nature of the macro is indicated to NASM by the use of the + sign after the parameter count
on the %¥macro line.

If you define a greedy macro, you are effectively telling NASM how it should expand the macro given
any number of parameters from the actual number specified up to infinity; in this case, for example,
NASM now knows what to do when it sees a call to writefile with 2, 3, 4 or more parameters. NASM
will take this into account when overloading macros, and will not allow you to define another form of
writefile taking 4 parameters (for example).

55

4.3.4

4.3.5

56

Of course, the above macro could have been implemented as a non-greedy macro, in which case the
call to it would have had to look like

writefile [filehandle], {"hello, world",13,10}

NASM provides both mechanisms for putting commas in macro parameters, and you choose which one
you prefer for each macro definition.

See section 7.3.1 for a better way to write the above macro.

Macro Parameters Range

NASM allows you to expand parameters via special construction %{x:y} where x is the first parameter
index and y is the last. Any index can be either negative or positive but must never be zero.

For example

%macro mpar 1-x
db %{3:5}
%endmacro

mpar 1,2,3,4,5,6
expands to 3,4,5 range.

Even more, the parameters can be reversed so that

%macro mpar 1-x
db %{5:3}
%endmacro

mpar 1,2,3,4,5,6
expands to 5,4,3 range.

But even this is not the last. The parameters can be addressed via negative indices so NASM will count
them reversed. The ones who know Python may see the analogue here.

%macro mpar 1-x
db %{-1:-3}
%endmacro

mpar 1,2,3,4,5,6
expandsto 6,5,4 range.
Note that NASM uses comma to separate parameters being expanded.

By the way, here is a trick - you might use the index %{-1:-1} which gives you the last argument passed
to a macro.

Default Macro Parameters

NASM also allows you to define a multi-line macro with a range of allowable parameter counts. If you
do this, you can specify defaults for omitted parameters. So, for example:

%macro die 0-1 "Painful program death has occurred."

writefile 2,%1

mov ax,0x4col
int 0x21
%endmacro

This macro (which makes use of the writefile macro defined in section 4.3.3) can be called with an
explicit error message, which it will display on the error output stream before exiting, or it can be called
with no parameters, in which case it will use the default error message supplied in the macro definition.

4.3.6

4.3.7

4.3.8

In general, you supply a minimum and maximum number of parameters for a macro of this type; the
minimum number of parameters are then required in the macro call, and then you provide defaults for
the optional ones. So if a macro definition began with the line

%macro foobar 1-3 eax,[ebx+2]

then it could be called with between one and three parameters, and %1 would always be taken from the
macro call. %2, if not specified by the macro call, would default to eax, and %3 if not specified would
default to [ebx+2].

You can provide extra information to a macro by providing too many default parameters:

%macro quux 1 something

This will trigger a warning by default; see section 2.1.26 for more information. When quux is invoked, it
receives not one but two parameters. something can be referred to as %2. The difference between
passing something this way and writing something in the macro body is that with this way something is
evaluated when the macro is defined, not when it is expanded.

You may omit parameter defaults from the macro definition, in which case the parameter default is
taken to be blank. This can be useful for macros which can take a variable number of parameters, since
the %o token (see section 4.3.6) allows you to determine how many parameters were really passed to
the macro call.

This defaulting mechanism can be combined with the greedy-parameter mechanism; so the die macro
above could be made more powerful, and more useful, by changing the first line of the definition to

%macro die 0-1+ "Painful program death has occurred.",13,10

The maximum parameter count can be infinite, denoted by *. In this case, of course, it is impossible to
provide a full set of default parameters. Examples of this usage are shown in section 4.3.8.

%0: Macro Parameter Counter

The parameter reference %o will return a numeric constant giving the number of parameters received,
that is, if %0 is n then %n is the last parameter. %0 is mostly useful for macros that can take a variable
number of parameters. It can be used as an argument to %rep (see section 4.5) in order to iterate
through all the parameters of a macro. Examples are given in section 4.3.8.

%00: Label Preceeding Macro

%00 will return the label preceeding the macro invocation, if any. The label must be on the same line as
the macro invocation, may be a local label (see section 3.9), and need not end in a colon.

If %00 is present anywhere in the macro body, the label itself will not be emitted by NASM. You can, of
course, put %00: explicitly at the beginning of your macro.

%rotate: Rotating Macro Parameters

Unix shell programmers will be familiar with the shift shell command, which allows the arguments
passed to a shell script (referenced as $1, $2 and so on) to be moved left by one place, so that the
argument previously referenced as $2 becomes available as $1, and the argument previously
referenced as $1 is no longer available at all.

NASM provides a similar mechanism, in the form of %rotate. As its name suggests, it differs from the
Unix shift in that no parameters are lost: parameters rotated off the left end of the argument list
reappear on the right, and vice versa.

%rotate is invoked with a single numeric argument (which may be an expression). The macro
parameters are rotated to the left by that many places. If the argument to %rotate is negative, the
macro parameters are rotated to the right.

So a pair of macros to save and restore a set of registers might work as follows:

57

4.3.9

58

%macro multipush 1-x*

%rep %0

push %1
%rotate 1
%endrep

%endmacro

This macro invokes the pusH instruction on each of its arguments in turn, from left to right. It begins by
pushing its first argument, %1, then invokes %rotate to move all the arguments one place to the left, so
that the original second argument is now available as %1. Repeating this procedure as many times as
there were arguments (achieved by supplying %0 as the argument to %rep) causes each argument in
turn to be pushed.

Note also the use of x as the maximum parameter count, indicating that there is no upper limit on the
number of parameters you may supply to the multipush macro.

It would be convenient, when using this macro, to have a pop equivalent, which didn’t require the
arguments to be given in reverse order. Ideally, you would write the multipush macro call, then
cut-and-paste the line to where the pop needed to be done, and change the name of the called macro
to multipop, and the macro would take care of popping the registers in the opposite order from the one
in which they were pushed.

This can be done by the following definition:
%macro multipop 1-*

%rep %0

%rotate -1

pop %1
%endrep

%endmacro

This macro begins by rotating its arguments one place to the right, so that the original last argument
appears as %1. This is then popped, and the arguments are rotated right again, so the second-to-last
argument becomes %1. Thus the arguments are iterated through in reverse order.

Concatenating Macro Parameters

NASM can concatenate macro parameters and macro indirection constructs on to other text
surrounding them. This allows you to declare a family of symbols, for example, in a macro definition. If,
for example, you wanted to generate a table of key codes along with offsets into the table, you could
code something like

%macro keytab_entry 2

keypos%1 equ $-keytab
db %2
%endmacro
keytab:

keytab_entry F1,128+1
keytab_entry F2,128+2
keytab_entry Return,13

which would expand to

keytab:

keyposF1 equ $-keytab
db 128+1

keyposF2 equ $-keytab
db 128+2

4.3.10

4.3.11

keyposReturn equ $-keytab
db 13

You can just as easily concatenate text on to the other end of a macro parameter, by writing %1foo.

If you need to append a digit to a macro parameter, for example defining labels foo1 and foo2 when
passed the parameter foo, you can’t code %11 because that would be taken as the eleventh macro
parameter. Instead, you must code %{1}1, which will separate the first 1 (giving the number of the
macro parameter) from the second (literal text to be concatenated to the parameter).

This concatenation can also be applied to other preprocessor in-line objects, such as macro-local labels
(section 4.3.2) and context-local labels (section 4.7.2). In all cases, ambiguities in syntax can be resolved
by enclosing everything after the % sign and before the literal text in braces: so %{%foo}bar
concatenates the text bar to the end of the real name of the macro-local label %%foo. (This is
unnecessary, since the form NASM uses for the real names of macro-local labels means that the two
usages %{%foo}bar and %%foobar would both expand to the same thing anyway; nevertheless, the
capability is there.)

The single-line macro indirection construct, %[...] (section 4.1.3), behaves the same way as macro
parameters for the purpose of concatenation.

See also the %+ operator, section 4.1.4.

Condition Codes as Macro Parameters

NASM can give special treatment to a macro parameter which contains a condition code. For a start,
you can refer to the macro parameter %1 by means of the alternative syntax %+1, which informs NASM
that this macro parameter is supposed to contain a condition code, and will cause the preprocessor to
report an error message if the macro is called with a parameter which is not a valid condition code.

Far more usefully, though, you can refer to the macro parameter by means of %-1, which NASM will
expand as the inverse condition code. So the retz macro defined in section 4.3.2 can be replaced by a
general conditional-return macro like this:

%macro retc 1
j%-1 %%skip
ret
%%skip:
%endmacro

This macro can now be invoked using calls like retc ne, which will cause the conditional-jump
instruction in the macro expansion to come out as JE, or retc po which will make the jump a JPE.

The %+1 macro-parameter reference is quite happy to interpret the arguments cxz and Ecxz as valid
condition codes; however, %-1 will report an error if passed either of these, because no inverse
condition code exists.

Disabling Listing Expansion

When NASM is generating a listing file from your program, it will generally expand multi-line macros by
means of writing the macro call and then listing each line of the expansion. This allows you to see
which instructions in the macro expansion are generating what code; however, for some macros this
clutters the listing up unnecessarily.

NASM therefore provides the .nolist qualifier, which you can include in a macro definition to inhibit
the expansion of the macro in the listing file. The .nolist qualifier comes directly after the number of
parameters, like this:

%macro foo 1.nolist

Or like this:

59

4.3.12

4.4

44.1

60

%macro bar 1-5+.nolist a,b,c,d,e,f,g,h
Undefining Multi-Line Macros: %unmacro

Multi-line macros can be removed with the %unmacro directive. Unlike the %undef directive, however,
%unmacro takes an argument specification, and will only remove exact matches with that argument
specification.

For example:

%macro foo 1-3

; Do something
%endmacro
%unmacro foo 1-3

removes the previously defined macro foo, but

%macro bar 1-3

; Do something
%endmacro
%unmacro bar 1

does not remove the macro bar, since the argument specification does not match exactly.

Conditional Assembly

Similarly to the C preprocessor, NASM allows sections of a source file to be assembled only if certain
conditions are met. The general syntax of this feature looks like this:
%if<condition>
; some code which only appears if <condition> is met
%elif<condition2>
; only appears if <condition> 1is not met but <condition2> 1is
%else
; this appears if neither <condition> nor <condition2> was met
%endif
The inverse forms %i fn and %el4 fn are also supported.
The %else clause is optional, as is the %el4 f clause. You can have more than one %eli f clause as well.

There are a number of variants of the %1 f directive. Each has its corresponding %elif, %ifn, and %elifn
directives; for example, the equivalents to the %1 fdef directive are %eli fdef, %ifndef, and %elifndef.

%ifdef: Testing Single-Line Macro Existence

Beginning a conditional-assembly block with the line %ifdef MACRO will assemble the subsequent code
if, and only if, a single-line macro called MACRO is defined. If not, then the %el1 f and %else blocks (if any)
will be processed instead.

For example, when debugging a program, you might want to write code such as

; perform some function
%ifdef DEBUG

writefile 2,"Function performed successfully",13,10
%endif

; go and do something else

Then you could use the command-line option -dDEBUG to create a version of the program which
produced debugging messages, and remove the option to generate the final release version of the
program.

You can test for a macro not being defined by using %ifndef instead of %ifdef. You can also test for
macro definitions in %el4 f blocks by using %elifdef and %eli fndef.

4.4.2

4.4.3

4.4.4

4.4.5

%ifmacro: Testing Multi-Line Macro Existence

The %ifmacro directive operates in the same way as the %ifdef directive, except that it checks for the
existence of a multi-line macro.

For example, you may be working with a large project and not have control over the macros in a library.
You may want to create a macro with one name if it doesn’t already exist, and another name if one with
that name does exist.

The %ifmacro is considered true if defining a macro with the given name and number of arguments
would cause a definitions conflict. For example:

%ifmacro MyMacro 1-3
%error "MyMacro 1-3" causes a conflict with an existing macro.
%else
%macro MyMacro 1-3
; insert code to define the macro
%endmacro
%endif

This will create the macro "MyMacro 1-3" if no macro already exists which would conflict with it, and
emits a warning if there would be a definition conflict.

You can test for the macro not existing by using the %ifnmacro instead of %ifmacro. Additional tests can
be performed in %eli f blocks by using %eli fmacro and %el1fnmacro.

%ifctx: Testing the Context Stack

The conditional-assembly construct %ifctx will cause the subsequent code to be assembled if and only
if the top context on the preprocessor’s context stack has the same name as one of the arguments. As
with %1 fdef, the inverse and %el4 f forms %1 fnctx, %elifctx and %elifnctx are also supported.

For more details of the context stack, see section 4.7. For a sample use of %1 fctx, see section 4.7.6.

%1 f: Testing Arbitrary Numeric Expressions

The conditional-assembly construct %if expr will cause the subsequent code to be assembled if and
only if the value of the numeric expression expr is non-zero. An example of the use of this feature is in
deciding when to break out of a %rep preprocessor loop: see section 4.5 for a detailed example.

The expression given to %1 f, and its counterpart el f, is a critical expression (see section 3.8).
Like other %1 f constructs, %if has a counterpart el f, and negative forms %i fn and %eli fn.
%ifidn and %ifidni: Testing Exact Text Identity

The construct %ifidn textl,text2 will cause the subsequent code to be assembled if and only if text1
and text2, after expanding single-line macros, are identical pieces of text. Differences in white space
are not counted.

%ifidni is similar to %ifidn, but is case-insensitive.

For example, the following macro pushes a register or number on the stack, and allows you to treat 1P
as areal register:

%macro pushparam 1

%ifidni %1,1p
call %%Llabel

61

4.4.6

4.4.7

62

%%label:
%else

push %1
%endif

%endmacro

Like other %if constructs, %ifidn has a counterpart %elifidn, and negative forms %ifnidn and
%elifnidn. Similarly, %ifidni has counterparts %elifidni, %ifnidni and %elifnidni.

%ifid, %ifnum, %ifstr: Testing Token Types

Some macros will want to perform different tasks depending on whether they are passed a number, a
string, or an identifier. For example, a string output macro might want to be able to cope with being
passed either a string constant or a pointer to an existing string.

The conditional assembly construct %1 fid, taking one parameter (which may be blank), assembles the
subsequent code if and only if the first token in the parameter exists and is an identifier. $ and $$ are not
considered identifiers by %1ifid.

% fnum works similarly, but tests for the token being an integer numeric constant (not an expression!)
possibly preceeded by + or -; %1 fstr tests for it being a quoted string.

For example, the writefile macro defined in section 4.3.3 can be extended to take advantage of
%ifstrin the following fashion:

%macro writefile 2-3+

%ifstr %2

jmp %%endstr
%if %0 = 3
%%str: db %2 ,%3
%else
%%str: db %2
%endif
%%endstr: mov dx,%%str
mov cx,%%endstr-%%str
%else
mov dx, %2
mov CcX,%3
%endif
mov bx,%1
mov ah,0x40
int 0x21
%endmacro

Then the writefile macro can cope with being called in either of the following two ways:

writefile [file], strpointer, length
writefile [file], "hello", 13, 10

In the first, strpointer is used as the address of an already-declared string, and length is used as its
length; in the second, a string is given to the macro, which therefore declares it itself and works out the
address and length for itself.

Note the use of %if inside the %ifstr: this is to detect whether the macro was passed two arguments
(so the string would be a single string constant, and db %2 would be adequate) or more (in which case,
all but the first two would be lumped together into %3, and db %2,%3 would be required).

The usual %el4f..., %ifn..., and %eli fn... versions exist for each of %ifid, %ifnumand %ifstr.
%iftoken: Test for a Single Token

Some macros will want to do different things depending on if it is passed a single token (e.g. paste it to
something else using %+) versus a multi-token sequence.

4.4.8

4.4.9

4.5

The conditional assembly construct %iftoken assembles the subsequent code if and only if the
expanded parameters consist of exactly one token, possibly surrounded by whitespace.

For example:

%iftoken 1

will assemble the subsequent code, but

%iftoken -1

will not, since -1 contains two tokens: the unary minus operator -, and the number 1.

The usual %el1 ftoken, %ifntoken, and %eli fntoken variants are also provided.
%ifempty: Test for Empty Expansion

The conditional assembly construct %ifempty assembles the subsequent code if and only if the
expanded parameters do not contain any tokens at all, whitespace excepted.

The usual %el4 fempty, %ifnempty, and %eli fnempty variants are also provided.

%ifenv: Test If Environment Variable Exists

The conditional assembly construct %ifenv assembles the subsequent code if and only if the
environment variable referenced by the %! variable directive exists.

The usual %eli fenv, %ifnenv, and %el4 fnenv variants are also provided.

Just as for %! variable the argument should be written as a string if it contains characters that would not
be legal in an identifier. See section 4.11.2.

Preprocessor Loops: %rep

NASM’s TIMES prefix, though useful, cannot be used to invoke a multi-line macro multiple times,
because it is processed by NASM after macros have already been expanded. Therefore NASM provides
another form of loop, this time at the preprocessor level: %rep.

The directives %rep and %endrep (%rep takes a numeric argument, which can be an expression; %endrep
takes no arguments) can be used to enclose a chunk of code, which is then replicated as many times as
specified by the preprocessor:

%assign 1 0
%rep 64
inc word [table+2x*1]
%assign i i+l
%endrep

This will generate a sequence of 64 INC instructions, incrementing every word of memory from [table]
to [table+126].

For more complex termination conditions, or to break out of a repeat loop part way along, you can use
the %exitrep directive to terminate the loop, like this:

fibonacci:
%assign 1 0
%assign j 1
%rep 100
%if j > 65535
%exitrep
%endif
j .
%assign
%assign
%endrep

dw

%assign k j+i
i]
j k

63

4.6

4.6.1

4.6.2

4.6.3

64

fib_number equ ($-fibonacci)/2

This produces a list of all the Fibonacci numbers that will fit in 16 bits. Note that a maximum repeat
count must still be given to %rep. This is to prevent the possibility of NASM getting into an infinite loop
in the preprocessor, which (on multitasking or multi-user systems) would typically cause all the system
memory to be gradually used up and other applications to start crashing.

Note the maximum repeat count is limited to the value specified by the --1imit-rep option or
%pragma limit rep, see section 2.1.31.

Source Files and Dependencies

These commands allow you to split your sources into multiple files.

%include: Including Other Files
Using, once again, a very similar syntax to the C preprocessor, NASM’s preprocessor lets you include
other source files into your code. This is done by the use of the %include directive:

%include "macros.mac"
will include the contents of the file macros.mac into the source file containing the %include directive.

Include files are searched for in the current directory (the directory you’re in when you run NASM, as
opposed to the location of the NASM executable or the location of the source file), plus any directories
specified on the NASM command line using the -1 option.

The standard C idiom for preventing a file being included more than once is just as applicable in NASM:
if the file macros.mac has the form

%ifndef MACROS_MAC

%define MACROS_MAC

; now define some macros
%endif

then including the file more than once will not cause errors, because the second time the file is
included nothing will happen because the macro MACROS_MAC will already be defined.

You can force a file to be included even if there is no %include directive that explicitly includes it, by
using the -p option on the NASM command line (see section 2.1.19).

%pathsearch: Search the Include Path

The %pathsearch directive takes a single-line macro name and a filename, and declare or redefines the
specified single-line macro to be the include-path-resolved version of the filename, if the file exists
(otherwise, it is passed unchanged.)

For example,

%pathsearch MyFoo "foo.bin"

... with -Ibins/ in the include path may end up defining the macro MyFoo to be "bins/foo.bin".

%depend: Add Dependent Files

The %depend directive takes a filename and adds it to the list of files to be emitted as dependency
generation when the -M options and its relatives (see section 2.1.5) are used. It produces no output.

This is generally used in conjunction with %pathsearch. For example, a simplified version of the
standard macro wrapper for the INCBIN directive looks like:

%imacro incbin 1-2+ 0

%pathsearch dep %1

%depend dep

4.6.4

4.7

4.7.1

4.7.2

incbin dep,%2
%endmacro

This first resolves the location of the file into the macro dep, then adds it to the dependency lists, and
finally issues the assembler-level INCBIN directive.

%use: Include Standard Macro Package

The %use directive is similar to %include, but rather than including the contents of a file, it includes a
named standard macro package. The standard macro packages are part of NASM, and are described in
chapter 6.

Unlike the %include directive, package names for the %use directive do not require quotes, but quotes
are permitted. In NASM 2.04 and 2.05 the unquoted form would be macro-expanded; this is no longer
true. Thus, the following lines are equivalent:

%use altreg
%use ’altreg’

Standard macro packages are protected from multiple inclusion. When a standard macro package is
used, a testable single-line macro of the form __?USE_package?__is also defined, see section 5.7.

The Context Stack

Having labels that are local to a macro definition is sometimes not quite powerful enough: sometimes
you want to be able to share labels between several macro calls. An example might be a REPEAT ... UNTIL
loop, in which the expansion of the REPEAT macro would need to be able to refer to a label which the
UNTIL macro had defined. However, for such a macro you would also want to be able to nest these
loops.

NASM provides this level of power by means of a context stack. The preprocessor maintains a stack of
contexts, each of which is characterized by a name. You add a new context to the stack using the %push
directive, and remove one using %pop. You can define labels that are local to a particular context on the
stack.

%push and %pop: Creating and Removing Contexts

The %push directive is used to create a new context and place it on the top of the context stack. %push
takes an optional argument, which is the name of the context. For example:

%push foobar

This pushes a new context called foobar on the stack. You can have several contexts on the stack with
the same name: they can still be distinguished. If no name is given, the context is unnamed (this is
normally used when both the %push and the %pop are inside a single macro definition.)

The directive %pop, taking one optional argument, removes the top context from the context stack and
destroys it, along with any labels associated with it. If an argument is given, it must match the name of
the current context, otherwise it will issue an error.

Context-Local Labels

Just as the usage %%foo defines a label which is local to the particular macro call in which it is used, the
usage %$foo is used to define a label which is local to the context on the top of the context stack. So the
REPEAT and UNTIL example given above could be implemented by means of:

%macro repeat 0

%push repeat
%Sbegin:

%endmacro

%macro until 1

65

4.7.3

4.7.4

66

j%-1 %Sbegin
%pop

%endmacro

and invoked by means of, for example,

mov cx,string
repeat

add cx,3
scasb

until e

which would scan every fourth byte of a string in search of the byte in AL.

If you need to define, or access, labels local to the context below the top one on the stack, you can use
%$$foo, or %$$3foo for the context below that, and so on.

Context-Local Single-Line Macros

NASM also allows you to define single-line macros which are local to a particular context, in just the
same way:

%define %Slocalmac 3

will define the single-line macro %$1localmac to be local to the top context on the stack. Of course, after
a subsequent %push, it can then still be accessed by the name %$$1ocalmac.

Context Fall-Through Lookup (deprecated)

Context fall-through lookup (automatic searching of outer contexts) is a feature that was added in
NASM version 0.98.03. Unfortunately, this feature is unintuitive and can result in buggy code that would
have otherwise been prevented by NASM’s error reporting. As a result, this feature has been deprecated.
NASM version 2.09 will issue a warning when usage of this deprecated feature is detected. Starting with
NASM version 2.10, usage of this deprecated feature will simply result in an expression syntax error.

An example usage of this deprecated feature follows:

%macro ctxthru 0
%push ctxl
%assign %Sexternal 1
%push ctx2
%assign %Sinternal 1
mov eax, %Sexternal
mov eax, %S$internal
%pop
%pop
%endmacro

As demonstrated, %$external is being defined in the ctx1 context and referenced within the ctx2
context. With context fall-through lookup, referencing an undefined context-local macro like this
implicitly searches through all outer contexts until a match is made or isn’t found in any context. As a
result, ssexternal referenced within the ctx2 context would implicitly use %$external as defined in
ctx1. Most people would expect NASM to issue an error in this situation because %$external was never
defined within ctx2 and also isn’t qualified with the proper context depth, %$$external.

Here is a revision of the above example with proper context depth:

%macro ctxthru 0
%push ctxl
%assign %Sexternal 1
%push ctx2
%assign %Sinternal 1
mov eax, %$Sexternal
mov eax, %S$internal

4.7.5

4.7.6

%pop
%pop
%endmacro

As demonstrated, %$externatl is still being defined in the ctx1 context and referenced within the ctx2
context. However, the reference to %$external within ctx2 has been fully qualified with the proper
context depth, %$sexternatl, and thus is no longer ambiguous, unintuitive or erroneous.

%repl: Renaming a Context

If you need to change the name of the top context on the stack (in order, for example, to have it
respond differently to %ifctx), you can execute a %pop followed by a %push; but this will have the side
effect of destroying all context-local labels and macros associated with the context that was just
popped.

NASM provides the directive %repl, which replaces a context with a different name, without touching
the associated macros and labels. So you could replace the destructive code

%pop
%push newname

with the non-destructive version %repl newname.
Example Use of the Context Stack: Block IFs

This example makes use of almost all the context-stack features, including the conditional-assembly
construct %ifctx, to implement a block IF statement as a set of macros.

%macro if 1

%push if
j%-1 %S$ifnot

%endmacro
%macro else 0

%ifctx if
%repl else

jmp %$1fend
%$ifnot:
%else
%error "expected ‘if’ before ‘else’"
%endif
%endmacro

%macro endif 0

%ifctx if
%$ifnot:
%pop
%elifctx else
%$ifend:
%pop
%else
%error "expected ‘if’ or ‘else’ before ‘endif’"
%endif

%endmacro

This code is more robust than the REPEAT and UNTIL macros given in section 4.7.2, because it uses
conditional assembly to check that the macros are issued in the right order (for example, not calling
endif before if) and issues a %error if they’re not.

67

4.8

4.8.1

68

In addition, the endif macro has to be able to cope with the two distinct cases of either directly
following an +if, or following an else. It achieves this, again, by using conditional assembly to do
different things depending on whether the context on top of the stack is i f or else.

The else macro has to preserve the context on the stack, in order to have the %$1 fnot referred to by the
if macro be the same as the one defined by the endif macro, but has to change the context’s name so
that endif will know there was an intervening else. It does this by the use of %rept.

A sample usage of these macros might look like:

cmp ax,bx
if ae
cmp bx , cx
if ae
mov ax,cx
else
mov ax,bx
endif
else
cmp ax,cx
if ae
mov ax,cx
endif
endif

The block-IF macros handle nesting quite happily, by means of pushing another context, describing
the inner i, on top of the one describing the outer if; thus else and endif always refer to the last
unmatched i f or else.

Stack Relative Preprocessor Directives

The following preprocessor directives provide a way to use labels to refer to local variables allocated on
the stack.

+ %arg (see section 4.8.1)

+ %stacksize (see section 4.8.2)
+ %local (see section 4.8.3)
%arg Directive

The %arg directive is used to simplify the handling of parameters passed on the stack. Stack based
parameter passing is used by many high level languages, including C, C++ and Pascal.

While NASM has macros which attempt to duplicate this functionality (see section 9.4.5), the syntax is
not particularly convenient to use and is not TASM compatible. Here is an example which shows the use
of %arg without any external macros:

some_function:

%push mycontext ; save the current context
%stacksize large ; tell NASM to use bp
%arg i:word, j_ptr:word
mov ax, [i]
mov bx, [j_ptr]
add ax, [bx]
ret
%pop ; restore original context

4.8.2

4.8.3

This is similar to the procedure defined in section 9.4.5 and adds the value in i to the value pointed to
by j_ptr and returns the sum in the ax register. See section 4.7.1 for an explanation of push and pop and
the use of context stacks.

%stacksize Directive

The %stacksize directive is used in conjunction with the %arg (see section 4.8.1) and the %local (see
section 4.8.3) directives. It tells NASM the default size to use for subsequent %arg and %local directives.
The %stacksize directive takes one required argument which is one of flat, flaté4, large or small.

%stacksize flat

This form causes NASM to use stack-based parameter addressing relative to ebp and it assumes that a
near form of call was used to get to this label (i.e. that eip is on the stack).

%stacksize flat64

This form causes NASM to use stack-based parameter addressing relative to rbp and it assumes that a
near form of call was used to get to this label (i.e. that rip is on the stack).

%stacksize large

This form uses bp to do stack-based parameter addressing and assumes that a far form of call was used
to get to this address (i.e. that ip and cs are on the stack).

%stacksize small

This form also uses bp to address stack parameters, but it is different from large because it also
assumes that the old value of bp is pushed onto the stack (i.e. it expects an ENTER instruction). In other
words, it expects that bp, ip and cs are on the top of the stack, underneath any local space which may
have been allocated by ENTER. This form is probably most useful when used in combination with the
%local directive (see section 4.8.3).

%local Directive

The %local directive is used to simplify the use of local temporary stack variables allocated in a stack
frame. Automatic local variables in C are an example of this kind of variable. The %local directive is
most useful when used with the %stacksize (see section 4.8.2 and is also compatible with the %arg
directive (see section 4.8.1). It allows simplified reference to variables on the stack which have been
allocated typically by using the ENTER instruction. An example of its use is the following:

silly_swap:
%push mycontext ; save the current context
%stacksize small ; tell NASM to use bp
%assign %Slocalsize 0 ; see text for explanation

%local old_ax:word, old_dx:word

enter %$localsize,0 ; see text for explanation
mov [old_ax],ax ; swap ax & bx
mov [old_dx],dx ; and swap dx & cx
mov ax,bx
mov dx,cx
mov bx, [old_ax]
mov cx, [old_dx]
leave ; restore old bp
ret H
%pop ; restore original context

The %$localsize variable is used internally by the %local directive and must be defined within the
current context before the %local directive may be used. Failure to do so will result in one expression
syntax error for each %local variable declared. It then may be used in the construction of an
appropriately sized ENTER instruction as shown in the example.

69

4.9 Reporting User-Defined Errors: %error, %warning, %fatal

4.10

70

The preprocessor directive %error will cause NASM to report an error if it occurs in assembled code. So
if other users are going to try to assemble your source files, you can ensure that they define the right
macros by means of code like this:
%ifdef F1
; do some setup
%elifdef F2
; do some different setup
%else
%error "Neither F1 nor F2 was defined."
%endif

Then any user who fails to understand the way your code is supposed to be assembled will be quickly
warned of their mistake, rather than having to wait until the program crashes on being run and then
not knowing what went wrong.

Similarly, ¥warning issues a warning, but allows assembly to continue:

%ifdef F1
; do some setup
%elifdef F2
; do some different setup
%else
%warning "Neither F1 nor F2 was defined, assuming F1."
%define F1
%endif

%error and %warning are issued only on the final assembly pass. This makes them safe to use in
conjunction with tests that depend on symbol values.

%fatal terminates assembly immediately, regardless of pass. This is useful when there is no point in
continuing the assembly further, and doing so is likely just going to cause a spew of confusing error
messages.

It is optional for the message string after %error, %warning or %fatal to be quoted. If it is not, then
single-line macros are expanded in it, which can be used to display more information to the user. For
example:

%if foo > 64

%assign foo_over foo-64

%error foo is foo_over bytes too large
%endif

%pragma: Setting Options

The %pragma directive controls a number of options in NASM. Pragmas are intended to remain
backwards compatible, and therefore an unknown %pragma directive is not an error.

The various pragmas are documented with the options they affect.

The general structure of a NASM pragma is:

%pragma namespace directive [arguments...]

Currently defined namespaces are:

+ dgnore: this %pragma is unconditionally ignored.

* preproc: preprocessor, see section 4.10.1.

« limit: resource limits, see section 2.1.31.

+ asm: the parser and assembler proper. Currently no such pragmas are defined.

+ list: listing options, see section 2.1.4.

4.10.1

4.11
4.11.1

+ file: general file handling options. Currently no such pragmas are defined.
+ input: input file handling options. Currently no such pragmas are defined.
+ output: output format options.

+ debug: debug format options.

In addition, the name of any output or debug format, and sometimes groups thereof, also constitue
%pragma namespaces. The namespaces output and debug simply refer to any output or debug format,
respectively.

For example, to prepend an underscore to global symbols regardless of the output format (see section
7.10):

%pragma output gprefix _
... whereas to prepend an underscore to global symbols only when the output is either win32 or wine4:

%pragma win gprefix _
Preprocessor Pragmas
The only preprocessor %pragma defined in NASM 2.15 is:

+ %pragma preproc sane_empty_expansion: disables legacy compatibility handling of braceless empty
arguments to multi-line macros. See section 4.3 and section 2.1.26.

Other Preprocessor Directives
%Lline Directive

The %line directive is used to notify NASM that the input line corresponds to a specific line number in
another file. Typically this other file would be an original source file, with the current NASM input being
the output of a pre-processor. The %line directive allows NASM to output messages which indicate the
line number of the original source file, instead of the file that is being read by NASM.

This preprocessor directive is not generally used directly by programmers, but may be of interest to
preprocessor authors. The usage of the %1ine preprocessor directive is as follows:

%Lline nnn[+mmm] [filename]

In this directive, nnn identifies the line of the original source file which this line corresponds to. mmm is an
optional parameter which specifies a line increment value; each line of the input file read in is
considered to correspond to mmm lines of the original source file. Finally, filename is an optional
parameter which specifies the file name of the original source file. It may be a quoted string, in which
case any additional argument after the quoted string will be ignored.

After reading a %1ine preprocessor directive, NASM will report all file name and line numbers relative to
the values specified therein.

If the command line option --no-1l1ne is given, all %1ine directives are ignored. This may be useful for
debugging preprocessed code. See section 2.1.33.

Starting in NASM 2.15, %l1ine directives are processed before any other processing takes place.

For compatibility with the output from some other preprocessors, including many C preprocessors, a #
character followed by whitespace at the very beginning of a line is also treated as a %line directive,
except that double quotes surrounding the filename are treated like NASM backquotes, with \-escaped
sequences decoded.

71

4.11.2 %!variable: Read an Environment Variable.

4.11.3

72

The %tvariable directive makes it possible to read the value of an environment variable at assembly
time. This could, for example, be used to store the contents of an environment variable into a string,
which could be used at some other point in your code.

For example, suppose that you have an environment variable Foo, and you want the contents of Foo to
be embedded in your program as a quoted string. You could do that as follows:

%defstr FOO %! FOO
See section 4.1.9 for notes on the %defstr directive.

If the name of the environment variable contains non-identifier characters, you can use string quotes to
surround the name of the variable, for example:

%defstr C_colon %1°C:?
%clear: Clear All Macro Definitions

The directive %clear clears all definitions of a certain type, including the ones defined by NASM itself.
This can be useful when preprocessing non-NASM code, or to drop backwards compatibility aliases.

The syntax is:

%clear [global]|context] type...
... where context indicates that this applies to context-local macros only; the default is global.
type can be one or more of:
+ define single-line macros
+ defalias single-line macro aliases (useful to remove backwards compatibility aliases)
¢ alldefine Same as define defalias
+ macro multi-line macros
« allsame asalldefine macro (default)

In NASM 2.14 and earlier, only the single syntax %clear was supported, which is equivalent to
%clear global all.

5.1

5.1.1

5.1.2

5.2

Chapter 5: Standard Macros

NASM defines a set of standard macros, which are already defined when it starts to process any source
file. If you really need a program to be assembled with no pre-defined macros, you can use the %clear
directive to empty the preprocessor of everything but context-local preprocessor variables and
single-line macros, see section 4.11.3.

Most user-level directives (see chapter 7) are implemented as macros which invoke primitive directives;
these are described in chapter 7. The rest of the standard macro set is described here.

For compability with NASM versions before NASM 2.15, most standard macros of the form __?foo?__
have aliases of form __foo__ (see section 4.1.11). These can be removed with the directive
%clear defalias.

NASM Version Macros

The single-line macros __?NASM_MAJOR?__, __?NASM_MINOR?__, __?NASM_SUBMINOR?__ and
__?NASM_PATCHLEVEL?__ expand to the major, minor, subminor and patch level parts of the version
number of NASM being used. So, under NASM 0.98.32p1 for example, __?NASM_MAJOR?__ would be
defined to be 0, __?NASM_MINOR?__ would be defined as 98, __?NASM_SUBMINOR?__ would be defined to
32,and __?NASM_PATCHLEVEL?__ would be defined as 1.

) ——

Additionally, the macro __?NASM_SNAPSHOT?__ is defined for automatically generated snapshot releases
only.

__?NASM_VERSION_ID?__: NASM Version ID

The single-line macro __?NASM_VERSION_ID?__ expands to a dword integer representing the full version
number of the version of nasm being used. The value is the equivalent to __?NASM_MAJOR?__,
__?NASM_MINOR?__, __?NASM_SUBMINOR?__ and __?NASM_PATCHLEVEL?__ concatenated to produce a
single doubleword. Hence, for 0.98.32p1, the returned number would be equivalent to:

dd 0x00622001
or
db 1,32,98,0
Note that the above lines are generate exactly the same code, the second line is used just to give an
indication of the order that the separate values will be present in memory.
__?NASM_VER?__: NASM Version String

The single-line macro __?NASM_VER?__ expands to a string which defines the version number of nasm
being used. So, under NASM 0.98.32 for example,

db __?NASM_VER?__

would expand to
db "9.98.32"

__?FILE?__and __?LINE?__:File Name and Line Number

Like the C preprocessor, NASM allows the user to find out the file name and line number containing the
current instruction. The macro __?FILE?__ expands to a string constant giving the name of the current
input file (which may change through the course of assembly if %include directives are used), and
__?LINE?__expands to a numeric constant giving the current line number in the input file.

These macros could be used, for example, to communicate debugging information to a macro, since
invoking __?LINE?__ inside a macro definition (either single-line or multi-line) will return the line

73

5.3

54

5.5

5.6

74

number of the macro call, rather than definition. So to determine where in a piece of code a crash is
occurring, for example, one could write a routine stillhere, which is passed a line number in EAX and
outputs something like 1ine 155: still here. You could then write a macro:

%macro notdeadyet 0

push eax
mov eax,__?LINE?__
call stillhere
pop eax
%endmacro

and then pepper your code with calls to notdeadyet until you find the crash point.

__?BITS?__: Current Code Generation Mode

The __?BI7S?__ standard macro is updated every time that the BITS mode is set using the BITS xx or
[BITS xX] directive, where XX is a valid mode number of 16, 32 or 64. __?BITS?__ receives the specified
mode number and makes it globally available. This can be very useful for those who utilize
mode-dependent macros.

__?0UTPUT_FORMAT?__: Current Output Format

The __?0uTPUT_FORMAT?__ standard macro holds the current output format name, as given by the -f
option or NASM’s default. Type nasm -h for a list.

%ifidn __?0UTPUT_FORMAT?__, win32

%define NEWLINE 13, 10

%elifidn __?0UTPUT_FORMAT?__, elf32

%define NEWLINE 10
%endif

__?DEBUG_FORMAT?__: Current Debug Format

If debugging information generation is enabled, The __?DEBUG_FORMAT?__ standard macro holds the
current debug format name as specified by the -F or -g option or the output format default. Type
nasm —f outputy for a list.

__?DEBUG_FORMAT?__is not defined if debugging is not enabled, or if the debug format specified is nul1.

Assembly Date and Time Macros
NASM provides a variety of macros that represent the timestamp of the assembly session.

« The __?DATE?__ and __?TIME?__ macros give the assembly date and time as strings, in 1SO 8601
format ("vYYY-MM-DD" and "HH:MM:SS", respectively.)

« The __?DATE_NUM?__ and __?TIME_NUM?__ macros give the assembly date and time in numeric form;
in the format yYYYMMDD and HHMMSS respectively.

« The __?UTC_DATE?__ and __?UTC_TIME?__ macros give the assembly date and time in universal time
(UTC) as strings, in 1SO 8601 format ("vYvvy-MM-DD" and "HH:MM:SS", respectively.) If the host
platform doesn’t provide UTC time, these macros are undefined.

» The __?UTC_DATE_NUM?__ and __?UTC_TIME_NUM?__ macros give the assembly date and time
universal time (UTC) in numeric form; in the format vyyyymmMbD and HHMMSS respectively. If the host
platform doesn’t provide UTC time, these macros are undefined.

« The __?P0SIX_TIME?__ macro is defined as a number containing the number of seconds since the
POSIX epoch, 1 January 1970 00:00:00 UTC; excluding any leap seconds. This is computed using UTC
time if available on the host platform, otherwise it is computed using the local time as if it was UTC.

5.7

5.8

5.9
5.9.1

All instances of time and date macros in the same assembly session produce consistent output. For
example, in an assembly session started at 42 seconds after midnight on January 1, 2010 in Moscow
(timezone UTC+3) these macros would have the following values, assuming, of course, a properly
configured environment with a correct clock:

__?DATE?__ "2010-01-01"
__?TIME?__ "00:00:42"
__?DATE_NUM?__ 20100101
__?TIME_NUM?__ 000042
__?2UTC_DATE?__ "2009-12-31"
__2UTC_TIME?__ "21:00:42"
__?2UTC_DATE_NUM?__ 20091231
__2UTC_TIME_NUM?__ 210042
__?POSIX_TIME?__ 1262293242

__?USE_package?__: Package Include Test

When a standard macro package (see chapter 6) is included with the %use directive (see section 4.6.4), a
single-line macro of the form __use_package__ is automatically defined. This allows testing if a
particular package is invoked or not.

For example, if the altreg package is included (see section 6.1), then the macro __?USE_ALTREG?__ is
defined.

__?PASS?__: Assembly Pass

The macro __?pPAss?__ is defined to be 1 on preparatory passes, and 2 on the final pass. In
preprocess-only mode, it is set to 3, and when running only to generate dependencies (due to the -M or
-MG option, see section 2.1.5) it is set to .

Avoid using this macro if at all possible. It is tremendously easy to generate very strange errors by
misusing it, and the semantics may change in future versions of NASM.

Structure Data Types

sTRUC and ENDSTRUC: Declaring Structure Data Types

The core of NASM contains no intrinsic means of defining data structures; instead, the preprocessor is
sufficiently powerful that data structures can be implemented as a set of macros. The macros STRUC
and ENDSTRUC are used to define a structure data type.

STRUC takes one or two parameters. The first parameter is the name of the data type. The second,
optional parameter is the base offset of the structure. The name of the data type is defined as a symbol
with the value of the base offset, and the name of the data type with the suffix _size appended to it is
defined as an EQu giving the size of the structure. Once sTRUC has been issued, you are defining the
structure, and should define fields using the rResB family of pseudo-instructions, and then invoke
ENDSTRUC to finish the definition.

For example, to define a structure called mytype containing a longword, a word, a byte and a string of
bytes, you might code

struc mytype

mt_long: resd 1

mt_word: resw 1

mt_byte: resb 1

mt_str: resb 32
endstruc

The above code defines six symbols: mt_long as 0 (the offset from the beginning of a mytype structure to
the longword field), mt_word as 4, mt_byte as 6, mt_str as 7, mytype_size as 39, and mytype itself as zero.

75

5.9.2

76

The reason why the structure type name is defined at zero by default is a side effect of allowing
structures to work with the local label mechanism: if your structure members tend to have the same
names in more than one structure, you can define the above structure like this:

struc mytype

.long: resd 1

.word: resw 1

.byte: resb 1

.str: resb 32
endstruc

This defines the offsets to the structure fields as mytype.long, mytype.word, mytype.byte and
mytype.str.

NASM, since it has no intrinsic structure support, does not support any form of period notation to refer
to the elements of a structure once you have one (except the above local-label notation), so code such
as mov ax, [mystruc.mt_word] is not valid. mt_word is a constant just like any other constant, so the
correct syntaxismov ax, [mystruc+mt_word] Ormov ax, [mystruc+mytype.word]

Sometimes you only have the address of the structure displaced by an offset. For example, consider
this standard stack frame setup:

push ebp
mov ebp, esp
sub esp, 40

In this case, you could access an element by subtracting the offset:

mov [ebp - 40 + mytype.word], ax

However, if you do not want to repeat this offset, you can use -40 as a base offset:
struc mytype, -40

And access an element this way:

mov [ebp + mytype.word], ax

ISTRUC, AT and IEND: Declaring Instances of Structures

Having defined a structure type, the next thing you typically want to do is to declare instances of that
structure in your data segment. NASM provides an easy way to do this in the ISTRUC mechanism. To
declare a structure of type mytype in a program, you code something like this:

mystruc:
istruc mytype

at mt_long, dd 123456

at mt_word, dw 1024

at mt_byte, db ’x?

at mt_str, db ’hello, world’, 13, 10, 0
iend

The function of the AT macro is to make use of the TIMES prefix to advance the assembly position to the
correct point for the specified structure field, and then to declare the specified data. Therefore the
structure fields must be declared in the same order as they were specified in the structure definition.

If the data to go in a structure field requires more than one source line to specify, the remaining source
lines can easily come after the AT line. For example:

at mt_str, db 123,134,145,156,167,178,189
db 190,100,0

5.10
5.10.1

Depending on personal taste, you can also omit the code part of the AT line completely, and start the
structure field on the next line:

at mt_str
db ’hello, world’
db 13,10,0
Alignment Control

ALIGN and ALIGNB: Code and Data Alignment

The ALIGN and ALIGNB macros provides a convenient way to align code or data on a word, longword,
paragraph or other boundary. (Some assemblers call this directive EVEN.) The syntax of the ALIGN and
ALIGNB macrosis
align 4 ; align on 4-byte boundary
align 16 ; align on 16-byte boundary
align 8,db 0 ; pad with Os rather than NOPs
;
;

align 4,resb 1 align to 4 in the BSS
alignb 4 equivalent to previous 1line

Both macros require their first argument to be a power of two; they both compute the number of
additional bytes required to bring the length of the current section up to a multiple of that power of
two, and then apply the TIMES prefix to their second argument to perform the alignment.

If the second argument is not specified, the default for ALIGN is NoP, and the default for ALIGNB is RESB 1.
So if the second argument is specified, the two macros are equivalent. Normally, you can just use ALIGN
in code and data sections and ALIGNB in BSS sections, and never need the second argument except for
special purposes.

ALIGN and ALIGNB, being simple macros, perform no error checking: they cannot warn you if their first
argument fails to be a power of two, or if their second argument generates more than one byte of code.
In each of these cases they will silently do the wrong thing.

ALIGNB (or ALIGN with a second argument of RESB 1) can be used within structure definitions:

struc mytype2

mt_byte:

resb 1

alignb 2
mt_word:

resw 1

alignb 4
mt_long:

resd 1
mt_str:

resb 32

endstruc
This will ensure that the structure members are sensibly aligned relative to the base of the structure.

A final caveat: ALIGN and ALIGNB work relative to the beginning of the section, not the beginning of the
address space in the final executable. Aligning to a 16-byte boundary when the section you’re in is only
guaranteed to be aligned to a 4-byte boundary, for example, is a waste of effort. Again, NASM does not
check that the section’s alignment characteristics are sensible for the use of ALIGN or ALIGNB.

Both ALIGN and ALIGNB do call SECTALIGN macro implicitly. See section 5.10.2 for details.

See also the smartalign standard macro package, section 6.2.

77

5.10.2 SECTALIGN: Section Alignment

78

The SECTALIGN macros provides a way to modify alignment attribute of output file section. Unlike the
align= attribute (which is allowed at section definition only) the SECTALIGN macro may be used at any
time.

For example the directive

SECTALIGN 16

sets the section alignment requirements to 16 bytes. Once increased it can not be decreased, the
magnitude may grow only.

Note that ALIGN (see section 5.10.1) calls the SECTALIGN macro implicitly so the active section alignment
requirements may be updated. This is by default behaviour, if for some reason you want the ALIGN do
not call SECTALIGN at all use the directive

SECTALIGN OFF

It is still possible to turn in on again by
SECTALIGN ON

Note that SECTALIGN <ON|OFF> affects only the ALIGN/ALIGNB directives, not an explicit SECTALIGN
directive.

6.1

6.2

Chapter 6: Standard Macro Packages

The %use directive (see section 4.6.4) includes one of the standard macro packages included with the
NASM distribution and compiled into the NASM binary. It operates like the %include directive (see
section 4.6.1), but the included contents is provided by NASM itself.

The names of standard macro packages are case insensitive and can be quoted or not.

As of version 2.15, NASM has %ifusable and %ifusing directives to help the user understand whether
an individual package available in this version of NASM (%ifusable) or a particular package already
loaded (%1 fusing).

altreg: Alternate Register Names

The altreg standard macro package provides alternate register names. It provides numeric register
names for all registers (not just R8-R15), the Intel-defined aliases R8L-R15L for the low bytes of register
(as opposed to the NASM/AMD standard names R8B-R15B), and the names ReH-R3H (by analogy with
ROL-R3L) for AH, CH, DH, and BH.

Example use:

%use altreg

proc:
mov rO1,r3h ; mov al,bh
ret

See also section 12.1.

smartalign: Smart ALIGN Macro

The smartalign standard macro package provides for an ALIGN macro which is more powerful than the
default (and backwards-compatible) one (see section 5.10.1). When the smartalign package is enabled,
when ALIGN is used without a second argument, NASM will generate a sequence of instructions more
efficient than a series of Nop. Furthermore, if the padding exceeds a specific threshold, then NASM will
generate a jJump over the entire padding sequence.

The specific instructions generated can be controlled with the new ALIGNMODE macro. This macro takes
two parameters: one mode, and an optional jump threshold override. If (for any reason) you need to
turn off the jump completely just set jump threshold value to -1 (or set it to nojmp). The following
modes are possible:

+ generic: Works on all x86 CPUs and should have reasonable performance. The default jump
threshold is 8. This is the default.

+ nop: Pad out with NoP instructions. The only difference compared to the standard ALIGN macro is that
NASM can still jump over a large padding area. The default jump threshold is 16.

+ k7: Optimize for the AMD K7 (Athlon/Althon XP). These instructions should still work on all x86 CPUs.
The default jump threshold is 16.

+ k8: Optimize for the AMD K8 (Opteron/Althon 64). These instructions should still work on all x86
CPUs. The default jump threshold is 16.

+ p6: Optimize for Intel CPUs. This uses the long NoP instructions first introduced in Pentium Pro. This
is incompatible with all CPUs of family 5 or lower, as well as some VIA CPUs and several virtualization
solutions. The default jump threshold is 16.

The macro __?ALIGNMODE?__ is defined to contain the current alignment mode. A number of other
macros beginning with __?ALIGN_ are used internally by this macro package.

79

6.3 fp: Floating-point macros

This packages contains the following floating-point convenience macros:

%define Inf __?Infinity?__
%define NaN __?QNaN?__
%define QNaN __?QNaN?__
%define SNaN __7?SNaN?__
%define float8(x) __?float87__(x)
%define floatl6(x) __?float1l6e?__(x)
%define bfloatl6(x) __?bfloatl6?__(x)
%define float32(x) __?float32?__(x)
%define float64(x) __?float64?__(x)
%define float80m(x) __?float80m?__(x)
%define float80e(x) __?float80e?__(x)
%define floatl1281(x) __?float12817?__(x)
%define floatl28h(x) __?float128h?__(x)

It also defines the a multi-line macro bf16 that can be used in a similar way to the bx directives for the
other floating-point numbers:

bfl6 -3.1415, NaN, 2000.0, +Inf

6.4 +ifunc: Integer functions

This package contains a set of macros which implement integer functions. These are actually
implemented as special operators, but are most conveniently accessed via this macro package.

The macros provided are:

6.4.1 Integer logarithms

These functions calculate the integer logarithm base 2 of their argument, considered as an unsigned
integer. The only differences between the functions is their respective behavior if the argument
provided is not a power of two.

The function ilog2e() (alias ilog2()) generates an error if the argument is not a power of two.

The function ilog2f() rounds the argument down to the nearest power of two; if the argument is zero
it returns zero.

The function ilog2c() rounds the argument up to the nearest power of two.

The functions ilog2fw() (alias ilog2w()) and ilog2cw() generate a warning if the argument is not a
power of two, but otherwise behaves like i1og2f() and ilog2c(), respectively.

6.5 masm: MASM compatibility

Since version 2.15, NASM has a MASM compatibility package with minimal functionality, as intended to
be used primarily with machine-generated code. It does not include any "programmer-friendly"
shortcuts, nor does it in any way support ASSUME, symbol typing, or MASM-style structures.

To enable the package, use the directive:

%use masm

Currently, the MASM compatibility package emulates:

» The FLAT and OFFSET keywords are recognized and ignored.

» The PTR keyword signifies a memory reference, as if the argument had been putin square brackets:

mov eax, [foo] ; memory reference

80

mov eax,dword ptr foo
mov eax,dowrd ptr flat:foo

; memory reference
; memory reference

mov eax,offset foo ; address
mov eax, foo ; address (ambiguous syntax in MASM)

» The SEGMENT ... ENDS syntax:
segname SEGMENT
segname ENDS

+ The PROC ... ENDP syntax:
procname PROC [FAR]
procname ENDP

ProOC will also define RET as a macro expanding to either RETF if FAR is specified and RETN otherwise.
Any keyword after PROC other than FAR is ignored.

+ The TBYTE keyword as an alias for TWORD (see section 2.2.7).

+ TheEenD directive isignored.

+ In 64-bit mode relative addressing is the default (DEFAULT REL, see section 7.2.1).

In addition, NASM now natively supports, regardless of whether this package is used or not:

« 2 and pup syntax for the DB etc data declaration directives (see section 3.2.1).

+ displacement[base+index] syntax for memory operations, instead of [base+index+displacement].
+ seg:[addr] instead of [seg:addr] syntax.

» Apure offset can be given to LEA without square brackets:

lea rax, [foo] ; standard syntax
lea rax,foo ; also accepted

81

82

7.1

Chapter 7: Assembler Directives

NASM, though it attempts to avoid the bureaucracy of assemblers like MASM and TASM, is nevertheless
forced to support a few directives. These are described in this chapter.

NASM’s directives come in two types: user-level directives and primitive directives. Typically, each
directive has a user-level form and a primitive form. In almost all cases, we recommend that users use
the user-level forms of the directives, which are implemented as macros which call the primitive forms.

Primitive directives are enclosed in square brackets; user-level directives are not.

In addition to the universal directives described in this chapter, each object file format can optionally
supply extra directives in order to control particular features of that file format. These format-specific
directives are documented along with the formats that implement them, in chapter 8.

BITS: Specifying Target Processor Mode

The BITS directive specifies whether NASM should generate code designed to run on a processor
operating in 16-bit mode, 32-bit mode or 64-bit mode. The syntax is BITS XX, where XX is 16, 32 or 64.

In most cases, you should not need to use BITS explicitly. The aout, coff, elf*, macho, win32 and win64
object formats, which are designed for use in 32-bit or 64-bit operating systems, all cause NASM to
select 32-bit or 64-bit mode, respectively, by default. The obj object format allows you to specify each
segment you define as either use1e6 or Use32, and NASM will set its operating mode accordingly, so the
use of the BITS directive is once again unnecessary.

The most likely reason for using the BITS directive is to write 32-bit or 64-bit code in a flat binary file;
this is because the bin output format defaults to 16-bit mode in anticipation of it being used most
frequently to write DOS . com programs, DOS . sys device drivers and boot loader software.

The BITS directive can also be used to generate code for a different mode than the standard one for the
output format.

You do not need to specify BITS 32 merely in order to use 32-bit instructions in a 16-bit DOS program; if
you do, the assembler will generate incorrect code because it will be writing code targeted at a 32-bit
platform, to be run on a 16-bit one.

When NASM is in BITS 16 mode, instructions which use 32-bit data are prefixed with an 0x66 byte, and
those referring to 32-bit addresses have an 0x67 prefix. In BITS 32 mode, the reverse is true: 32-bit
instructions require no prefixes, whereas instructions using 16-bit data need an 0x66 and those working
on 16-bit addresses need an 0x67.

When NASM is in BITS 64 mode, most instructions operate the same as they do for BITS 32 mode.
However, there are 8 more general and SSE registers, and 16-bit addressing is no longer supported.

The default address size is 64 bits; 32-bit addressing can be selected with the 0x67 prefix. The default
operand size is still 32 bits, however, and the 0x66 prefix selects 16-bit operand size. The Rex prefix is
used both to select 64-bit operand size, and to access the new registers. NASM automatically inserts
REX prefixes when necessary.

When the Rex prefix is used, the processor does not know how to address the AH, BH, CH or DH (high
8-bit legacy) registers. Instead, it is possible to access the the low 8-bits of the SP, BP Sl and DI registers
as SPL, BPL, SIL and DIL, respectively; but only when the REX prefix is used.

The BITS directive has an exactly equivalent primitive form, [BITS 16], [BITS 32] and [BITS 64]. The
user-level form is a macro which has no function other than to call the primitive form.

Note that the space is neccessary, e.g. BITS32 will not work!

83

7.1.1

7.2

7.2.1

7.2.2

7.3

7.3.1

84

USE16 & USE32: Aliases for BITS

The ‘use16’ and ‘USE32’ directives can be used in place of ‘BITS 16’ and ‘BITS 32’, for compatibility with
other assemblers.

DEFAULT: Change the assembler defaults

The DEFAULT directive changes the assembler defaults. Normally, NASM defaults to a mode where the
programmer is expected to explicitly specify most features directly. However, this is occasionally
obnoxious, as the explicit form is pretty much the only one one wishes to use.

Currently, DEFAULT can set REL & ABS and BND & NOBND.

REL & ABS: RIP-relative addressing

This sets whether registerless instructions in 64-bit mode are rR1P-relative or not. By default, they are
absolute unless overridden with the ReL specifier (see section 3.3). However, if DEFAULT REL is specified,
REL is default, unless overridden with the ABs specifier, except when used with an FS or GS segment
override.

The special handling of Fs and Gs overrides are due to the fact that these registers are generally used as
thread pointers or other special functions in 64-bit mode, and generating RIP-relative addresses would
be extremely confusing.

DEFAULT REL is disabled with DEFAULT ABS.

BND & NOBND: BND prefix

If DEFAULT BND is set, all bnd-prefix available instructions following this directive are prefixed with bnd.
To override it, NOBND prefix can be used.
DEFAULT BND

call foo ; BND will be prefixed
nobnd call foo ; BND will NOT be prefixed

DEFAULT NOBND can disable DEFAULT BND and then BND prefix will be added only when explicitly specified
in code.

DEFAULT BND is expected to be the normal configuration for writing MPX-enabled code.

SECTION or SEGMENT: Changing and Defining Sections

The SECTION directive (SEGMENT is an exactly equivalent synonym) changes which section of the output
file the code you write will be assembled into. In some object file formats, the number and names of
sections are fixed; in others, the user may make up as many as they wish. Hence SECTION may
sometimes give an error message, or may define a new section, if you try to switch to a section that
does not (yet) exist.

The Unix object formats, and the bin object format (but see section 8.1.3), all support the standardized
section names . text, .data and .bss for the code, data and uninitialized-data sections. The obj format,
by contrast, does not recognize these section names as being special, and indeed will strip off the
leading period of any section name that has one.

The __?secT?__ Macro

The secTIoN directive is unusual in that its user-level form functions differently from its primitive form.
The primitive form, [SECTION xyz], simply switches the current target section to the one given. The
user-level form, SECTION xyz, however, first defines the single-line macro __?SecT?__ to be the
primitive [SECTION] directive which it is about to issue, and then issues it. So the user-level directive

SECTION .text

expands to the two lines

7.4

%define __?SECT?__ [SECTION .text]
[SECTION .text]

Users may find it useful to make use of this in their own macros. For example, the writefile macro
defined in section 4.3.3 can be usefully rewritten in the following more sophisticated form:

%macro writefile 2+

[section .data]

%%str: db %2
%%endstr:
__?SECT?__
mov dx,%%str
mov cx,%%endstr-%%str
mov bx,%1
mov ah,0x40
int 0x21
%endmacro

This form of the macro, once passed a string to output, first switches temporarily to the data section of
the file, using the primitive form of the secTion directive so as not to modify __?secT?__. It then
declares its string in the data section, and then invokes __?secT?__ to switch back to whichever section
the user was previously working in. It thus avoids the need, in the previous version of the macro, to
include a Jmp instruction to jump over the data, and also does not fail if, in a complicated 083 format
module, the user could potentially be assembling the code in any of several separate code sections.

ABSOLUTE: Defining Absolute Labels

The ABSOLUTE directive can be thought of as an alternative form of SECTION: it causes the subsequent
code to be directed at no physical section, but at the hypothetical section starting at the given absolute
address. The only instructions you can use in this mode are the RESB family.

ABSOLUTE is used as follows:

absolute 0x1A

kbuf_chr resw 1
kbuf_free resw 1
kbuf resw 16

This example describes a section of the PC BIOS data area, at segment address 0x40: the above code
defines kbuf_chr to be 0x1A, kbuf_free to be 0x1C, and kbuf to be Ox1E.

_?SECT?__ macro when it is

The user-level form of ABSOLUTE, like that of SecTION, redefines the
invoked.

STRUC and ENDSTRUC are defined as macros which use ABSOLUTE (and also __?SECT?__).

ABSOLUTE doesn’t have to take an absolute constant as an argument: it can take an expression (actually,
a critical expression: see section 3.8) and it can be a value in a segment. For example, a TSR can re-use
its setup code as run-time BSS like this:

org 100h ; it’s a .COM program
jmp setup ; setup code comes last
; the resident part of the TSR goes here

setup:

; now write the code that installs the TSR here

absolute setup

85

7.5

7.6

1.7

86

runtimevarl resw 1
runtimevar2 resd 20

tsr_end:

This defines some variables ‘on top of’ the setup code, so that after the setup has finished running, the
space it took up can be re-used as data storage for the running TSR. The symbol ‘tsr_end’ can be used to
calculate the total size of the part of the TSR that needs to be made resident.

EXTERN: Importing Symbols from Other Modules

EXTERN is similar to the MASM directive EXTRN and the C keyword extern: it is used to declare a symbol
which is not defined anywhere in the module being assembled, but is assumed to be defined in some
other module and needs to be referred to by this one. Not every object-file format can support external
variables: the bin format cannot.

The EXTERN directive takes as many arguments as you like. Each argument is the name of a symbol:

extern _printf
extern _sscanf,_fscanf

Some object-file formats provide extra features to the EXTERN directive. In all cases, the extra features
are used by suffixing a colon to the symbol name followed by object-format specific text. For example,
the obj format allows you to declare that the default segment base of an external should be the group
dgroup by means of the directive

extern _variable:wrt dgroup

The primitive form of EXTERN differs from the user-level form only in that it can take only one argument
at a time: the support for multiple arguments is implemented at the preprocessor level.

You can declare the same variable as EXTERN more than once: NASM will quietly ignore the second and
later redeclarations.

If a variable is declared both GLOBAL and EXTERN, or if it is declared as EXTERN and then defined, it will be
treated as GLOBAL. If a variable is declared both as commoN and EXTERN, it will be treated as common.

REQUIRED: Unconditionally Importing Symbols from Other Modules

The REQUIRED keyword is similar to EXTERN one. The difference is that the ExTERN keyword as of version
2.15 does not generate unknown symbols as that prevents using common header files, as it might
cause the linker to pullin a bunch of unnecessary modules.

If the old behavior is required, use REQUIRED keyword instead.

GLOBAL: Exporting Symbols to Other Modules

GLOBAL is the other end of EXTERN: if one module declares a symbol as EXTERN and refers to it, then in
order to prevent linker errors, some other module must actually define the symbol and declare it as
GLOBAL. Some assemblers use the name puBLIC for this purpose.

GLOBAL uses the same syntax as EXTERN, except that it must refer to symbols which are defined in the
same module as the GLoBAL directive. For example:

global _main
_main:
; some code

GLOBAL, like EXTERN, allows object formats to define private extensions by means of a colon. The ELF
object format, for example, lets you specify whether global data items are functions or data:

global hashlookup:function, hashtable:data

7.8

7.9

7.10

Like EXTERN, the primitive form of GLoBAL differs from the user-level form only in that it can take only
one argument at a time.

comMoN: Defining Common Data Areas

The commoN directive is used to declare common variables. A common variable is much like a global
variable declared in the uninitialized data section, so that

common intvar 4
is similar in function to

global Hntvar
section .bss

intvar resd 1

The difference is that if more than one module defines the same common variable, then at link time
those variables will be merged, and references to intvar in all modules will point at the same piece of
memory.

Like GLOBAL and EXTERN, COMMON supports object-format specific extensions. For example, the obj
format allows common variables to be NEAR or FAR, and the ELF format allows you to specify the
alignment requirements of a common variable:

common commvar 4:near ; works in OBJ
common dintarray 100:4 ; works in ELF: 4 byte aligned

Once again, like EXTERN and GLOBAL, the primitive form of common differs from the user-level form only in
that it can take only one argument at a time.

STATIC: Local Symbols within Modules

Opposite to EXTERN and GLOBAL, STATIC is local symbol, but should be named according to the global
mangling rules (named by analogy with the C keyword static as applied to functions or global
variables).

static foo
foo:
; codes

Unlike GLOBAL, STATIC does not allow object formats to accept private extensions mentioned in section
T.7.

(G|L)PREFIX, (G|L)POSTFIX: Mangling Symbols

PREFIX, GPREFIX, LPREFIX, POSTFIX, GPOSTFIX, and LPOSTFIX directives can prepend or append a string
to a certain type of symbols, normally to fit specific ABI conventions

+ PREFIX|GPREFIX: Prepend the argument to all EXTERN COMMON, STATIC, and GLOBAL symbols.

» LPREFIX: Prepend the argument to all other symbols such as local labels and backend defined
symbols.

+ POSTFIX|GPOSTFIX: Append the argument to all EXTERN COMMON, STATIC, and GLOBAL symbols.

» LPOSTFIX: Append the argument to all other symbols such as local labels and backend defined
symbols.

These a macros implemented as pragmas, and using %pragma syntax can be restricted to specific
backends (see section 4.10):

%pragma macho lprefix L_

Command line options are also available. See also section 2.1.28.

87

7.11

7.12

88

One example which supports many ABIs:

; The most common conventions

%pragma output gprefix _

%pragma output lprefix L_

; ELF uses a different convention

%pragma elf gprefix ; empty
%pragma elf lprefix .L

Some toolchains is aware of a particular prefix for its own optimization options, such as code
elimination. For instance, Mach-O backend has a linker that uses a simplistic naming scheme to chunk
up sections into a meta section. When the subsections_via_symbols directive (section 8.8.4) is
declared, each symbol is the start of a separate block. The meta section is, then, defined to include
sections before the one that starts with a ’L’. LPREFIX is useful here to mark all local symbols with the 'L’
prefix to be excluded to the meta section. It converts local symbols compatible with the particular
toolchain. Note that local symbols declared with STATIC (section 7.9) are excluded from the symbol
mangling and also not marked as global.

cpu: Defining CPU Dependencies

The cpu directive restricts assembly to those instructions which are available on the specified CPU.
Options are:

+ CPU 8086 Assemble only 8086 instruction set

+ CPU 186 Assemble instructions up to the 80186 instruction set
+ CPU 286 Assemble instructions up to the 286 instruction set

« CPU 386 Assemble instructions up to the 386 instruction set

+ CPU 486486 instruction set

+ CPU 586 Pentium instruction set

e CPU PENTIUM Same as 586

+ CPU 686 P6instruction set

» CPU PPRO Same as 686

* CPU P2 Same as 686

« CPU P3 Pentium Il (Katmai) instruction sets

» CPU KATMAI Same as P3

e CPU P4 Pentium 4 (Willamette) instruction set

e CPU WILLAMETTE Same as P4

+ CPU PRESCOTT Prescott instruction set

e CPU X64 X86-64 (x64/AMD64/Intel 64) instruction set

« CPU IA64IA64 CPU (in x86 mode) instruction set

All options are case insensitive. All instructions will be selected only if they apply to the selected CPU or
lower. By default, all instructions are available.

FLOAT: Handling of floating-point constants

By default, floating-point constants are rounded to nearest, and IEEE denormals are supported. The
following options can be set to alter this behaviour:

o FLOAT DAZ Flush denormals to zero

7.13

e FLOAT NoDAZ Do not flush denormals to zero (default)
« FLOAT NEAR Round to nearest (default)

+ FLOAT UP Round up (toward +Infinity)

+ FLOAT DOWN Round down (toward -Infinity)

+ FLOAT ZERO Round toward zero

+ FLOAT DEFAULT Restore default settings

and __?FLOAT?__ contain the current

The standard macros __?FLOAT_DAZ?__, __?FLOAT_ROUND?

state, as long as the programmer has avoided the use of the brackeded primitive form, ([FLOAT]).

—_—)

__?FLOAT?__ contains the full set of floating-point settings; this value can be saved away and invoked
later to restore the setting.

[WARNING]: Enable or disable warnings

The [WARNING] directive can be used to enable or disable classes of warnings in the same way as the -w
option, see section 2.1.26 for more details about warning classes.

+ [warning +warning-class] enables warnings for warning-class.
» [warning -warning-class] disables warnings for warning-class.

« [warning *warning-class] restores warning-class to the original value, either the default value or as
specified on the command line.

+ [warning push] saves the current warning state on a stack.
« [warning pop] restores the current warning state from the stack.
The [WARNING] directive also accepts the all, error and error=warning-class specifiers.

No "user form" (without the brackets) currently exists.

89

90

8.1

8.1.1

8.1.2

Chapter 8: Output Formats

NASM is a portable assembler, designed to be able to compile on any ANSI C-supporting platform and
produce output to run on a variety of Intel x86 operating systems. For this reason, it has a large number
of available output formats, selected using the -f option on the NASM command line. Each of these
formats, along with its extensions to the base NASM syntax, is detailed in this chapter.

As stated in section 2.1.1, NASM chooses a default name for your output file based on the input file
name and the chosen output format. This will be generated by removing the extension (.asm, .s, or
whatever you like to use) from the input file name, and substituting an extension defined by the output
format. The extensions are given with each format below.

bin: Flat-Form Binary Output

The bin format does not produce object files: it generates nothing in the output file except the code
you wrote. Such ‘pure binary’ files are used by MS-DOS: .coM executables and .sys device drivers are
pure binary files. Pure binary output is also useful for operating system and boot loader development.

The bin format supports multiple section names. For details of how NASM handles sections in the bin
format, see section 8.1.3.

Using the bin format puts NASM by default into 16-bit mode (see section 7.1). In order to use bin to
write 32-bit or 64-bit code, such as an OS kernel, you need to explicitly issue the BITS 32 or BITS 64
directive.

bin has no default output file name extension: instead, it leaves your file name as it is once the original
extension has been removed. Thus, the default is for NASM to assemble binprog.asm into a binary file
called binprog.

ORG: Binary File Program Origin

The bin format provides an additional directive to the list given in chapter 7: orG. The function of the
ORG directive is to specify the origin address which NASM will assume the program begins at when it is
loaded into memory.

For example, the following code will generate the longword oxe0000104:

org 0x100
dd label
label:

Unlike the orG directive provided by MASM-compatible assemblers, which allows you to jump around in
the object file and overwrite code you have already generated, NASM’s o0rG does exactly what the
directive says: origin. Its sole function is to specify one offset which is added to all internal address
references within the section; it does not permit any of the trickery that MASM’s version does. See
section 13.1.3 for further comments.

bin Extensions to the secTION Directive, bin extensions to}

The bin output format extends the SECTION (or SEGMENT) directive to allow you to specify the alignment
requirements of segments. This is done by appending the ALIGN qualifier to the end of the
section-definition line. For example,

section .data align=16
switches to the section .data and also specifies that it must be aligned on a 16-byte boundary.

The parameter to ALIGN specifies how many low bits of the section start address must be forced to zero.
The alignment value given may be any power of two.

91

8.1.3

8.14

8.2

8.3

92

Multisection Support for the bin Format

The bin format allows the use of multiple sections, of arbitrary names, besides the "known" .text,
.data, and .bss names.

+ Sections may be designated progbits or nobits. Default is progbits (except .bss, which defaults to
nobits, of course).

+ Sections can be aligned at a specified boundary following the previous section with align=, or at an
arbitrary byte-granular position with start=.

+ Sections can be given a virtual start address, which will be used for the calculation of all memory
references within that section with vstart=.

+ Sections can be ordered using follows=<section> or vfollows=<section> as an alternative to
specifying an explicit start address.

» Arguments to org, start, vstart, and align= are critical expressions. See section 3.8. E.g.
align=(1 << ALIGN_SHIFT) - ALIGN_SHIFT must be defined before it is used here.

+ Any code which comes before an explicit SECTION directive is directed by default into the .text
section.

« If an ORG statement is not given, 0RG o is used by default.

+ The .bss section will be placed after the last progbits section, unless start=, vstart=, follows=, Or
vfollows= has been specified.

+ All sections are aligned on dword boundaries, unless a different alignment has been specified.
+ Sections may not overlap.

+ NASM creates the section.<secname>.start for each section, which may be used in your code.

Map Files

Map files can be generated in -f bin format by means of the [map] option. Map types of a1l (default),
brief, sections, segments, Or symbols may be specified. Output may be directed to stdout (default),
stderr, or a specified file. E.g. [map symbols myfile.map]. No "user form" exists, the square brackets
must be used.

ith: Intel Hex Output

The 1ith file format produces Intel hex-format files. Just as the bin format, this is a flat memory image
format with no support for relocation or linking. It is usually used with ROM programmers and similar
utilities.

All extensions supported by the bin file format is also supported by the - th file format.

ith provides a default output file-name extension of .4 th.

srec: Motorola S-Records Output

The srec file format produces Motorola S-records files. Just as the bin format, this is a flat memory
image format with no support for relocation or linking. It is usually used with ROM programmers and
similar utilities.

All extensions supported by the bin file format is also supported by the srec file format.

srec provides a default output file-name extension of . srec.

8.4

8.4.1

obj: Microsoft OMF Object Files

The obj file format (NASM calls it obj rather than omf for historical reasons) is the one produced by
MASM and TASM, which is typically fed to 16-bit DOS linkers to produce .EXE files. It is also the format
used by 0S/2.

obj provides a default output file-name extension of . obj.

obj is not exclusively a 16-bit format, though: NASM has full support for the 32-bit extensions to the
format. In particular, 32-bit obj format files are used by Borland’s Win32 compilers, instead of using
Microsoft’s newer win32 object file format.

The obj format does not define any special segment names: you can call your segments anything you
like. Typical names for segments in obj format files are coDg, DATA and BSS.

If your source file contains code before specifying an explicit SEGMENT directive, then NASM will invent
its own segment called __NASMDEFSEG for you.

When you define a segment in an obj file, NASM defines the segment name as a symbol as well, so that
you can access the segment address of the segment. So, for example:

segment data
dvar: dw 1234

segment code

function:
mov ax,data ; get segment address of data
mov ds,ax ; and move it into DS
inc word [dvar] ; now this reference will work
ret

The obj format also enables the use of the SEG and wRT operators, so that you can write code which
does things like

extern foo

mov ax,seg foo ; get preferred segment of foo
mov ds,ax

mov ax,data ; a different segment

mov es,ax

mov ax, [ds:foo] ; this accesses ‘foo’

mov [es:foo wrt data],bx ; so does this

obj Extensions to the SEGMENT Directive

The obj output format extends the SEGMENT (or SECTION) directive to allow you to specify various
properties of the segment you are defining. This is done by appending extra qualifiers to the end of the
segment-definition line. For example,

segment code private align=16

defines the segment code, but also declares it to be a private segment, and requires that the portion of
it described in this code module must be aligned on a 16-byte boundary.

The available qualifiers are:

« PRIVATE, PUBLIC, COMMON and STACK specify the combination characteristics of the segment. PRIVATE
segments do not get combined with any others by the linker; PUBLIC and STACK segments get
concatenated together at link time; and comMmoN segments all get overlaid on top of each other rather
than stuck end-to-end.

« ALIGN is used, as shown above, to specify how many low bits of the segment start address must be
forced to zero. The alignment value given may be any power of two from 1 to 4096; in reality, the

93

8.4.2

8.4.3

94

only values supported are 1, 2, 4, 16, 256 and 4096, so if 8 is specified it will be rounded up to 16, and
32, 64 and 128 will all be rounded up to 256, and so on. Note that alignment to 4096-byte boundaries
is a PharLap extension to the format and may not be supported by all linkers.

+ CLASS can be used to specify the segment class; this feature indicates to the linker that segments of
the same class should be placed near each other in the output file. The class name can be any word,
€.g. CLASS=CODE.

+ OVERLAY, like cLASsS, is specified with an arbitrary word as an argument, and provides overlay
information to an overlay-capable linker.

+ Segments can be declared as USE16 or USE32, which has the effect of recording the choice in the
object file and also ensuring that NASM’s default assembly mode when assembling in that segment is
16-bit or 32-bit respectively.

« When writing 0S/2 object files, you should declare 32-bit segments as FLAT, which causes the default
segment base for anything in the segment to be the special group FLAT, and also defines the group if
it is not already defined.

+ The obj file format also allows segments to be declared as having a pre-defined absolute segment
address, although no linkers are currently known to make sensible use of this feature; nevertheless,
NASM allows you to declare a segment such as SEGMENT SCREEN ABSOLUTE=0xB800 if you need to. The
ABSOLUTE and ALIGN keywords are mutually exclusive.

NASM’s default segment attributes are PUBLIC, ALIGN=1, no class, no overlay, and USE16.

GRouP: Defining Groups of Segments

The obj format also allows segments to be grouped, so that a single segment register can be used to
refer to all the segments in a group. NASM therefore supplies the Group directive, whereby you can code

segment data
; some data
segment bss
; some uninitialized data

group dgroup data bss

which will define a group called dgroup to contain the segments data and bss. Like SEGMENT, GROUP
causes the group name to be defined as a symbol, so that you can refer to a variable var in the data
segment as var wrt dataorasvar wrt dgroup, depending on which segment value is currently in your
segment register.

If you just refer to var, however, and var is declared in a segment which is part of a group, then NASM
will default to giving you the offset of var from the beginning of the group, not the segment. Therefore
SEG var, also, will return the group base rather than the segment base.

NASM will allow a segment to be part of more than one group, but will generate a warning if you do this.
Variables declared in a segment which is part of more than one group will default to being relative to
the first group that was defined to contain the segment.

A group does not have to contain any segments; you can still make wrT references to a group which
does not contain the variable you are referring to. 0S/2, for example, defines the special group FLAT
with no segmentsin it.

UPPERCASE: Disabling Case Sensitivity in Output

Although NASM itself is case sensitive, some OMF linkers are not; therefore it can be useful for NASM to
output single-case object files. The UPPERCASE format-specific directive causes all segment, group and

8.44

8.4.5

8.4.6

symbol names that are written to the object file to be forced to upper case just before being written.
Within a source file, NASM is still case-sensitive; but the object file can be written entirely in upper case
if desired.

UPPERCASE is used alone on a line; it requires no parameters.

IMPORT: Importing DLL Symbols

The 1mMPORT format-specific directive defines a symbol to be imported from a DLL, for use if you are
writing a DLL’s import library in NASM. You still need to declare the symbol as EXTERN as well as using
the IMPORT directive.

The IMPORT directive takes two required parameters, separated by white space, which are (respectively)
the name of the symbol you wish to import and the name of the library you wish to import it from. For
example:

import WSAStartup wsock32.d1l1l

A third optional parameter gives the name by which the symbol is known in the library you are
importing it from, in case this is not the same as the name you wish the symbol to be known by to your
code once you have imported it. For example:

import asyncsel wsock32.dll WSAAsyncSelect

EXPORT: Exporting DLL Symbols

The exPoORT format-specific directive defines a global symbol to be exported as a DLL symbol, for use if
you are writing a DLL in NASM. You still need to declare the symbol as GLoBAL as well as using the
EXPORT directive.

EXPORT takes one required parameter, which is the name of the symbol you wish to export, as it was
defined in your source file. An optional second parameter (separated by white space from the first)
gives the external name of the symbol: the name by which you wish the symbol to be known to
programs using the DLL. If this name is the same as the internal name, you may leave the second
parameter off.

Further parameters can be given to define attributes of the exported symbol. These parameters, like
the second, are separated by white space. If further parameters are given, the external name must also
be specified, even if it is the same as the internal name. The available attributes are:

+ resident indicates that the exported name is to be kept resident by the system loader. This is an
optimization for frequently used symbols imported by name.

+ nodata indicates that the exported symbol is a function which does not make use of any initialized
data.

« parm=NNN, where NNN is an integer, sets the number of parameter words for the case in which the
symbol is a call gate between 32-bit and 16-bit segments.

+ An attribute which is just a number indicates that the symbol should be exported with an identifying
number (ordinal), and gives the desired number.

For example:

export myfunc

export myfunc TheRealMoreFormalLookingFunctionName
export myfunc myfunc 1234 ; export by ordinal
export myfunc myfunc resident parm=23 nodata

. .start: Defining the Program Entry Point

oMF linkers require exactly one of the object files being linked to define the program entry point, where
execution will begin when the program is run. If the object file that defines the entry point is assembled

95

8.4.7

8.4.8

96

using NASM, you specify the entry point by declaring the special symbol . .start at the point where you
wish execution to begin.

obj Extensions to the EXTERN Directive

If you declare an external symbol with the directive

extern foo

then references such as mov ax, foo will give you the offset of foo from its preferred segment base (as
specified in whichever module foo is actually defined in). So to access the contents of foo you will
usually need to do something like

mov ax,seg foo ; get preferred segment base
mov es,ax ; move it into ES
mov ax, [es:foo] ; and use offset ‘foo’ from it

This is a little unwieldy, particularly if you know that an external is going to be accessible from a given
segment or group, say dgroup. So if bs already contained dgroup, you could simply code

mov ax, [foo wrt dgroup]
However, having to type this every time you want to access foo can be a pain; so NASM allows you to
declare foo in the alternative form
extern foo:wrt dgroup

This form causes NASM to pretend that the preferred segment base of foo is in fact dgroup; so the
expression seg foo will now return dgroup, and the expression foo is equivalent to foo wrt dgroup.

This default-wrRT mechanism can be used to make externals appear to be relative to any group or
segment in your program. It can also be applied to common variables: see section 8.4.8.

obj Extensions to the common Directive

The obj format allows common variables to be either near or far; NASM allows you to specify which
your variables should be by the use of the syntax

common nearvar 2:near ; ‘nearvar’ is a near common
common farvar 10:far ; and ‘farvar’ is far

Far common variables may be greater in size than 64Kb, and so the OMF specification says that they are
declared as a number of elements of a given size. So a 10-byte far common variable could be declared
as ten one-byte elements, five two-byte elements, two five-byte elements or one ten-byte element.

Some oMF linkers require the element size, as well as the variable size, to match when resolving
common variables declared in more than one module. Therefore NASM must allow you to specify the
element size on your far common variables. This is done by the following syntax:

common c_5by2 10:far 5 ; two five-byte elements
common c_2by5 10:far 2 ; five two-byte elements

If no element size is specified, the default is 1. Also, the FAR keyword is not required when an element
size is specified, since only far commons may have element sizes at all. So the above declarations could
equivalently be

common c_5by2 10:5 ; two five-byte elements
common c_2by5 10:2 ; five two-byte elements

In addition to these extensions, the common directive in obj also supports default-wrT specification like
EXTERN does (explained in section 8.4.7). So you can also declare things like

common foo 10:wrt dgroup
common bar 16:far 2:wrt data
common baz 24:wrt data:6

8.4.9

8.5

8.5.1

Embedded File Dependency Information

Since NASM 2.13.02, obj files contain embedded dependency file information. To suppress the
generation of dependencies, use

%pragma obj nodepend

win32: Microsoft Win32 Object Files

The win32 output format generates Microsoft Win32 object files, suitable for passing to Microsoft linkers
such as Visual C++. Note that Borland Win32 compilers do not use this format, but use obj instead (see
section 8.4).

win32 provides a default output file-name extension of .obj.

Note that although Microsoft say that Win32 object files follow the coFF (Common Object File Format)
standard, the object files produced by Microsoft Win32 compilers are not compatible with COFF linkers
such as DJGPP’s, and vice versa. This is due to a difference of opinion over the precise semantics of
PC-relative relocations. To produce COFF files suitable for DJGPP, use NASM’s coff output format;
conversely, the coff format does not produce object files that Win32 linkers can generate correct
output from.

win32 Extensions to the SecTION Directive

Like the obj format, win32 allows you to specify additional information on the secTIoN directive line, to
control the type and properties of sections you declare. Section types and properties are generated
automatically by NASM for the standard section names .text, .data and .bss, but may still be
overridden by these qualifiers.

The available qualifiers are:

+ code, or equivalently text, defines the section to be a code section. This marks the section as
readable and executable, but not writable, and also indicates to the linker that the type of the
section is code.

+ data and bss define the section to be a data section, analogously to code. Data sections are marked
as readable and writable, but not executable. data declares an initialized data section, whereas bss
declares an uninitialized data section.

+ rdata declares an initialized data section that is readable but not writable. Microsoft compilers use
this section to place constantsin it.

« info defines the section to be an informational section, which is not included in the executable file
by the linker, but may (for example) pass information to the linker. For example, declaring an
info-type section called .drectve causes the linker to interpret the contents of the section as
command-line options.

+ align=, used with a trailing number as in obj, gives the alignment requirements of the section. The
maximum you may specify is 64: the Win32 object file format contains no means to request a greater
section alignment than this. If alignment is not explicitly specified, the defaults are 16-byte
alignment for code sections, 8-byte alignment for rdata sections and 4-byte alignment for data (and
BSS) sections. Informational sections get a default alignment of 1 byte (no alignment), though the
value does not matter.

The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text code align=16
section .data data align=4
section .rdata rdata align=8
section .bss bss align=4

The wine4 format also adds:

97

8.5.2

98

section .pdata rdata align=4
section .xdata rdata align=8

Any other section name is treated by default like . text.

win32: Safe Structured Exception Handling

Among other improvements in Windows XP SP2 and Windows Server 2003 Microsoft has introduced
concept of "safe structured exception handling." General idea is to collect handlers’ entry points in
designated read-only table and have alleged entry point verified against this table prior exception
control is passed to the handler. In order for an executable module to be equipped with such "safe
exception handler table," all object modules on linker command line has to comply with certain
criteria. If one single module among them does not, then the table in question is omitted and above
mentioned run-time checks will not be performed for application in question. Table omission is by
default silent and therefore can be easily overlooked. One can instruct linker to refuse to produce
binary without such table by passing /safeseh command line option.

Without regard to this run-time check merits it’s natural to expect NASM to be capable of generating
modules suitable for /safeseh linking. From developer’s viewpoint the problem is two-fold:

+ how to adapt modules not deploying exception handlers of their own;
+ how to adapt/develop modules utilizing custom exception handling;

Former can be easily achieved with any NASM version by adding following line to source code:
$@feat.00 equ 1

As of version 2.03 NASM adds this absolute symbol automatically. If it’s not already present to be
precise. l.e. if for whatever reason developer would choose to assign another value in source file, it
would still be perfectly possible.

Registering custom exception handler on the other hand requires certain "magic." As of version 2.03
additional directive is implemented, safeseh, which instructs the assembler to produce appropriately
formatted input data for above mentioned "safe exception handler table." Its typical use would be:

section .text
extern _MessageBoxA@1l6

%if __?NASM_VERSION_ID?__ >= 0x02030000

safeseh handler ; register handler as "safe handler"
%endif

handler:

push DWORD 1 ; MB_OKCANCEL
push DWORD caption

push DWORD text

push DWORD 0

call _MessageBoxAR16
sub eax,1l ; incidentally suits as return value
; for exception handler
ret
global _main
_main:
push DWORD handler
push DWORD [fs:0]
mov DWORD [fs:0],esp ; engage exception handler
xor eax,eax
mov eax,DWORD[eax] ; cause exception
pop DWORD [fs:0] ; disengage exception handler
add esp,4
ret
text: db 0K to rethrow, CANCEL to generate core dump’,0
caption:db ’SEGV’,0

section .drectve 1info
db ’/defaultlib:user32.1lib /defaultlib:msvcrt.lib ’

8.5.3

8.6

8.6.1

As you might imagine, it’s perfectly possible to produce .exe binary with "safe exception handler table"
and yet engage unregistered exception handler. Indeed, handler is engaged by simply manipulating
[fs:0] location at run-time, something linker has no power over, run-time that is. It should be explicitly
mentioned that such failure to register handler’s entry point with safeseh directive has undesired side
effect at run-time. If exception is raised and unregistered handler is to be executed, the application is
abruptly terminated without any notification whatsoever. One can argue that system could at least
have logged some kind "non-safe exception handler in x.exe at address n" message in event log, but no,
literally no notification is provided and user is left with no clue on what caused application failure.

Finally, all mentions of linker in this paragraph refer to Microsoft linker version 7.x and later. Presence
of @feat.00 symbol and input data for "safe exception handler table" causes no backward
incompatibilities and "safeseh" modules generated by NASM 2.03 and later can still be linked by earlier
versions or non-Microsoft linkers.

Debugging formats for Windows

The win32 and wine4 formats support the Microsoft CodeView debugging format. Currently CodeView
version 8 format is supported (cv8), but newer versions of the CodeView debugger should be able to
handle this format as well.

winé4: Microsoft Win64 Object Files

The wine4 output format generates Microsoft Winé4 object files, which is nearly 100% identical to the
win32 object format (section 8.5) with the exception that it is meant to target 64-bit code and the x86-64
platform altogether. This object file is used exactly the same as the win32 object format (section 8.5), in
NASM, with regard to this exception.

wine4: Writing Position-Independent Code

While REL takes good care of RIP-relative addressing, there is one aspect that is easy to overlook for a
Win64 programmer: indirect references. Consider a switch dispatch table:

jmp qword [dsptch+raxx8]
dsptch: dq case0

dq casel

Even a novice Win64 assembler programmer will soon realize that the code is not 64-bit savvy. Most
notably linker will refuse to link it with

’ADDR32’ relocation to ’.text’ invalid without /LARGEADDRESSAWARE :NO

So [s]he will have to split jmp instruction as following:

lea rbx,[rel dsptch]
jmp qword [rbx+rax*8]

What happens behind the scene is that effective address in 1lea is encoded relative to instruction
pointer, or in perfectly position-independent manner. But this is only part of the problem! Trouble is
that in .dll context caseN relocations will make their way to the final module and might have to be
adjusted at .dll load time. To be specific when it can’t be loaded at preferred address. And when this
occurs, pages with such relocations will be rendered private to current process, which kind of
undermines the idea of sharing .dll. But no worry, it’s trivial to fix:

lea rbx,[rel dsptch]
add rbx, [rbx+rax*8]
jmp rbx

dsptch: dq caseO-dsptch

dq casel-dsptch

99

8.6.2

100

NASM version 2.03 and later provides another alternative, wrt ..imagebase operator, which returns
offset from base address of the current image, be it .exe or .dll module, therefore the name. For those
acquainted with PE-COFF format base address denotes start of IMAGE_DOS_HEADER structure. Here is
how to implement switch with these image-relative references:

lea rbx,[rel dsptch]
mov eax, [rbx+rax*4]
sub rbx,dsptch wrt ..imagebase
add rbx, rax
jmp rbx
dsptch: dd case® wrt ..imagebase
dd casel wrt ..imagebase

One can argue that the operator is redundant. Indeed, snippet before last works just fine with any
NASM version and is not even Windows specific... The real reason for implementing wrt ..imagebase
will become apparent in next paragraph.

It should be noted thatwrt ..imagebase is defined as 32-bit operand only:

dd label wrt ..imagebase ; ok
dq label wrt ..imagebase ; bad
mov eax,label wrt ..imagebase ; ok
mov rax,label wrt ..imagebase 3 bad

winé4: Structured Exception Handling

Structured exception handing in Win64 is completely different matter from Win32. Upon exception
program counter value is noted, and linker-generated table comprising start and end addresses of all
the functions [in given executable module] is traversed and compared to the saved program counter.
Thus so called UNWIND_INFO structure is identified. If it’s not found, then offending subroutine is
assumed to be "leaf" and just mentioned lookup procedure is attempted for its caller. In Win64 leaf
function is such function that does not call any other function nor modifies any Win64 non-volatile
registers, including stack pointer. The latter ensures that it’s possible to identify leaf function’s caller by
simply pulling the value from the top of the stack.

While majority of subroutines written in assembler are not calling any other function, requirement for
non-volatile registers’ immutability leaves developer with not more than 7 registers and no stack frame,
which is not necessarily what [s]he counted with. Customarily one would meet the requirement by
saving non-volatile registers on stack and restoring them upon return, so what can go wrong? If [and
only if] an exception is raised at run-time and no UNWIND_INFO structure is associated with such "leaf"
function, the stack unwind procedure will expect to find caller’s return address on the top of stack
immediately followed by its frame. Given that developer pushed caller’s non-volatile registers on stack,
would the value on top point at some code segment or even addressable space? Well, developer can
attempt copying caller’s return address to the top of stack and this would actually work in some very
specific circumstances. But unless developer can guarantee that these circumstances are always met,
it’s more appropriate to assume worst case scenario, i.e. stack unwind procedure going berserk.
Relevant question is what happens then? Application is abruptly terminated without any notification
whatsoever. Just like in Win32 case, one can argue that system could at least have logged "unwind
procedure went berserk in x.exe at address n" in event log, but no, no trace of failure is left.

Now, when we understand significance of the UNWIND_INFO structure, let’s discuss what’s in it and/or
how it’s processed. First of all it is checked for presence of reference to custom language-specific
exception handler. If there is one, then it’s invoked. Depending on the return value, execution flow is
resumed (exception is said to be "handled"), or rest of UNWIND_INFO structure is processed as following.
Beside optional reference to custom handler, it carries information about current callee’s stack frame
and where non-volatile registers are saved. Information is detailed enough to be able to reconstruct
contents of caller’s non-volatile registers upon call to current callee. And so caller’s context is
reconstructed, and then unwind procedure is repeated, i.e. another UNWIND_INFO structure is
associated, this time, with caller’s instruction pointer, which is then checked for presence of reference

to language-specific handler, etc. The procedure is recursively repeated till exception is handled. As last
resort system "handles" it by generating memory core dump and terminating the application.

As for the moment of this writing NASM unfortunately does not facilitate generation of above
mentioned detailed information about stack frame layout. But as of version 2.03 it implements building
blocks for generating structures involved in stack unwinding. As simplest example, here is how to
deploy custom exception handler for leaf function:

default rel

section .text
extern MessageBoxA

handler:
sub rsp,40
mov rex,0
lea rdx, [text]
lea r8, [caption]
mov ro,1 ; MB_OKCANCEL
call MessageBoxA
sub eax,1l ; incidentally suits as return value
; for exception handler
add rsp,40
ret
global main
main:
xor rax,rax
mov rax,QWORD[rax] ; cause exception
ret
main_end:
text: db 0K to rethrow, CANCEL to generate core dump’,0
caption:db ’SEGV’,0
section .pdata rdata align=4
dd main wrt ..imagebase
dd main_end wrt ..imagebase
dd xmain wrt ..imagebase
section .xdata rdata align=8
xmain: db 9,0,0,0
dd handler wrt ..imagebase
section .drectve info
db ’/defaultlib:user32.1lib /defaultlib:msvcrt.lib ’

What you see in .pdata section is element of the "table comprising start and end addresses of function"
along with reference to associated UNWIND_INFO structure. And what you see in .xdata section is
UNWIND_INFO structure describing function with no frame, but with designated exception handler.
References are required to be image-relative (which is the real reason for implementing
wrt ..imagebase operator). It should be noted that rdata align=n, as well as wrt ..imagebase, are
optional in these two segments’ contexts, i.e. can be omitted. Latter means that all 32-bit references,
not only above listed required ones, placed into these two segments turn out image-relative. Why is it
important to understand? Developer is allowed to append handler-specific data to UNWIND_INFO
structure, and if [s]he adds a 32-bit reference, then [s]he will have to remember to adjust its value to
obtain the real pointer.

As already mentioned, in Win64 terms leaf function is one that does not call any other function nor
modifies any non-volatile register, including stack pointer. But it’s not uncommon that assembler
programmer plans to utilize every single register and sometimes even have variable stack frame. Is
there anything one can do with bare building blocks? l.e. besides manually composing fully-fledged
UNWIND_INFO structure, which would surely be considered error-prone? Yes, there is. Recall that
exception handler is called first, before stack layout is analyzed. As it turned out, it’s perfectly possible
to manipulate current callee’s context in custom handler in manner that permits further stack
unwinding. General idea is that handler would not actually "handle" the exception, but instead restore
callee’s context, as it was at its entry point and thus mimic leaf function. In other words, handler would
simply undertake part of unwinding procedure. Consider following example:

101

8.7

8.8

102

function:

mov rax,rsp ; copy rsp to volatile register
push ris ; save non-volatile registers
push rbx

push rbp

mov rll,rsp ; prepare variable stack frame
sub rll,rcx

and rll,-64

mov QWORD[r11],rax ; check for exceptions

mov rsp,ril ; allocate stack frame

mov QWORD[rsp],rax ; save original rsp value

magic_point:

mov r11,QWORD[rsp] ; pull original rsp value
mov rbp,QWORD[r11-24]

mov rbx,QWORD[r11-16]

mov r15,QWORD[r11-8]

mov rsp,ril ; destroy frame

ret

The keyword is that up to magic_point original rsp value remains in chosen volatile register and no
non-volatile register, except for rsp, is modified. While past magic_point rsp remains constant till the
very end of the function. In this case custom language-specific exception handler would look like this:

EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
CONTEXT *context,DISPATCHER_CONTEXT xdisp)
{ ULONG64 *rsp;
if (context->Rip<(ULONG64)magic_point)
rsp = (ULONG64 *)context->Rax;
else
{ rsp = ((ULONG64 xx)context->Rsp)[0];

context->Rbp = rsp[-3];
context->Rbx = rsp[-2];
context->R15 = rsp[-1];

}
context->Rsp = (ULONG64)rsp;

memcpy (disp->ContextRecord,context,sizeof (CONTEXT));

Rt1VirtualUnwind (UNW_FLAG_NHANDLER,disp->ImageBase,
dips->ControlPc,disp->FunctionEntry,disp->ContextRecord,
&disp->HandlerData,&disp->EstablisherFrame,NULL) ;

return ExceptionContinueSearch;

}

As custom handler mimics leaf function, corresponding UNWIND_INFO structure does not have to contain
any information about stack frame and its layout.

coff: Common Object File Format
The coff output type produces coFF object files suitable for linking with the DJGPP linker.
coff provides a default output file-name extension of . o.

The coff format supports the same extensions to the SECTION directive as win32 does, except that the
align qualifier and the info section type are not supported.

macho32 and macho64: Mach Object File Format

The macho32 and macho64 output formts produces Mach-O object files suitable for linking with the
MacOS X linker. macho is a synonym for macho32.

macho provides a default output file-name extension of .o.

8.8.1

8.8.2

8.8.3

8.8.4

macho extensions to the secTIoN Directive

The macho output format specifies section names in the format "segment,section". No spaces are
allowed around the comma. The following flags can also be specified:

+ data - this section contains initialized data items

+ code - this section contains code exclusively

+ mixed - this section contains both code and data

+ bss - this section is uninitialized and filled with zero

e zerofill-Same asbss

+ no_dead_strip - inhibit dead code stripping for this section
+ Tlive_support - set the live support flag for this section

+ strip_static_syms - strip static symbols for this section

+ debug - this section contains debugging information

+ align=alignment - specify section alignment

The default is data, unless the section name is __text or __bss in which case the default is text or bss,
respectively.

For compatibility with other Unix platforms, the following standard names are also supported:

.text = __TEXT,__text text
.rodata = __DATA,__const data
.data = __DATA,__data data
.bss = __DATA bss bss

) ——

If the .rodata section contains no relocations, it is instead put into the __TEXT,__const section unless
this section has already been specified explicitly. However, it is probably better to specify
__TEXT,__const and __DATA, __const explicitly as appropriate.

) ——) ——

Thread Local Storage in Mach-O: macho special symbols and WRT

Mach-O defines the following special symbols that can be used on the right-hand side of the wrT
operator:

+ ..tlvpisused to specify access to thread-local storage.

+ ..gotpcrel is used to specify references to the Global Offset Table. The GOT is supported in the
macho64 format only.

macho specfic directive subsections_via_symbols

The directive subsections_via_symbols sets the MH_SUBSECTIONS_VIA_SyMBOLS flag in the Mach-O
header, that effectively separates a block (or a subsection) based on a symbol. It is often used for
eliminating dead codes by a linker.

This directive takes no arguments.

This is a macro implemented as a %pragma. It can also be specified in its %pragma form, in which case it
will not affect non-Mach-0 builds of the same source code:

%pragma macho subsections_via_symbols

macho specfic directive no_dead_strip

The directive no_dead_strip sets the Mach-O sH_NO_DEAD_STRIP section flag on the section containing
a a specific symbol. This directive takes a list of symbols as its arguments.

103

8.8.5

8.9

8.9.1

8.9.2

104

This is a macro implemented as a %pragma. It can also be specified in its %pragma form, in which case it
will not affect non-Mach-0 builds of the same source code:

%pragma macho no_dead_strip symbol...
macho specific extensions to the GLOBAL Directive: private_extern

The directive extension to GLOBAL marks the symbol with limited global scope. For example, you can
specify the global symbol with this extension:

global foo:private_extern
foo:
; codes

Using with static linker will clear the private extern attribute. But linker option like
-keep_private_externs can avoid it.

elf32, elf64, elfx32: Executable and Linkable Format Object Files

The elf32, elfe4 and elfx32 output formats generate ELF32 and ELF64 (Executable and Linkable
Format) object files, as used by Linux as well as Unix System V, including Solaris x86, UnixWare and SCO
Unix. ELF provides a default output file-name extension of .o. el f is a synonym for elf32.

The e1fx32 format is used for the x32 ABI, which is a 32-bit ABI with the CPU in 64-bit mode.

ELF specific directive osab

The ELF header specifies the application binary interface for the target operating system (OSABI). This
field can be set by using the osabi directive with the numeric value (0-255) of the target system. If this
directive is not used, the default value will be "UNIX System V ABI" (0) which will work on most systems
which support ELF.

ELF extensions to the secTIOoN Directive

Like the obj format, elf allows you to specify additional information on the SecTION directive line, to
control the type and properties of sections you declare. Section types and properties are generated
automatically by NASM for the standard section names, but may still be overridden by these qualifiers.

The available qualifiers are:

+ alloc defines the section to be one which is loaded into memory when the program is run. noalloc
defines it to be one which is not, such as an informational or comment section.

+ exec defines the section to be one which should have execute permission when the program is run.
noexec defines it as one which should not.

+ write defines the section to be one which should be writable when the program is run. nowrite
defines it as one which should not.

+ progbits defines the section to be one with explicit contents stored in the object file: an ordinary
code or data section, for example.

+ nobits defines the section to be one with no explicit contents given, such as a BSS section.

+ note indicates that this section contains ELF notes. The content of ELF notes are specified using
normal assembly instructions; it is up to the programmer to ensure these are valid ELF notes.

+ preinit_array indicates that this section contains function addresses to be called before any other
initialization has happened.

« init_array indicates that this section contains function addresses to be called during initialization.
« fini_array indicates that this section contains function pointers to be called during termination.

+ align=, used with a trailing number as in obj, gives the alignment requirements of the section.

8.9.3

byte, word, dword, qword, tword, oword, yword, or zword with an optional xmultiplier specify the
fundamental data item size for a section which contains either fixed-sized data structures or strings;
it also sets a default alignment. This is generally used with the strings and merge attributes (see
below.) For example bytex4 defines a unit size of 4 bytes, with a default alignment of 1; dword also
defines a unit size of 4 bytes, but with a default alignment of 4. The align= attribute, if specified,
overrides this default alignment.

pointer is equivalent to dword for e1f32 or e1fx32, and qword for elf64.

strings indicate that this section contains exclusively null-terminated strings. By default these are
assumed to be byte strings, but a size specifier can be used to override that.

merge indicates that duplicate data elements in this section should be merged with data elements
from other object files. Data elements can be either fixed-sized objects or null-terminatedstrings
(with the strings attribute.) A size specifier is required unless strings is specified, in which case the
size defaults to byte.

t1s defines the section to be one which contains thread local variables.

The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text progbits alloc exec nowrite align=16
section .rodata progbits alloc noexec nowrite align=4
section .lrodata progbits alloc noexec nowrite align=4
section .data progbits alloc noexec write align=4
section .ldata progbits alloc noexec write align=4
section .bss nobits alloc noexec write align=4
section .lbss nobits alloc noexec write align=4
section .tdata progbits alloc noexec write align=4 tls
section .tbss nobits alloc noexec write align=4 tls
section .comment progbits noalloc noexec nowrite align=1
section .preinit_array preinit_array alloc noexec nowrite pointer
section .init_array init_array alloc noexec nowrite pointer
section .fini_array fini_array alloc noexec nowrite pointer
section .note note noalloc noexec nowrite align=4
section other progbits alloc noexec nowrite align=1

(Any section name other than those in the above table is treated by default like other in the above
table. Please note that section names are case sensitive.)

Position-Independent Code: ELF Special Symbols and wrT

Since ELF does not support segment-base references, the wWRT operator is not used for its normal
purpose; therefore NASM’s elf output format makes use of wrT for a different purpose, namely the
PIC-specific relocation types.

elf defines five special symbols which you can use as the right-hand side of the wRT operator to obtain
PIC relocation types. They are ..gotpc, ..gotoff, ..got, ..plt and ..sym. Their functions are
summarized here:

Referring to the symbol marking the global offset table base using wrt ..gotpc will end up giving
the distance from the beginning of the current section to the global offset table.
(_GLOBAL_OFFSET_TABLE_ is the standard symbol name used to refer to the GOT.) So you would then
need to add $$ to the result to get the real address of the GOT.

Referring to a location in one of your own sections using wrt ..gotoff will give the distance from
the beginning of the GOT to the specified location, so that adding on the address of the GOT would
give the real address of the location you wanted.

Referring to an external or global symbol using wrt ..got causes the linker to build an entry in the
GOT containing the address of the symbol, and the reference gives the distance from the beginning

105

8.94

8.9.5

106

of the GOT to the entry; so you can add on the address of the GOT, load from the resulting address,
and end up with the address of the symbol.

+ Referring to a procedure name using wrt ..plt causes the linker to build a procedure linkage table
entry for the symbol, and the reference gives the address of the PLT entry. You can only use this in
contexts which would generate a PC-relative relocation normally (i.e. as the destination for cALL or
JMP), since ELF contains no relocation type to refer to PLT entries absolutely.

+ Referring to a symbol name using wrt ..sym causes NASM to write an ordinary relocation, but
instead of making the relocation relative to the start of the section and then adding on the offset to
the symbol, it will write a relocation record aimed directly at the symbol in question. The distinction
is a necessary one due to a peculiarity of the dynamic linker.

A fuller explanation of how to use these relocation types to write shared libraries entirely in NASM is
given in section 10.2.

Thread Local Storage in ELF: elf Special Symbols and wrT

+ In ELF32 mode, referring to an external or global symbol using wrt ..tlsie causes the linker to
build an entry in the GOT containing the offset of the symbol within the TLS block, so you can access
the value of the symbol with code such as:

mov eax, [tid wrt ..tlsie]
mov [gs:eax],ebx

+ In ELF64 or ELFx32 mode, referring to an external or global symbol usingwrt ..gottpoff causes the
linker to build an entry in the GOT containing the offset of the symbol within the TLS block, so you
can access the value of the symbol with code such as:

mov rax,[rel tid wrt ..gottpoff]
mov rex, [fs:rax]

elf Extensions to the GLOBAL Directive

ELF object files can contain more information about a global symbol than just its address: they can
contain the size of the symbol and its type as well. These are not merely debugger conveniences, but
are actually necessary when the program being written is a shared library. NASM therefore supports
some extensions to the GLOBAL directive, allowing you to specify these features.

You can specify whether a global variable is a function or a data object by suffixing the name with a
colon and the word function or data. (object is a synonym for data.) For example:

global hashlookup: function, hashtable:data
exports the global symbol hashlookup as a function and hashtable as a data object.

Optionally, you can control the ELF visibility of the symbol. Just add one of the visibility keywords:
default, internal, hidden, or protected. The default is default of course. For example, to make
hashlookup hidden:

global hashlookup: function hidden

Since version 2.15, it is possible to specify symbols binding. The keywords are: weak to generate weak
symbol or strong. The default is strong.

You can also specify the size of the data associated with the symbol, as a numeric expression (which
may involve labels, and even forward references) after the type specifier. Like this:

global hashtable:data (hashtable.end - hashtable)

hashtable:

db this,that,theother ; some data here
.end:

8.9.6

8.9.7

8.9.8

8.9.9

8.10

8.11

This makes NASM automatically calculate the length of the table and place that information into the
ELF symbol table.

Declaring the type and size of global symbols is necessary when writing shared library code. For more
information, see section 10.2.4.

elf Extensions to the EXTERN Directive

Since version 2.15 it is possible to specify keyword weak to generate weak external reference. Example:
extern weak_ref:weak

elf Extensions to the common Directive

ELF also allows you to specify alignment requirements on common variables. This is done by putting a
number (which must be a power of two) after the name and size of the common variable, separated (as
usual) by a colon. For example, an array of doublewords would benefit from 4-byte alignment:

common dwordarray 128:4

This declares the total size of the array to be 128 bytes, and requires that it be aligned on a 4-byte
boundary.

16-bit code and ELF

Older versions of the ELF32 specification did not provide relocations for 8- and 16-bit values. It is now
part of the formal specification, and any new enough linker should support them.

ELF has currently no support for segmented programming.

Debug formats and ELF

ELF provides debug information in sTABS and DWARF formats. Line number information is generated for
all executable sections, but please note that only the ".text" section is executable by default.

aout: Linux a.out Object Files

The aout format generates a.out object files, in the form used by early Linux systems (current Linux
systems use ELF, see section 8.9.) These differ from other a.out object files in that the magic number in
the first four bytes of the file is different; also, some implementations of a.out, for example NetBSD’s,
support position-independent code, which Linux’s implementation does not.

a.out provides a default output file-name extension of .o.

a.out is a very simple object format. It supports no special directives, no special symbols, no use of SEG
or WRT, and no extensions to any standard directives. It supports only the three standard section names
.text, .dataand .bss.

aoutb: NetBSD/FreeBSD/OpenBSD a.out Object Files

The aoutb format generates a.out object files, in the form used by the various free BSD unix clones,
NetBSD, FreeBSD and OpenBSD. For simple object files, this object format is exactly the same as aout
except for the magic number in the first four bytes of the file. However, the aoutb format supports
position-independent code in the same way as the elf format, so you can use it to write BSD shared
libraries.

aoutb provides a default output file-name extension of .o.

aoutb supports no special directives, no special symbols, and only the three standard section names
.text, .data and .bss. However, it also supports the same use of WRT as elf does, to provide
position-independent code relocation types. See section 8.9.3 for full documentation of this feature.

107

8.12

8.13

8.13.1

8.13.2

8.13.3

108

aoutb also supports the same extensions to the GLOBAL directive as elf does: see section 8.9.5 for
documentation of this.

as86: Minix/Linux as86 Object Files

The Minix/Linux 16-bit assembler assé has its own non-standard object file format. Although its
companion linker 1d86 produces something close to ordinary a.out binaries as output, the object file
format used to communicate between asge and 1d8e is not itself a. out.

NASM supports this format, just in case it is useful, as as86. as86 provides a default output file-name
extension of .o.

as86 is a very simple object format (from the NASM user’s point of view). It supports no special
directives, no use of SEG or wRT, and no extensions to any standard directives. It supports only the three
standard section names . text, .data and .bss. The only special symbol supported is . .start.

rdf: Relocatable Dynamic Object File Format (deprecated)

The RDOFF format is strongly deprecated and has been disabled starting in NASM 2.15.04. The RDOFF
backend has been broken since at least NASM 2.14. The RDOFF utilities are scheduled to be removed from
the NASM distribution in NASM 2.16. If you have a strong use case for the RDOFF format, file a bug report
athttps://bugs.nasm.us/ as soon as possible.

The rdf output format produces RDOFF object files. RDOFF (Relocatable Dynamic Object File Format) is a
home-grown object-file format, designed alongside NASM itself and reflecting in its file format the
internal structure of the assembler.

RDOFF is not used by any well-known operating systems. Those writing their own systems, however,
may well wish to use RDOFF as their object format, on the grounds that it is designed primarily for
simplicity and contains very little file-header bureaucracy.

The Unix NASM archive, and the DOS archive which includes sources, both contain an rdoff
subdirectory holding a set of RDOFF utilities: an RDF linker, an RDF static-library manager, an RDF file
dump utility, and a program which will load and execute an RDF executable under Linux.

Requiring a Library: The LIBRARY Directive

RDOFF contains a mechanism for an object file to demand a given library to be linked to the module,
either at load time or run time. This is done by the LIBRARY directive, which takes one argument which
is the name of the module:

library mylib.rdl

Specifying a Module Name: The MoDULE Directive

Special RDOFF header record is used to store the name of the module. It can be used, for example, by
run-time loader to perform dynamic linking. MoDULE directive takes one argument which is the name of
current module:

module mymodname

Note that when you statically link modules and tell linker to strip the symbols from output file, all
module names will be stripped too. To avoid it, you should start module names with $, like:

module S$kernel.core
rdf Extensions to the cLOBAL Directive

RDOFF global symbols can contain additional information needed by the static linker. You can mark a
global symbol as exported, thus telling the linker do not strip it from target executable or library file.
Like in ELF, you can also specify whether an exported symbol is a procedure (function) or data object.

Suffixing the name with a colon and the word export you make the symbol exported:

https://bugs.nasm.us/

8.13.4

8.14

global sys_open:export

To specify that exported symbol is a procedure (function), you add the word proc or function after
declaration:

global sys_open:export proc

Similarly, to specify exported data object, add the word data or object to the directive:

global kernel_ticks:export data

rdf Extensions to the EXTERN Directive

By default the EXTERN directive in RDOFF declares a "pure external" symbol (i.e. the static linker will
complain if such a symbol is not resolved). To declare an "imported" symbol, which must be resolved
later during a dynamic linking phase, RDOFF offers an additional import modifier. As in GLOBAL, you can
also specify whether an imported symbol is a procedure (function) or data object. For example:

library $libc

extern _open:import

extern _printf:import proc

extern _errno:import data

Here the directive LIBRARY is also included, which gives the dynamic linker a hint as to where to find
requested symbols.

dbg: Debugging Format

The dbg format does not output an object file as such; instead, it outputs a text file which contains a
complete list of all the transactions between the main body of NASM and the output-format back end
module. It is primarily intended to aid people who want to write their own output drivers, so that they
can get a clearer idea of the various requests the main program makes of the output driver, and in what
order they happen.

For simple files, one can easily use the dbg format like this:

nasm -f dbg filename.asm

which will generate a diagnostic file called filename.dbg. However, this will not work well on files
which were designed for a different object format, because each object format defines its own macros
(usually user-level forms of directives), and those macros will not be defined in the dbg format.
Therefore it can be useful to run NASM twice, in order to do the preprocessing with the native object
format selected:

nasm -e -f rdf -o rdfprog.i rdfprog.asm
nasm -a -f dbg rdfprog.1

This preprocesses rdfprog.asminto rdfprog. 1, keeping the rdf object format selected in order to make
sure RDF special directives are converted into primitive form correctly. Then the preprocessed source is
fed through the dbg format to generate the final diagnostic output.

This workaround will still typically not work for programs intended for obj format, because the obj
SEGMENT and GROUP directives have side effects of defining the segment and group names as symbols;
dbg will not do this, so the program will not assemble. You will have to work around that by defining the
symbols yourself (using EXTERN, for example) if you really need to get a dbg trace of an obj-specific
source file.

dbg accepts any section name and any directives at all, and logs them all to its output file.
dbg accepts and logs any %pragma, but the specific %pragma:
%pragma dbg maxdump <size>

where <size> is either a number or unlimited, can be used to control the maximum size for dumping
the full contents of a rawdata output object.

109

110

9.1

9.1.1

Chapter 9: Writing 16-bit Code (DOS, Windows 3/3.1)

This chapter attempts to cover some of the common issues encountered when writing 16-bit code to
run under MS-DOS or Windows 3.x. It covers how to link programs to produce .EXE or .com files, how to
write .SYS device drivers, and how to interface assembly language code with 16-bit C compilers and
with Borland Pascal.

Producing .EXE Files

Any large program written under DOS needs to be built as a . EXE file: only . EXE files have the necessary
internal structure required to span more than one 64K segment. Windows programs, also, have to be
built as . EXE files, since Windows does not support the . com format.

In general, you generate .EXE files by using the obj output format to produce one or more .obj files,
and then linking them together using a linker. However, NASM also supports the direct generation of
simple DOS .ExE files using the bin output format (by using DB and pw to construct the . EXE file header),
and a macro package is supplied to do this. Thanks to Yann Guidon for contributing the code for this.

NASM may also support . EXE natively as another output format in future releases.

Using the obj Format To Generate .EXE Files
This section describes the usual method of generating . exE files by linking . 0BJ files together.

Most 16-bit programming language packages come with a suitable linker; if you have none of these,
there is a free linker called VAL, available in LzH archive format from x2ftp.oulu.fi. An LZH archiver
can be found at ftp.simtel.net. There is another ‘free’ linker (though this one doesn’t come with
sources) called FREELINK, available from www.pcorner.com. A third, djlink, written by DJ Delorie, is
available at www.delorie.com. A fourth linker, ALINK, written by Anthony A.J. Williams, is available at
alink.sourceforge.net.

When linking several .0B3 files into a .EXE file, you should ensure that exactly one of them has a start
point defined (using the ..start special symbol defined by the obj format: see section 8.4.6). If no
module defines a start point, the linker will not know what value to give the entry-point field in the
output file header; if more than one defines a start point, the linker will not know which value to use.

An example of a NASM source file which can be assembled to a .083J file and linked on its own to a . EXE
is given here. It demonstrates the basic principles of defining a stack, initialising the segment registers,
and declaring a start point. This file is also provided in the test subdirectory of the NASM archives,
under the name objexe.asm.

segment code

..start:
mov ax,data
mov ds,ax
mov ax,stack
mov ss,ax
mov sp,stacktop

This initial piece of code sets up Ds to point to the data segment, and initializes ss and sp to point to the
top of the provided stack. Notice that interrupts are implicitly disabled for one instruction after a move
into ss, precisely for this situation, so that there’s no chance of an interrupt occurring between the loads
of ss and sp and not having a stack to execute on.

Note also that the special symbol ..start is defined at the beginning of this code, which means that
will be the entry point into the resulting executable file.

111

ftp://x2ftp.oulu.fi/pub/msdos/programming/lang/
ftp://ftp.simtel.net/pub/simtelnet/msdos/arcers
http://www.pcorner.com/tpc/old/3-101.html
http://www.delorie.com/djgpp/16bit/djlink/
http://alink.sourceforge.net

9.1.2

112

mov dx,hello
mov ah,9
int 0x21

The above is the main program: load ps:bx with a pointer to the greeting message (hello is implicitly
relative to the segment data, which was loaded into Ds in the setup code, so the full pointer is valid),
and call the DOS print-string function.

mov ax,0x4co00
int 0x21

This terminates the program using another DOS system call.

segment data
hello: db ’hello, world’, 13, 10, ’$’

The data segment contains the string we want to display.

segment stack stack
resb 64
stacktop:

The above code declares a stack segment containing 64 bytes of uninitialized stack space, and points
stacktop at the top of it. The directive segment stack stack defines a segment called stack, and also
of type sTACK. The latter is not necessary to the correct running of the program, but linkers are likely to
issue warnings or errors if your program has no segment of type STACK.

The above file, when assembled into a .0B3 file, will link on its own to a valid . ExE file, which when run
will print ‘hello, world’ and then exit.

Using the bin Format To Generate .EXE Files

The .exk file format is simple enough that it’s possible to build a .EXE file by writing a pure-binary
program and sticking a 32-byte header on the front. This header is simple enough that it can be
generated using DB and bw commands by NASM itself, so that you can use the bin output format to
directly generate . EXE files.

Included in the NASM archives, in the misc subdirectory, is a file exebin.mac of macros. It defines three
macros: EXE_begin, EXE_stack and EXE_end.

To produce a .EXE file using this method, you should start by using %include to load the exebin.mac
macro package into your source file. You should then issue the EXE_begin macro call (which takes no
arguments) to generate the file header data. Then write code as normal for the bin format - you can
use all three standard sections .text, .data and .bss. At the end of the file you should call the EXE_end
macro (again, no arguments), which defines some symbols to mark section sizes, and these symbols
are referred to in the header code generated by EXE_begin.

In this model, the code you end up writing starts at ex1ee, just like a . com file - in fact, if you strip off the
32-byte header from the resulting .EexE file, you will have a valid .com program. All the segment bases
are the same, so you are limited to a 64K program, again just like a . com file. Note that an orG directive
is issued by the EXE_begin macro, so you should not explicitly issue one of your own.

You can’t directly refer to your segment base value, unfortunately, since this would require a relocation
in the header, and things would get a lot more complicated. So you should get your segment base by
copying it out of cs instead.

On entry to your . EXE file, sS:SP are already set up to point to the top of a 2Kb stack. You can adjust the
default stack size of 2Kb by calling the EXE_stack macro. For example, to change the stack size of your
program to 64 bytes, you would call EXE_stack 64.

A sample program which generates a . EXE file in this way is given in the test subdirectory of the NASM
archive, as binexe.asm.

9.2

9.2.1

9.2.2

Producing .com Files

While large DOS programs must be written as .EeXE files, small ones are often better written as .com
files. . comfiles are pure binary, and therefore most easily produced using the bin output format.

Using the bin Format To Generate .com Files

.com files expect to be loaded at offset 106h into their segment (though the segment may change).
Execution then begins at 100h, i.e. right at the start of the program. So to write a .com program, you
would create a source file looking like

org 100h
section .text

start:
; put your code here

section .data
; put data ditems here
section .bss

; put uninitialized data here

The bin format puts the .text section first in the file, so you can declare data or BSS items before
beginning to write code if you want to and the code will still end up at the front of the file where it
belongs.

The BSS (uninitialized data) section does not take up space in the .cow file itself: instead, addresses of
BSS items are resolved to point at space beyond the end of the file, on the grounds that this will be free
memory when the program is run. Therefore you should not rely on your BSS being initialized to all
zeros when you run.

To assemble the above program, you should use a command line like

nasm myprog.asm -fbin -o myprog.com

The bin format would produce a file called myprog if no explicit output file name were specified, so you
have to override it and give the desired file name.

Using the obj Format To Generate .com Files

If you are writing a .com program as more than one module, you may wish to assemble several .0BJ
files and link them together into a .com program. You can do this, provided you have a linker capable of
outputting .cowm files directly (TLINK does this), or alternatively a converter program such as EXE2BIN to
transform the . EXE file output from the linker into a . com file.

If you do this, you need to take care of several things:

+ The first object file containing code should start its code segment with a line like RESB 1006h. This is
to ensure that the code begins at offset 100h relative to the beginning of the code segment, so that
the linker or converter program does not have to adjust address references within the file when
generating the .cowm file. Other assemblers use an orG directive for this purpose, but orG in NASM is a
format-specific directive to the bin output format, and does not mean the same thing as it does in
MASM-compatible assemblers.

» Youdon't need to define a stack segment.

+ All your segments should be in the same group, so that every time your code or data references a
symbol offset, all offsets are relative to the same segment base. This is because, when a . com file is
loaded, all the segment registers contain the same value.

113

9.3

9.4

9.4.1

114

Producing .sys Files

MS-DOS device drivers - .svs files - are pure binary files, similar to .com files, except that they start at
origin zero rather than 1eeh. Therefore, if you are writing a device driver using the bin format, you do
not need the oRG directive, since the default origin for bin is zero. Similarly, if you are using obj, you do
not need the RESB 1006h at the start of your code segment.

.svs files start with a header structure, containing pointers to the various routines inside the driver
which do the work. This structure should be defined at the start of the code segment, even though it is
not actually code.

For more information on the format of .svs files, and the data which has to go in the header structure,
a list of books is given in the Frequently Asked Questions list for the newsgroup
comp.os.msdos.programmer.

Interfacing to 16-bit C Programs

This section covers the basics of writing assembly routines that call, or are called from, C programs. To
do this, you would typically write an assembly module as a .08B3J file, and link it with your C modules to
produce a mixed-language program.

External Symbol Names

C compilers have the convention that the names of all global symbols (functions or data) they define
are formed by prefixing an underscore to the name as it appears in the C program. So, for example, the
function a C programmer thinks of as printf appears to an assembly language programmer as _printf.
This means that in your assembly programs, you can define symbols without a leading underscore, and
not have to worry about name clashes with C symbols.

If you find the underscores inconvenient, you can define macros to replace the GLOBAL and EXTERN
directives as follows:

%macro cglobal 1

global _%1
%define %1 _%1

%endmacro
%macro cextern 1

extern _%1
%define %1 _%1

%endmacro

(These forms of the macros only take one argument at a time; a %rep construct could solve this.)
If you then declare an external like this:

cextern printf

then the macro will expand it as

extern _printf
%define printf _printf

Thereafter, you can reference printf as if it was a symbol, and the preprocessor will put the leading
underscore on where necessary.

The cglobal macro works similarly. You must use cglobal before defining the symbol in question, but
you would have had to do that anyway if you used GLOBAL.

Also see section 2.1.28.

news:comp.os.msdos.programmer

9.4.2 Memory Models

NASM contains no mechanism to support the various C memory models directly; you have to keep track
yourself of which one you are writing for. This means you have to keep track of the following things:

9.4.3

In models using a single code segment (tiny, small and compact), functions are near. This means
that function pointers, when stored in data segments or pushed on the stack as function arguments,
are 16 bits long and contain only an offset field (the cs register never changes its value, and always
gives the segment part of the full function address), and that functions are called using ordinary near
CALL instructions and return using RETN (which, in NASM, is synonymous with RET anyway). This
means both that you should write your own routines to return with RETN, and that you should call
external C routines with near CALL instructions.

In models using more than one code segment (medium, large and huge), functions are far. This
means that function pointers are 32 bits long (consisting of a 16-bit offset followed by a 16-bit
segment), and that functions are called using CALL FAR (or CALL seg:offset) and return using RETF.
Again, you should therefore write your own routines to return with RETF and use CALL FAR to call
external routines.

In models using a single data segment (tiny, small and medium), data pointers are 16 bits long,
containing only an offset field (the ps register doesn’t change its value, and always gives the segment
part of the full data item address).

In models using more than one data segment (compact, large and huge), data pointers are 32 bits
long, consisting of a 16-bit offset followed by a 16-bit segment. You should still be careful not to
modify DS in your routines without restoring it afterwards, but Es is free for you to use to access the
contents of 32-bit data pointers you are passed.

The huge memory model allows single data items to exceed 64K in size. In all other memory models,
you can access the whole of a data item just by doing arithmetic on the offset field of the pointer you
are given, whether a segment field is present or not; in huge model, you have to be more careful of
your pointer arithmetic.

In most memory models, there is a default data segment, whose segment address is kept in DS
throughout the program. This data segment is typically the same segment as the stack, kept in ss, so
that functions’ local variables (which are stored on the stack) and global data items can both be
accessed easily without changing ps. Particularly large data items are typically stored in other
segments. However, some memory models (though not the standard ones, usually) allow the
assumption that ss and ps hold the same value to be removed. Be careful about functions’ local
variables in this latter case.

In models with a single code segment, the segment is called _TEXT, so your code segment must also go
by this name in order to be linked into the same place as the main code segment. In models with a
single data segment, or with a default data segment, it is called _DATA.

Function Definitions and Function Calls

The C calling convention in 16-bit programs is as follows. In the following description, the words caller
and callee are used to denote the function doing the calling and the function which gets called.

The caller pushes the function’s parameters on the stack, one after another, in reverse order (right to
left, so that the first argument specified to the function is pushed last).

The caller then executes a CALL instruction to pass control to the callee. This cALL is either near or far
depending on the memory model.

The callee receives control, and typically (although this is not actually necessary, in functions which
do not need to access their parameters) starts by saving the value of sp in BP so as to be able to use
BP as a base pointer to find its parameters on the stack. However, the caller was probably doing this

115

116

too, so part of the calling convention states that BP must be preserved by any C function. Hence the
callee, if it is going to set up BP as a frame pointer, must push the previous value first.

+ The callee may then access its parameters relative to Bp. The word at [BP] holds the previous value
of BP as it was pushed; the next word, at [BP+2], holds the offset part of the return address, pushed
implicitly by caLL. In a small-model (near) function, the parameters start after that, at [BP+4]; in a
large-model (far) function, the segment part of the return address lives at [BP+4], and the
parameters begin at [BP+6]. The leftmost parameter of the function, since it was pushed last, is
accessible at this offset from Bp; the others follow, at successively greater offsets. Thus, in a function
such as printf which takes a variable number of parameters, the pushing of the parameters in
reverse order means that the function knows where to find its first parameter, which tells it the
number and type of the remaining ones.

+ The callee may also wish to decrease sp further, so as to allocate space on the stack for local
variables, which will then be accessible at negative offsets from Bp.

« The callee, if it wishes to return a value to the caller, should leave the value in AL, AX or DX:AX
depending on the size of the value. Floating-point results are sometimes (depending on the
compiler) returned in sTe.

+ Once the callee has finished processing, it restores sp from Bp if it had allocated local stack space,
then pops the previous value of Bp, and returns via RETN or RETF depending on memory model.

« When the caller regains control from the callee, the function parameters are still on the stack, so it
typically adds an immediate constant to sp to remove them (instead of executing a number of slow
POP instructions). Thus, if a function is accidentally called with the wrong number of parameters due
to a prototype mismatch, the stack will still be returned to a sensible state since the caller, which
knows how many parameters it pushed, does the removing.

It is instructive to compare this calling convention with that for Pascal programs (described in section
9.5.1). Pascal has a simpler convention, since no functions have variable numbers of parameters.
Therefore the callee knows how many parameters it should have been passed, and is able to deallocate
them from the stack itself by passing an immediate argument to the RET or RETF instruction, so the
caller does not have to do it. Also, the parameters are pushed in left-to-right order, not right-to-left,
which means that a compiler can give better guarantees about sequence points without performance
suffering.

Thus, you would define a function in C style in the following way. The following example is for small
model:

global _myfunc

_myfunc:
push bp
mov bp,sp
sub sp,0x40 ; 64 bytes of local stack space
mov bx, [bp+4] ; first parameter to function
; some more code
mov sp,bp ; undo "sub sp,0x40" above
pop bp
ret

For a large-model function, you would replace RET by RETF, and look for the first parameter at [BP+6]
instead of [BP+4]. Of course, if one of the parameters is a pointer, then the offsets of subsequent
parameters will change depending on the memory model as well: far pointers take up four bytes on the
stack when passed as a parameter, whereas near pointers take up two.

At the other end of the process, to call a C function from your assembly code, you would do something
like this:

extern _printf

; and then, further down...

push word [myint] ; one of my integer variables
push word mystring ; pointer into my data segment
call _printf

add sp,byte 4 ; ‘byte’ saves space

; then those data +items...
segment _DATA

myint dw 1234
mystring db ’This number -> %d <- should be 1234’,10,0

This piece of code is the small-model assembly equivalent of the C code

int myint = 1234;
printf("This number -> %d <- should be 1234\n", myint);

In large model, the function-call code might look more like this. In this example, it is assumed that bs
already holds the segment base of the segment _DATA. If not, you would have to initialize it first.

push word [myint]

push word seg mystring ; Now push the segment, and...

push word mystring ; ... offset of "mystring"

call far _printf
add sp,byte 6

The integer value still takes up one word on the stack, since large model does not affect the size of the
int data type. The first argument (pushed last) to printf, however, is a data pointer, and therefore has
to contain a segment and offset part. The segment should be stored second in memory, and therefore
must be pushed first. (Of course, PusH DS would have been a shorter instruction than
PUSH WORD SEG mystring, if DS was set up as the above example assumed.) Then the actual call
becomes a far call, since functions expect far calls in large model; and sp has to be increased by 6 rather
than 4 afterwards to make up for the extra word of parameters.

9.4.4 Accessing Data Items

To get at the contents of C variables, or to declare variables which C can access, you need only declare
the names as GLOBAL or EXTERN. (Again, the names require leading underscores, as stated in section
9.4.1.) Thus, a C variable declared as int 4 can be accessed from assembler as

extern _i
mov ax,[_1i]

And to declare your own integer variable which C programs can access as extern int j, you do this
(making sure you are assembling in the _DATA segment, if necessary):

global _j
_J dw 0

To access a C array, you need to know the size of the components of the array. For example, int
variables are two bytes long, so if a C program declares an array as int a[16], you can access a[3] by
coding mov ax, [_a+6]. (The byte offset 6 is obtained by multiplying the desired array index, 3, by the
size of the array element, 2.) The sizes of the C base types in 16-bit compilers are: 1 for char, 2 for short
and int, 4 for long and float, and 8 for double.

To access a C data structure, you need to know the offset from the base of the structure to the field you
are interested in. You can either do this by converting the C structure definition into a NASM structure
definition (using STRUC), or by calculating the one offset and using just that.

117

9.4.5

118

To do either of these, you should read your C compiler’s manual to find out how it organizes data
structures. NASM gives no special alignment to structure members in its own STRUC macro, so you have
to specify alignment yourself if the C compiler generates it. Typically, you might find that a structure like
struct {

char c;

int i
} foo;
might be four bytes long rather than three, since the 1int field would be aligned to a two-byte boundary.
However, this sort of feature tends to be a configurable option in the C compiler, either using
command-line options or #pragma lines, so you have to find out how your own compiler does it.

c16.mac: Helper Macros for the 16-bit C Interface

Included in the NASM archives, in the misc directory, is a file c16.mac of macros. It defines three macros:
proc, arg and endproc. These are intended to be used for C-style procedure definitions, and they
automate a lot of the work involved in keeping track of the calling convention.

(An alternative, TASM compatible form of arg is also now built into NASM’s preprocessor. See section 4.8
for details.)

An example of an assembly function using the macro set is given here:

proc _nearproc

%S arg

%$3 arg
mov ax, [bp + %$1]
mov bx,[bp + %$j]
add ax, [bx]

endproc

This defines _nearproc to be a procedure taking two arguments, the first (i) an integer and the second
(j) a pointer to an integer. It returns i + *j.

Note that the arg macro has an EQu as the first line of its expansion, and since the label before the
macro call gets prepended to the first line of the expanded macro, the EQu works, defining %$4 to be an
offset from BP. A context-local variable is used, local to the context pushed by the proc macro and
popped by the endproc macro, so that the same argument name can be used in later procedures. Of
course, you don’t have to do that.

The macro set produces code for near functions (tiny, small and compact-model code) by default. You
can have it generate far functions (medium, large and huge-model code) by means of coding
%define FARCODE. This changes the kind of return instruction generated by endproc, and also changes
the starting point for the argument offsets. The macro set contains no intrinsic dependency on whether
data pointers are far or not.

arg can take an optional parameter, giving the size of the argument. If no size is given, 2 is assumed,
since it is likely that many function parameters will be of type int.

The large-model equivalent of the above function would look like this:
%define FARCODE

proc _farproc
%S arg
%$3 arg 4
mov ax, [bp + %$1]
mov bx,[bp + %$j]
mov es,[bp + %$j + 2]
add ax, [bx]

9.5

9.5.1

endproc

This makes use of the argument to the arg macro to define a parameter of size 4, because j is now a far
pointer. When we load from j, we must load a segment and an offset.

Interfacing to Borland Pascal Programs

Interfacing to Borland Pascal programs is similar in concept to interfacing to 16-bit C programs. The
differences are:

The leading underscore required for interfacing to C programs is not required for Pascal.

The memory model is always large: functions are far, data pointers are far, and no data item can be
more than 64K long. (Actually, some functions are near, but only those functions that are local to a
Pascal unit and never called from outside it. All assembly functions that Pascal calls, and all Pascal
functions that assembly routines are able to call, are far.) However, all static data declared in a
Pascal program goes into the default data segment, which is the one whose segment address will be
in DS when control is passed to your assembly code. The only things that do not live in the default
data segment are local variables (they live in the stack segment) and dynamically allocated
variables. All data pointers, however, are far.

The function calling convention is different - described below.
Some data types, such as strings, are stored differently.

There are restrictions on the segment names you are allowed to use - Borland Pascal will ignore
code or data declared in a segment it doesn’t like the name of. The restrictions are described below.

The Pascal Calling Convention

The 16-bit Pascal calling convention is as follows. In the following description, the words caller and
callee are used to denote the function doing the calling and the function which gets called.

The caller pushes the function’s parameters on the stack, one after another, in normal order (left to
right, so that the first argument specified to the function is pushed first).

The caller then executes a far cALL instruction to pass control to the callee.

The callee receives control, and typically (although this is not actually necessary, in functions which
do not need to access their parameters) starts by saving the value of sp in BP so as to be able to use
BP as a base pointer to find its parameters on the stack. However, the caller was probably doing this
too, so part of the calling convention states that BP must be preserved by any function. Hence the
callee, if it is going to set up BP as a frame pointer, must push the previous value first.

The callee may then access its parameters relative to Bp. The word at [BP] holds the previous value
of BP as it was pushed. The next word, at [BP+2], holds the offset part of the return address, and the
next one at [BP+4] the segment part. The parameters begin at [BP+6]. The rightmost parameter of
the function, since it was pushed last, is accessible at this offset from BpP; the others follow, at
successively greater offsets.

The callee may also wish to decrease sp further, so as to allocate space on the stack for local
variables, which will then be accessible at negative offsets from Bp.

The callee, if it wishes to return a value to the caller, should leave the value in AL, AX or DX:AX
depending on the size of the value. Floating-point results are returned in sTe. Results of type Real
(Borland’s own custom floating-point data type, not handled directly by the FPU) are returned in
DX:BX:AX. To return a result of type String, the caller pushes a pointer to a temporary string before
pushing the parameters, and the callee places the returned string value at that location. The pointer
is not a parameter, and should not be removed from the stack by the RETF instruction.

119

9.5.2

9.5.3

120

Once the callee has finished processing, it restores sp from Bp if it had allocated local stack space,
then pops the previous value of BP, and returns via RETF. It uses the form of RETF with an immediate
parameter, giving the number of bytes taken up by the parameters on the stack. This causes the
parameters to be removed from the stack as a side effect of the return instruction.

When the caller regains control from the callee, the function parameters have already been removed
from the stack, so it needs to do nothing further.

Thus, you would define a function in Pascal style, taking two Integer-type parameters, in the following
way:

global myfunc

myfunc: push bp

mov bp,sp

sub sp,0x40 ; 64 bytes of local stack space
mov bx, [bp+8] ; first parameter to function
mov bx, [bp+6] ; second parameter to function

; some more code

mov sp,bp ; undo "sub sp,0x40" above
pop bp
retf 4 ; total size of params is 4

At the other end of the process, to call a Pascal function from your assembly code, you would do
something like this:

extern SomeFunc

; and then, further down...

push word seg mystring ; Now push the segment, and...
push word mystring ; ... offset of "mystring"
push word [myint] ; one of my variables

call far SomeFunc

This is equivalent to the Pascal code

procedure SomeFunc(String: PChar; Int: Integer);

SomeFunc (@mystring, myint);

Borland Pascal Segment Name Restrictions

Since Borland Pascal’s internal unit file format is completely different from 083, it only makes a very
sketchy job of actually reading and understanding the various information contained in a real 083 file
when it links that in. Therefore an object file intended to be linked to a Pascal program must obey a
number of restrictions:

Procedures and functions must be in a segment whose name is either CODE, CSEG, or something
ending in _TEXT.

initialized data must be in a segment whose name is either CONST or something ending in _DATA.

Uninitialized data must be in a segment whose name is either DATA, DSEG, or something ending in
_BSS.

Any other segments in the object file are completely ignored. Group directives and segment
attributes are also ignored.

Using c16.mac With Pascal Programs

The c16.mac macro package, described in section 9.4.5, can also be used to simplify writing functions to
be called from Pascal programs, if you code %define PASCAL. This definition ensures that functions are
far (it implies FARCODE), and also causes procedure return instructions to be generated with an operand.

Defining PAscAL does not change the code which calculates the argument offsets; you must declare

your function’s arguments in reverse order. For example:
%define PASCAL

proc _pascalproc
%$3 arg 4
%S arg
mov ax, [bp + %$1]
mov bx,[bp + %$j]
mov es, [bp + %$j + 2]
add ax, [bx]

endproc

This defines the same routine, conceptually, as the example in section 9.4.5: it defines a function taking
two arguments, an integer and a pointer to an integer, which returns the sum of the integer and the
contents of the pointer. The only difference between this code and the large-model C version is that

PASCAL is defined instead of FARCODE, and that the arguments are declared in reverse order.

121

122

10.1

10.1.1

10.1.2

Chapter 10: Writing 32-bit Code (Unix, Win32, DJGPP)

This chapter attempts to cover some of the common issues involved when writing 32-bit code, to run
under Win32 or Unix, or to be linked with C code generated by a Unix-style C compiler such as DJGPP. It
covers how to write assembly code to interface with 32-bit C routines, and how to write
position-independent code for shared libraries.

Almost all 32-bit code, and in particular all code running under win32, DJGPP or any of the PC Unix
variants, runs in flat memory model. This means that the segment registers and paging have already
been set up to give you the same 32-bit 4Gb address space no matter what segment you work relative
to, and that you should ignore all segment registers completely. When writing flat-model application
code, you never need to use a segment override or modify any segment register, and the code-section
addresses you pass to CALL and Jmp live in the same address space as the data-section addresses you
access your variables by and the stack-section addresses you access local variables and procedure
parameters by. Every address is 32 bits long and contains only an offset part.

Interfacing to 32-bit C Programs

A lot of the discussion in section 9.4, about interfacing to 16-bit C programs, still applies when working
in 32 bits. The absence of memory models or segmentation worries simplifies things a lot.

External Symbol Names

Most 32-bit C compilers share the convention used by 16-bit compilers, that the names of all global
symbols (functions or data) they define are formed by prefixing an underscore to the name as it
appears in the C program. However, not all of them do: the ELF specification states that C symbols do
not have a leading underscore on their assembly-language names.

The older Linux a.out C compiler, all win32 compilers, DIGPP, and NetBSD and FreeBsD, all use the
leading underscore; for these compilers, the macros cextern and cglobal, as given in section 9.4.1, will
still work. For ELF, though, the leading underscore should not be used.

See also section 2.1.28.

Function Definitions and Function Calls

The C calling convention in 32-bit programs is as follows. In the following description, the words caller
and callee are used to denote the function doing the calling and the function which gets called.

+ The caller pushes the function’s parameters on the stack, one after another, in reverse order (right to
left, so that the first argument specified to the function is pushed last).

+ The caller then executes a near CALL instruction to pass control to the callee.

+ The callee receives control, and typically (although this is not actually necessary, in functions which
do not need to access their parameters) starts by saving the value of ESP in EBP so as to be able to
use EBP as a base pointer to find its parameters on the stack. However, the caller was probably doing
this too, so part of the calling convention states that EBP must be preserved by any C function. Hence
the callee, if it is going to set up EBP as a frame pointer, must push the previous value first.

+ The callee may then access its parameters relative to EBP. The doubleword at [EBP] holds the
previous value of EBP as it was pushed; the next doubleword, at [EBP+4], holds the return address,
pushed implicitly by cALL. The parameters start after that, at [EBP+8]. The leftmost parameter of the
function, since it was pushed last, is accessible at this offset from eBP; the others follow, at
successively greater offsets. Thus, in a function such as printf which takes a variable number of
parameters, the pushing of the parameters in reverse order means that the function knows where to
find its first parameter, which tells it the number and type of the remaining ones.

123

10.1.3

124

+ The callee may also wish to decrease Esp further, so as to allocate space on the stack for local
variables, which will then be accessible at negative offsets from EsP.

« The callee, if it wishes to return a value to the caller, should leave the value in AL, AX or EAX
depending on the size of the value. Floating-point results are typically returned in sTe.

+ Once the callee has finished processing, it restores esp from esp if it had allocated local stack space,
then pops the previous value of EBP, and returns via RET (equivalently, RETN).

+ When the caller regains control from the callee, the function parameters are still on the stack, so it
typically adds an immediate constant to ESP to remove them (instead of executing a number of slow
POP instructions). Thus, if a function is accidentally called with the wrong number of parameters due
to a prototype mismatch, the stack will still be returned to a sensible state since the caller, which
knows how many parameters it pushed, does the removing.

There is an alternative calling convention used by Win32 programs for Windows API calls, and also for
functions called by the Windows API such as window procedures: they follow what Microsoft calls the
__stdcall convention. This is slightly closer to the Pascal convention, in that the callee clears the stack
by passing a parameter to the RET instruction. However, the parameters are still pushed in right-to-left
order.

Thus, you would define a function in C style in the following way:

global _myfunc

_myfunc:
push ebp
mov ebp,esp
sub esp,0x40 ; 64 bytes of local stack space
mov ebx, [ebp+8] ; first parameter to function
; some more code
leave ; mov esp,ebp / pop ebp
ret

At the other end of the process, to call a C function from your assembly code, you would do something
like this:

extern _printf

; and then, further down...

push dword [myint] ; one of my integer variables
push dword mystring ; pointer into my data segment
call _printf

add esp,byte 8 ; ‘byte’ saves space

; then those data +items...
segment _DATA

myint dd 1234
mystring db ’This number -> %d <- should be 1234’,10,0

This piece of code is the assembly equivalent of the C code
int myint = 1234;
printf("This number -> %d <- should be 1234\n", myint);

Accessing Data Items

To get at the contents of C variables, or to declare variables which C can access, you need only declare
the names as GLOBAL or EXTERN. (Again, the names require leading underscores, as stated in section
10.1.1.) Thus, a C variable declared as int 1 can be accessed from assembler as

10.1.4

extern _i
mov eax, [_i]

And to declare your own integer variable which C programs can access as extern 1int j, you do this
(making sure you are assembling in the _DATA segment, if necessary):

global _j
_j dd o0

To access a C array, you need to know the size of the components of the array. For example, int
variables are four bytes long, so if a C program declares an array as int a[10], you can access a[3] by
coding mov ax, [_a+12]. (The byte offset 12 is obtained by multiplying the desired array index, 3, by the
size of the array element, 4.) The sizes of the C base types in 32-bit compilers are: 1 for char, 2 for short,
4 for int, long and float, and 8 for double. Pointers, being 32-bit addresses, are also 4 bytes long.

To access a C data structure, you need to know the offset from the base of the structure to the field you
are interested in. You can either do this by converting the C structure definition into a NASM structure
definition (using STRUC), or by calculating the one offset and using just that.

To do either of these, you should read your C compiler’s manual to find out how it organizes data
structures. NASM gives no special alignment to structure members in its own STRUC macro, so you have
to specify alignment yourself if the C compiler generates it. Typically, you might find that a structure like
struct {

char c;

int i
} foo;
might be eight bytes long rather than five, since the int field would be aligned to a four-byte boundary.
However, this sort of feature is sometimes a configurable option in the C compiler, either using
command-line options or #pragma lines, so you have to find out how your own compiler does it.

c32.mac: Helper Macros for the 32-bit C Interface

Included in the NASM archives, in the misc directory, is a file c32.mac of macros. It defines three macros:
proc, arg and endproc. These are intended to be used for C-style procedure definitions, and they
automate a lot of the work involved in keeping track of the calling convention.

An example of an assembly function using the macro set is given here:

proc _proc32

%S arg

%$3 arg
mov eax, [ebp + %S$i]
mov ebx, [ebp + %S$7]
add eax, [ebx]

endproc

This defines _proc32 to be a procedure taking two arguments, the first (i) an integer and the second (j)
a pointer to an integer. It returns i + *j.

Note that the arg macro has an EQu as the first line of its expansion, and since the label before the
macro call gets prepended to the first line of the expanded macro, the EQu works, defining %$4 to be an
offset from BP. A context-local variable is used, local to the context pushed by the proc macro and
popped by the endproc macro, so that the same argument name can be used in later procedures. Of
course, you don’t have to do that.

arg can take an optional parameter, giving the size of the argument. If no size is given, 4 is assumed,
since it is likely that many function parameters will be of type int or pointers.

125

10.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries

ELF replaced the older a.out object file format under Linux because it contains support for
position-independent code (PIC), which makes writing shared libraries much easier. NASM supports the
ELF position-independent code features, so you can write Linux ELF shared libraries in NASM.

NetBSD, and its close cousins FreeBSD and OpenBSD, take a different approach by hacking PIC support
into the a.out format. NASM supports this as the aoutb output format, so you can write BSD shared
libraries in NASM too.

The operating system loads a PIC shared library by memory-mapping the library file at an arbitrarily
chosen point in the address space of the running process. The contents of the library’s code section
must therefore not depend on where it is loaded in memory.

Therefore, you cannot get at your variables by writing code like this:

mov eax, [myvar] 5 WRONG

Instead, the linker provides an area of memory called the global offset table, or GOT; the GOT is situated
at a constant distance from your library’s code, so if you can find out where your library is loaded (which
is typically done using a cALL and pop combination), you can obtain the address of the GOT, and you
can then load the addresses of your variables out of linker-generated entries in the GOT.

The data section of a PIC shared library does not have these restrictions: since the data section is
writable, it has to be copied into memory anyway rather than just paged in from the library file, so as
long as it’s being copied it can be relocated too. So you can put ordinary types of relocation in the data
section without too much worry (but see section 10.2.4 for a caveat).

10.2.1 Obtaining the Address of the GOT

Each code module in your shared library should define the GOT as an external symbol:

extern _GLOBAL_OFFSET_TABLE_ ; in ELF
extern __GLOBAL_OFFSET_TABLE_ ; 1in BSD a.out

At the beginning of any function in your shared library which plans to access your data or BSS sections,
you must first calculate the address of the GOT. This is typically done by writing the function in this

form:
func: push ebp
mov ebp,esp
push ebx
call .get_GOT
.get_GOT:
pop ebx
add ebx,_GLOBAL_OFFSET_TABLE_+$$-.get_GOT wrt ..gotpc

; the function body comes here

mov ebx, [ebp-4]
mov esp,ebp
pop ebp

ret

(For BSD, again, the symbol _GLOBAL_OFFSET_TABLE requires a second leading underscore.)

The first two lines of this function are simply the standard C prologue to set up a stack frame, and the
last three lines are standard C function epilogue. The third line, and the fourth to last line, save and
restore the EBX register, because PIC shared libraries use this register to store the address of the GOT.

The interesting bit is the cALL instruction and the following two lines. The cALL and PopP combination
obtains the address of the label .get_coT, without having to know in advance where the program was
loaded (since the cALL instruction is encoded relative to the current position). The ADD instruction
makes use of one of the special PIC relocation types: GOTPC relocation. With the wRT . .gotpc qualifier

126

10.2.2

10.2.3

10.2.4

specified, the symbol referenced (here _GLOBAL_OFFSET_TABLE_, the special symbol assigned to the
GOT) is given as an offset from the beginning of the section. (Actually, ELF encodes it as the offset from
the operand field of the AbD instruction, but NASM simplifies this deliberately, so you do things the
same way for both ELF and BsD.) So the instruction then adds the beginning of the section, to get the
real address of the GOT, and subtracts the value of .get_GoT which it knows is in EBX. Therefore, by the
time that instruction has finished, EBx contains the address of the GOT.

If you didn’t follow that, don’t worry: it’s never necessary to obtain the address of the GOT by any other
means, so you can put those three instructions into a macro and safely ignore them:

%macro get_GOT O

call %%getgot

%%getgot:
pop ebx
add ebx,_GLOBAL_OFFSET_TABLE_+$$-%%getgot wrt ..gotpc
%endmacro

Finding Your Local Data Items

Having got the GOT, you can then use it to obtain the addresses of your data items. Most variables will
reside in the sections you have declared; they can be accessed using the . .gotoff special wRT type. The
way this works is like this:

lea eax, [ebx+myvar wrt ..gotoff]

The expression myvar wrt ..gotoff is calculated, when the shared library is linked, to be the offset to
the local variable myvar from the beginning of the GOT. Therefore, adding it to EBX as above will place
the real address of myvar in EAX.

If you declare variables as GLOBAL without specifying a size for them, they are shared between code
modules in the library, but do not get exported from the library to the program that loaded it. They will
still be in your ordinary data and BSS sections, so you can access them in the same way as local
variables, using the above . .gotoff mechanism.

Note that due to a peculiarity of the way BSD a.out format handles this relocation type, there must be
at least one non-local symbol in the same section as the address you’re trying to access.

Finding External and Common Data Items

If your library needs to get at an external variable (external to the library, not just to one of the modules
within it), you must use the . .got type to get at it. The . . got type, instead of giving you the offset from
the GOT base to the variable, gives you the offset from the GOT base to a GOT entry containing the
address of the variable. The linker will set up this GOT entry when it builds the library, and the dynamic
linker will place the correct address in it at load time. So to obtain the address of an external variable
extvar in EAX, you would code

mov eax, [ebx+extvar wrt ..got]

This loads the address of extvar out of an entry in the GOT. The linker, when it builds the shared library,
collects together every relocation of type ..got, and builds the GOT so as to ensure it has every
necessary entry present.

Common variables must also be accessed in this way.

Exporting Symbols to the Library User

If you want to export symbols to the user of the library, you have to declare whether they are functions
or data, and if they are data, you have to give the size of the data item. This is because the dynamic
linker has to build procedure linkage table entries for any exported functions, and also moves exported
data items away from the library’s data section in which they were declared.

127

10.2.5

10.2.6

128

So to export a function to users of the library, you must use

global func:function ; declare it as a function
func: push ebp
; etc.

And to export a data item such as an array, you would have to code

global array:data array.end-array ; give the size too
array: resd 128
.end:

Be careful: If you export a variable to the library user, by declaring it as GLOBAL and supplying a size, the
variable will end up living in the data section of the main program, rather than in your library’s data
section, where you declared it. So you will have to access your own global variable with the ..got
mechanism rather than . . gotoff, as if it were external (which, effectively, it has become).

Equally, if you need to store the address of an exported global in one of your data sections, you can’t do
it by means of the standard sort of code:

dataptr: dd global_data_item 5 WRONG

NASM will interpret this code as an ordinary relocation, in which global_data_item is merely an offset
from the beginning of the .data section (or whatever); so this reference will end up pointing at your
data section instead of at the exported global which resides elsewhere.

Instead of the above code, then, you must write

dataptr: dd global_data_item wrt ..sym

which makes use of the special WRT type ..sym to instruct NASM to search the symbol table for a
particular symbol at that address, rather than just relocating by section base.

Either method will work for functions: referring to one of your functions by means of

funcptr: dd my_function

will give the user the address of the code you wrote, whereas

funcptr: dd my_function wrt ..sym

will give the address of the procedure linkage table for the function, which is where the calling program
will believe the function lives. Either address is a valid way to call the function.

Calling Procedures Outside the Library

Calling procedures outside your shared library has to be done by means of a procedure linkage table, or
PLT. The PLT is placed at a known offset from where the library is loaded, so the library code can make
calls to the PLT in a position-independent way. Within the PLT there is code to jump to offsets
contained in the GOT, so function calls to other shared libraries or to routines in the main program can
be transparently passed off to their real destinations.

To call an external routine, you must use another special PIC relocation type, wRT ..plt. This is much
easier than the GOT-based ones: you simply replace calls such as cALL printf with the PLT-relative
version CALL printf WRT ..plt.

Generating the Library File

Having written some code modules and assembled them to .o files, you then generate your shared
library with a command such as

1d -shared -o library.so modulel.o module2.o # for ELF
1d -Bshareable -o library.so modulel.o module2.o # for BSD

For ELF, if your shared library is going to reside in system directories such as /usr/1lib or /lib, it is
usually worth using the -soname flag to the linker, to store the final library file name, with a version

number, into the library:

1d -shared -soname library.so.l -o library.so0.1.2 x.o

You would then copy library.so.1.2 into the library directory, and create library.so.1 as a symbolic
link to it.

129

130

11.1

11.2

Chapter 11: Mixing 16- and 32-bit Code

This chapter tries to cover some of the issues, largely related to unusual forms of addressing and jump
instructions, encountered when writing operating system code such as protected-mode initialization
routines, which require code that operates in mixed segment sizes, such as code in a 16-bit segment
trying to modify data in a 32-bit one, or jumps between different-size segments.

Mixed-Size Jumps

The most common form of mixed-size instruction is the one used when writing a 32-bit OS: having done
your setup in 16-bit mode, such as loading the kernel, you then have to boot it by switching into
protected mode and jumping to the 32-bit kernel start address. In a fully 32-bit OS, this tends to be the
only mixed-size instruction you need, since everything before it can be done in pure 16-bit code, and
everything after it can be pure 32-bit.

This jump must specify a 48-bit far address, since the target segment is a 32-bit one. However, it must
be assembled in a 16-bit segment, so just coding, for example,
jmp 0x1234:0x56789ABC ; wrong!

will not work, since the offset part of the address will be truncated to ex9Asc and the jump will be an
ordinary 16-bit far one.

The Linux kernel setup code gets round the inability of assé to generate the required instruction by
coding it manually, using DB instructions. NASM can go one better than that, by actually generating the
right instruction itself. Here’s how to do it right:

jmp dword 0x1234:0x56789ABC ; right
The DWORD prefix (strictly speaking, it should come after the colon, since it is declaring the offset field to
be a doubleword; but NASM will accept either form, since both are unambiguous) forces the offset part

to be treated as far, in the assumption that you are deliberately writing a jump from a 16-bit segment to
a 32-bit one.

You can do the reverse operation, jumping from a 32-bit segment to a 16-bit one, by means of the worD
prefix:
jmp word 0x8765:0x4321 ; 32 to 16 bit

If the worD prefix is specified in 16-bit mode, or the bworD prefix in 32-bit mode, they will be ignored,
since each is explicitly forcing NASM into a mode it was in anyway.

Addressing Between Different-Size Segments

If your OS is mixed 16 and 32-bit, or if you are writing a DOS extender, you are likely to have to deal with
some 16-bit segments and some 32-bit ones. At some point, you will probably end up writing code in a
16-bit segment which has to access data in a 32-bit segment, or vice versa.

If the data you are trying to access in a 32-bit segment lies within the first 64K of the segment, you may
be able to get away with using an ordinary 16-bit addressing operation for the purpose; but sooner or
later, you will want to do 32-bit addressing from 16-bit mode.

The easiest way to do this is to make sure you use a register for the address, since any effective address
containing a 32-bit register is forced to be a 32-bit address. So you can do

mov eax,offset_into_32_bit_segment_specified_by_fs
mov dword [fs:eax],0x11223344

This is fine, but slightly cumbersome (since it wastes an instruction and a register) if you already know
the precise offset you are aiming at. The x86 architecture does allow 32-bit effective addresses to

131

11.3

132

specify nothing but a 4-byte offset, so why shouldn’t NASM be able to generate the best instruction for
the purpose?

It can. As in section 11.1, you need only prefix the address with the bworD keyword, and it will be forced
to be a 32-bit address:

mov dword [fs:dword my_offset],0x11223344

Also as in section 11.1, NASM is not fussy about whether the bworD prefix comes before or after the
segment override, so arguably a nicer-looking way to code the above instruction is

mov dword [dword fs:my_offset],0x11223344

Don’t confuse the DwoRD prefix outside the square brackets, which controls the size of the data stored at
the address, with the one inside the square brackets which controls the length of the address itself.
The two can quite easily be different:

mov word [dword 0x12345678] ,0x9ABC
This moves 16 bits of data to an address specified by a 32-bit offset.

You can also specify WworRD or bwoRD prefixes along with the FAR prefix to indirect far jumps or calls. For
example:

call dword far [fs:word 0x4321]

This instruction contains an address specified by a 16-bit offset; it loads a 48-bit far pointer from that
(16-bit segment and 32-bit offset), and calls that address.

Other Mixed-Size Instructions

The other way you might want to access data might be using the string instructions (Lobsx, SToSx and
so on) or the XLATB instruction. These instructions, since they take no parameters, might seem to have
no easy way to make them perform 32-bit addressing when assembled in a 16-bit segment.

This is the purpose of NASM’s a16, a32 and a64 prefixes. If you are coding LODSB in a 16-bit segment but it
is supposed to be accessing a string in a 32-bit segment, you should load the desired address into EST
and then code

a32 lodsb

The prefix forces the addressing size to 32 bits, meaning that LoDsSB loads from [DS:ESI] instead of
[DS:SI]. To access a string in a 16-bit segment when coding in a 32-bit one, the corresponding ai6
prefix can be used.

The a16, a32 and a64 prefixes can be applied to any instruction in NASM’s instruction table, but most of
them can generate all the useful forms without them. The prefixes are necessary only for instructions
with implicit addressing: cMPSx, SCASx, LODSx, STOSx, MOVSx, INSx, OUTSx, and XLATB. Also, the various
push and pop instructions (PUSHA and POPF as well as the more usual PusH and PoP) can accept a16, a32
or a64 prefixes to force a particular one of sp, ESP or RSP to be used as a stack pointer, in case the stack
segment in use is a different size from the code segment.

PUSH and Pop, when applied to segment registers in 32-bit mode, also have the slightly odd behaviour
that they push and pop 4 bytes at a time, of which the top two are ignored and the bottom two give the
value of the segment register being manipulated. To force the 16-bit behaviour of segment-register
push and pop instructions, you can use the operand-size prefix o16:

016 push ss
016 push ds

This code saves a doubleword of stack space by fitting two segment registers into the space which
would normally be consumed by pushing one.

(You can also use the 032 prefix to force the 32-bit behaviour when in 16-bit mode, but this seems less
useful.)

12.1

12.2

Chapter 12: Writing 64-bit Code (Unix, Win64)

This chapter attempts to cover some of the common issues involved when writing 64-bit code, to run
under Win64 or Unix. It covers how to write assembly code to interface with 64-bit C routines, and how
to write position-independent code for shared libraries.

All 64-bit code uses a flat memory model, since segmentation is not available in 64-bit mode. The one
exception is the Fs and Gs registers, which still add their bases.

Position independence in 64-bit mode is significantly simpler, since the processor supports
RIP-relative addressing directly; see the REL keyword (section 3.3). On most 64-bit platforms, it is
probably desirable to make that the default, using the directive DEFAULT REL (section 7.2).

64-bit programming is relatively similar to 32-bit programming, but of course pointers are 64 bits long;
additionally, all existing platforms pass arguments in registers rather than on the stack. Furthermore,
64-bit platforms use SSE2 by default for floating point. Please see the ABI documentation for your
platform.

64-bit platforms differ in the sizes of the C/C++ fundamental datatypes, not just from 32-bit platforms
but from each other. If a specific size data type is desired, it is probably best to use the types defined in
the standard C header <inttypes.h>.

All known 64-bit platforms except some embedded platforms require that the stack is 16-byte aligned
at the entry to a function. In order to enforce that, the stack pointer (RsP) needs to be aligned on an odd
multiple of 8 bytes before the cALL instruction.

In 64-bit mode, the default instruction size is still 32 bits. When loading a value into a 32-bit register (but
not an 8- or 16-bit register), the upper 32 bits of the corresponding 64-bit register are set to zero.

Register Names in 64-bit Mode

NASM uses the following names for general-purpose registers in 64-bit mode, for 8-, 16-, 32- and 64-bit
references, respectively:

AL/AH, CL/CH, DL/DH, BL/BH, SPL, BPL, SIL, DIL, R8B-R15B

AX, CX, DX, BX, SP, BP, SI, DI, R8W-R15W

EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI, R8D-R15D

RAX, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8-R15

This is consistent with the AMD documentation and most other assemblers. The Intel documentation,
however, uses the names R8L-R15L for 8-bit references to the higher registers. It is possible to use those
names by definiting them as macros; similarly, if one wants to use numeric names for the low 8
registers, define them as macros. The standard macro package altreg (see section 6.1) can be used for
this purpose.

Immediates and Displacements in 64-bit Mode

In 64-bit mode, immediates and displacements are generally only 32 bits wide. NASM will therefore
truncate most displacements and immediates to 32 bits.

The only instruction which takes a full 64-bit immediate is:
MOV reg64,imm64

NASM will produce this instruction whenever the programmer uses mov with an immediate into a 64-bit
register. If this is not desirable, simply specify the equivalent 32-bit register, which will be automatically
zero-extended by the processor, or specify the immediate as bworbD:

mov rax,foo ; 64-bit immediate
mov rax,qword foo 3 (identical)

133

12.3

134

mov eax, foo ; 32-bit immediate, zero-extended
mov rax,dword foo ; 32-bit immediate, sign-extended

The length of these instructions are 10, 5 and 7 bytes, respectively.

If optimization is enabled and NASM can determine at assembly time that a shorter instruction will
suffice, the shorter instruction will be emitted unless of course STRICT QWORD or STRICT DWORD is
specified (see section 3.7):

mov rax,l ; Assembles as "mov eax,l1" (5 bytes)

b
mov rax,strict qword 1 ; Full 10-byte dinstruction
mov rax,strict dword 1 ; 7-byte dinstruction
b

mov rax,symbol ; 10 bytes, not known at assembly time
lea rax,[rel symbol] ; 7 bytes, usually preferred by the ABI

Note that lea rax,[rel symbol] is position-independent, whereas mov rax,symbol is not. Most ABIs
prefer or even require position-independent code in 64-bit mode. However, the Mov instruction is able
to reference a symbol anywhere in the 64-bit address space, whereas LEA is only able to access a
symbol within within 2 GB of the instruction itself (see below.)

The only instructions which take a full 64-bit displacement is loading or storing, using MOV, AL, AX, EAX Or
RAX (but no other registers) to an absolute 64-bit address. Since this is a relatively rarely used
instruction (64-bit code generally uses relative addressing), the programmer has to explicitly declare
the displacement size as ABS QWORD:

default abs

mov eax, [foo] ; 32-bit absolute disp, sign-extended
mov eax,[a32 foo] ; 32-bit absolute disp, zero-extended
mov eax, [qword foo] ; 64-bit absolute disp

default rel

mov eax, [foo]

mov eax,[a32 foo]

mov eax, [qword foo]

mov eax, [abs qword foo]

32-bit relative disp

d:o, address truncated to 32 bits(!)
error

64-bit absolute disp

)
)
)
)

A sign-extended absolute displacement can access from -2 GB to +2 GB; a zero-extended absolute
displacement can access from 0 to 4 GB.
Interfacing to 64-bit C Programs (Unix)

On Unix, the 64-bit ABI as well as the x32 ABI (32-bit ABI with the CPU in 64-bit mode) is defined by the
documents at:

http://www.nasm.us/abi/unix64

Although written for AT&T-syntax assembly, the concepts apply equally well for NASM-style assembly.
What follows is a simplified summary.

The first six integer arguments (from the left) are passed in RDI, RSI, RDX, RCX, R8, and R9, in that order.
Additional integer arguments are passed on the stack. These registers, plus RAX, R16 and R11 are
destroyed by function calls, and thus are available for use by the function without saving.

Integer return values are passed in RAX and RDX, in that order.

Floating point is done using SSE registers, except for long double, which is 80 bits (TWORD) on most
platforms (Android is one exception; there long double is 64 bits and treated the same as double.)
Floating-point arguments are passed in xMMe to XMM7; return is XMM@ and XMM1. long double are passed
on the stack, and returned in sTe and sT1.

All SSE and x87 registers are destroyed by function calls.
On 64-bit Unix, long is 64 bits.

http://www.nasm.us/abi/unix64

Integer and SSE register arguments are counted separately, so for the case of

void foo(long a, double b, int c)

ais passed in RDI, b in xMMo, and c in EST.

12.4 Interfacing to 64-bit C Programs (Win64)
The Win64 ABI is described by the document at:
http://www.nasm.us/abi/win64
What follows is a simplified summary.

The first four integer arguments are passed in RCX, RDX, R8 and R9, in that order. Additional integer
arguments are passed on the stack. These registers, plus RAX, R16 and R11 are destroyed by function
calls, and thus are available for use by the function without saving.

Integer return values are passed in RAX only.

Floating point is done using SSE registers, except for long double. Floating-point arguments are passed
in XMMo to XMM3; return is XxMMe only.

On Win64, long is 32 bits; long long or _int64 is 64 bits.

Integer and SSE register arguments are counted together, so for the case of

void foo(long long a, double b, int c)

ais passed in RCX, b in xMM1, and c in R8D.

135

http://www.nasm.us/abi/win64

136

13.1
13.1.1

13.1.2

13.1.3

Chapter 13: Troubleshooting

This chapter describes some of the common problems that users have been known to encounter with
NASM, and answers them. If you think you have found a bug in NASM, please see section E.2.

Common Problems
NASM Generates Inefficient Code

We sometimes get ‘bug’ reports about NASM generating inefficient, or even ‘wrong’, code on instructions
such as ADD ESP,8. This is a deliberate design feature, connected to predictability of output: NASM, on
seeing ADD ESP,8, will generate the form of the instruction which leaves room for a 32-bit offset. You
need to code ADD ESP,BYTE 8 if you want the space-efficient form of the instruction. This isn’t a bug, it’s
user error: if you prefer to have NASM produce the more efficient code automatically enable
optimization with the -0 option (see section 2.1.24).

My Jumps are Out of Range

Similarly, people complain that when they issue conditional jumps (which are SHORT by default) that try
to jump too far, NASM reports ‘short jump out of range’ instead of making the jumps longer.

This, again, is partly a predictability issue, but in fact has a more practical reason as well. NASM has no
means of being told what type of processor the code it is generating will be run on; so it cannot decide
for itself that it should generate Jcc NEAR type instructions, because it doesn’t know that it’s working for
a 386 or above. Alternatively, it could replace the out-of-range short INE instruction with a very short JE
instruction that jumps over a JMP NEAR; this is a sensible solution for processors below a 386, but hardly
efficient on processors which have good branch prediction and could have used INE NEAR instead. So,
once again, it’s up to the user, not the assembler, to decide what instructions should be generated. See
section 2.1.24.

OoRG Doesn’t Work

People writing boot sector programs in the bin format often complain that orG doesn’t work the way
they’d like: in order to place the exAAss signature word at the end of a 512-byte boot sector, people who
are used to MASM tend to code

ORG ©
; some boot sector code

ORG 510
DW OxAA55

This is not the intended use of the orG directive in NASM, and will not work. The correct way to solve
this problem in NASM is to use the TIMES directive, like this:

ORG ©
; some boot sector code

TIMES 510-($-$$) DB ©
DW OxAA55

The TIMES directive will insert exactly enough zero bytes into the output to move the assembly point up
to 510. This method also has the advantage that if you accidentally fill your boot sector too full, NASM
will catch the problem at assembly time and report it, so you won’t end up with a boot sector that you
have to disassemble to find out what’s wrong with it.

137

13.14

138

TIMES Doesn’t Work

The other common problem with the above code is people who write the TIMES line as
TIMES 510-$ DB 0

by reasoning that $ should be a pure number, just like 510, so the difference between them is also a
pure number and can happily be fed to TIMES.

NASM is a modular assembler: the various component parts are designed to be easily separable for
re-use, so they don’t exchange information unnecessarily. In consequence, the bin output format, even
though it has been told by the orG directive that the . text section should start at 0, does not pass that
information back to the expression evaluator. So from the evaluator’s point of view, $ isn’t a pure
number: it’s an offset from a section base. Therefore the difference between $ and 510 is also not a pure
number, but involves a section base. Values involving section bases cannot be passed as arguments to
TIMES.

The solution, as in the previous section, is to code the TIMES line in the form
TIMES 510-($-$$) DB 0

in which $ and $$ are offsets from the same section base, and so their difference is a pure number. This
will solve the problem and generate sensible code.

A.l

A.2

A.2.1

A.2.2

Appendix A: Ndisasm

The Netwide Disassembler, NDISASM

Introduction

The Netwide Disassembler is a small companion program to the Netwide Assembler, NASM. It seemed a
shame to have an x86 assembler, complete with a full instruction table, and not make as much use of it
as possible, so here’s a disassembler which shares the instruction table (and some other bits of code)
with NASM.

The Netwide Disassembler does nothing except to produce disassemblies of binary source files.
NDISASM does not have any understanding of object file formats, like objdump, and it will not
understand pos .EXE files like debug will. It just disassembles.

Running NDISASM

To disassemble a file, you will typically use a command of the form
ndisasm -b {16]|32|64} filename

NDISASM can disassemble 16-, 32- or 64-bit code equally easily, provided of course that you remember
to specify which it is to work with. If no -b switch is present, NDISASM works in 16-bit mode by default.
The -u switch (for USE32) also invokes 32-bit mode.

Two more command line options are -r which reports the version number of NDISASM you are running,
and -h which gives a short summary of command line options.

COM Files: Specifying an Origin

To disassemble a bos .com file correctly, a disassembler must assume that the first instruction in the
file is loaded at address ox100, rather than at zero. NDISASM, which assumes by default that any file you
give itis loaded at zero, will therefore need to be informed of this.

The -o option allows you to declare a different origin for the file you are disassembling. Its argument
may be expressed in any of the NASM numeric formats: decimal by default, if it begins with ‘$” or ‘ox’ or
endsin ‘Hit’s hex, ifitends in ‘Q’ it’s octal, and if it ends in ‘B’ it’s binary.

Hence, to disassemble a . comfile:

ndisasm -0100h filename.com

will do the trick.

Code Following Data: Synchronization

Suppose you are disassembling a file which contains some data which isn’t machine code, and then
contains some machine code. NDISASM will faithfully plough through the data section, producing
machine instructions wherever it can (although most of them will look bizarre, and some may have
unusual prefixes, e.g. ‘FS OR AX,0x240A’), and generating ‘DB’ instructions ever so often if it’s totally
stumped. Then it will reach the code section.

Supposing NDISASM has just finished generating a strange machine instruction from part of the data
section, and its file position is now one byte before the beginning of the code section. It’s entirely
possible that another spurious instruction will get generated, starting with the final byte of the data
section, and then the correct first instruction in the code section will not be seen because the starting
point skipped over it. This isn’t really ideal.

139

A.2.3

A.2.4

140

To avoid this, you can specify a ‘synchronization’ point, or indeed as many synchronization points as you
like (although NDISASM can only handle 2147483647 sync points internally). The definition of a sync
point is this: NDISASM guarantees to hit sync points exactly during disassembly. If it is thinking about
generating an instruction which would cause it to jump over a sync point, it will discard that instruction
and output a ‘db’ instead. So it will start disassembly exactly from the sync point, and so you will see all
the instructions in your code section.

Sync points are specified using the -s option: they are measured in terms of the program origin, not the
file position. So if you want to synchronize after 32 bytes of a . comfile, you would have to do

ndisasm -0100h -s126h file.com

rather than

ndisasm -0100h -s20h file.com

As stated above, you can specify multiple sync markers if you need to, just by repeating the -s option.

Mixed Code and Data: Automatic (Intelligent) Synchronization

Suppose you are disassembling the boot sector of a bos floppy (maybe it has a virus, and you need to
understand the virus so that you know what kinds of damage it might have done you). Typically, this
will contain a Jmp instruction, then some data, then the rest of the code. So there is a very good chance
of NDISASM being misaligned when the data ends and the code begins. Hence a sync point is needed.

On the other hand, why should you have to specify the sync point manually? What you’d do in order to
find where the sync point would be, surely, would be to read the amp instruction, and then to use its
target address as a sync point. So can NDISASM do that for you?

The answer, of course, is yes: using either of the synonymous switches -a (for automatic sync) or -1 (for
intelligent sync) will enable auto-sync mode. Auto-sync mode automatically generates a sync point for
any forward-referring PC-relative jump or call instruction that NDISASM encounters. (Since NDISASM is
one-pass, if it encounters a PC-relative jump whose target has already been processed, there isn’t much
it can do aboutit...)

Only PC-relative jumps are processed, since an absolute jump is either through a register (in which case
NDISASM doesn’t know what the register contains) or involves a segment address (in which case the
target code isn’t in the same segment that NDISASM is working in, and so the sync point can’t be placed
anywhere useful).

For some kinds of file, this mechanism will automatically put sync points in all the right places, and
save you from having to place any sync points manually. However, it should be stressed that auto-sync
mode is not guaranteed to catch all the sync points, and you may still have to place some manually.

Auto-sync mode doesn’t prevent you from declaring manual sync points: it just adds automatically
generated ones to the ones you provide. It’s perfectly feasible to specify -i and some -s options.

Another caveat with auto-sync mode is that if, by some unpleasant fluke, something in your data
section should disassemble to a PC-relative call or jump instruction, NDISASM may obediently place a
sync point in a totally random place, for example in the middle of one of the instructions in your code
section. So you may end up with a wrong disassembly even if you use auto-sync. Again, there isn’t much
| can do about this. If you have problems, you’ll have to use manual sync points, or use the -k option
(documented below) to suppress disassembly of the data area.

Other Options

The -e option skips a header on the file, by ignoring the first N bytes. This means that the header is not
counted towards the disassembly offset: if you give -e10 -o10, disassembly will start at byte 10 in the
file, and this will be given offset 10, not 20.

The -k option is provided with two comma-separated numeric arguments, the first of which is an
assembly offset and the second is a number of bytes to skip. This will count the skipped bytes towards

the assembly offset: its use is to suppress disassembly of a data section which wouldn’t contain
anything you wanted to see anyway.

141

142

B.1

B.1.1

B.1.2

Appendix B: Instruction List

Introduction

The following sections show the instructions which NASM currently supports. For each instruction,
there is a separate entry for each supported addressing mode. The third column shows the processor

type in which the instruction was introduced and, when appropriate, one or more usage flags.

Special instructions (pseudo-ops)

DB
DW
DD
DQ
DT
DO
DY
Dz
RESB
RESW
RESD
RESQ
REST
RESO
RESY
RESZ
INCBIN

imm
imm
imm
imm
imm
imm
imm
imm

Conventional instructions

AAA
AAD
AAD
AAM
AAM
AAS
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

imm
imm

mem, reg8
reg8,reg8
mem, regl6
reglé,reglé
mem, reg32
reg32,reg32
mem, reg64
reg64,reg64
reg8,mem
reg8,reg8
reglé,mem
reglé,reglé
reg32,mem
reg32,reg32
reg64,mem
reg64,reg64
rml6,imm8
rm32,imm8
rmé4 , imm8
reg_al,imm

reg_ax,sbyteword

reg_ax,imm

reg_eax,sbytedword

reg_eax,imm

reg_rax,sbytedword

reg_rax,imm
rm8, imm

8086
8086
8086
8086
8086
8086
8086
8086

8086 ,NOLONG
8086 ,NOLONG
8086 ,NOLONG
8086 ,NOLONG
8086 ,NOLONG
8086 ,NOLONG
8086,L0CK
8086
8086,L0CK
8086
386,L0CK
386

X86_64,LONG, LOCK

X86_64,LONG
8086

8086

8086

8086

386

386
X86_64,LONG
X86_64,LONG
8086,L0CK
386,L0CK

X86_64,LONG, LOCK

8086
8086,ND
8086
386,ND
386

X86_64,LONG,ND

X86_64,LONG
8086,L0CK

143

144

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

rml6,sbyteword
rm1l6,imm
rm32,sbytedword
rm32,imm

rmé64 ,sbytedword
rmé64 , imm

mem, imm8

mem, sbytewordl6
mem, imm16

mem, sbytedword32
mem, imm32

rm8, imm

mem, reg8
reg8,reg8

mem, regl6
reglé,reglé
mem, reg32
reg32,reg32
mem, reg64
reg64,reg64
reg8,mem
reg8,reg8
reglé,mem
reglé,reglé
reg32,mem
reg32,reg32
reg64,mem
regé4,reg64
rml6,imm8
rm32,imm8
rmé4 , imm8
reg_al,imm
reg_ax,sbyteword
reg_ax,imm
reg_eax,sbytedword
reg_eax,imm
reg_rax,sbytedword
reg_rax,imm
rm8, imm
rml6,sbyteword
rm1l6,imm
rm32,sbytedword
rm32,imm

rmé64 ,sbytedword
rmé64 , imm

mem, imm8

mem, sbytewordl6
mem, imm16

mem, sbytedword32
mem, imm32

rm8, imm

mem, reg8
reg8,reg8

mem, regl6
reglé,reglé
mem, reg32
reg32,reg32
mem, reg64
regé4,reg64
reg8,mem
reg8,reg8
regl6,mem
reglé,reglé
reg32,mem
reg32,reg32
reg64,mem
regé4,reg64

8086, L0CK,ND
8086, L0CK
386,L0CK,ND
386,L0CK
X86_64,LONG, LOCK,ND
X86_64,LONG, LOCK
8086, L0CK,ND
8086, L0CK,ND
8086, L0CK
386,L0CK,ND
386,L0CK

8086, L0CK,ND,NOLONG
8086, L0CK

8086

8086, L0CK

8086

386,L0CK

386
X86_64,LONG, LOCK
X86_64,LONG

8086

8086

8086

8086

386

386

X86_64,LONG
X86_64,LONG
8086, L0CK
386,L0CK
X86_64,LONG, LOCK
8086

8086,ND

8086

386,ND

386
X86_64,LONG,ND
X86_64,LONG
8086,L0CK

8086, L0CK,ND
8086, L0CK
386,L0CK,ND
386,L0CK
X86_64,LONG, LOCK,ND
X86_64,LONG, LOCK
8086, L0CK

8086, L0CK,ND
8086, L0CK
386,L0CK,ND
386,L0CK

8086 ,L0CK,ND,NOLONG
8086, L0CK

8086

8086, L0CK

8086

386,L0CK

386
X86_64,LONG, LOCK
X86_64,LONG

8086

8086

8086

8086

386

386

X86_64,LONG
X86_64,LONG

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
ARPL
ARPL
BBO_RESET
BB1_RESET
BOUND
BOUND
BSF
BSF
BSF
BSF
BSF
BSF
BSR
BSR
BSR
BSR
BSR
BSR
BSWAP
BSWAP
BT
BT
BT
BT
BT
BT
BT
BT
BT
BTC
BTC
BTC
BTC
BTC
BTC
BTC
BTC
BTC
BTR
BTR
BTR
BTR
BTR
BTR

rml6,imm8
rm32,imm8
rmé4 , imm8
reg_al,imm
reg_ax,sbyteword
reg_ax,imm
reg_eax,sbytedword
reg_eax,imm
reg_rax,sbytedword
reg_rax,imm

rm8, imm
rml6,sbyteword
rm1l6,imm
rm32,sbytedword
rm32,imm

rmé64 ,sbytedword
rmé64 , imm

mem, imm8

mem, sbytewordl6
mem, imm16

mem, sbytedword32
mem, imm32

rm8, imm

mem, regl6
reglé,reglé

regl6,mem
reg32,mem
reglé,mem
reglé,reglé
reg32,mem
reg32,reg32
reg64,mem
regé4,reg64
regl6,mem
reglé,reglé
reg32,mem
reg32,reg32
reg64,mem
regé4,reg64
reg32

reg64

mem, regl6
reglé,reglé
mem, reg32
reg32,reg32
mem, reg64
regé4,reg64
rml6,imm8
rm32,imm8
rmé4 , imm8
mem, regl6
reglé,reglé
mem, reg32
reg32,reg32
mem, reg64
regé4,reg64
rml6,imm8
rm32,imm8
rmé4 , imm8
mem, regl6
reglé,reglé
mem, reg32
reg32,reg32
mem, reg64
regé4,reg64

8086, L0CK
386,L0CK
X86_64,LONG, LOCK
8086

8086,ND

8086

386,ND

386

X86_64,LONG,ND
X86_64,LONG

8086, L0CK

8086, L0CK,ND

8086, L0CK
386,L0CK,ND
386,L0CK
X86_64,LONG, LOCK,ND
X86_64,LONG, LOCK
8086, L0CK

8086, L0CK,ND

8086, L0CK
386,L0CK,ND
386,L0CK

8086, L0CK,ND,NOLONG
286,PROT,NOLONG
286,PROT,NOLONG

PENT,CYRIX,ND,OBSOLETE
PENT,CYRIX,ND,OBSOLETE

186,NOLONG
386,NOLONG

386

386

386

386

X86_64,LONG
X86_64,LONG

386

386

386

386

X86_64,LONG
X86_64,LONG

486

X86_64,LONG

386

386

386

386

X86_64,LONG
X86_64,LONG

386

386

X86_64,LONG
386,L0CK

386

386,L0CK

386
X86_64,LONG, LOCK
X86_64,LONG
386,L0CK
386,L0CK
X86_64,LONG, LOCK
386,L0CK

386

386,L0CK

386
X86_64,LONG, LOCK
X86_64,LONG

145

146

BTR
BTR
BTR
BTS
BTS
BTS
BTS
BTS
BTS
BTS
BTS
BTS
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CBwW
CDQ
CDQE
CLC
CLD
CLI
CLTS
CcMC
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP

rml6,imm8
rm32,imm8
rmé4 , imm8
mem, regl6
reglé,reglé
mem, reg32
reg32,reg32
mem, reg64
regé4,reg64
rml6,imm8
rm32,imm8
rmé4 , imm8
imm
imm|near
imm| far
imm16
imm16 |near
imm16 | far
imm32
imm32 | near
imm32 | far
immé64
immé4 | near
imm:imm
imm16:imm
imm:imml6
imm32:imm
imm:imm32
mem| far
mem| far
meml6 | far
mem32 | far
mem64 | far
mem|near
rmlé|near
rm32|near
rmé4|near
mem

rml6

rm32

rmé4

mem, reg8
reg8,reg8
mem, regl6
reglé,reglé
mem, reg32
reg32,reg32
mem, reg64
regé4,reg64
reg8,mem
reg8,reg8
reglé,mem
reglé,reglé
reg32,mem
reg32,reg32
reg64,mem
regé4,reg64
rml6,imm8
rm32,imm8

386,L0CK
386,L0CK
X86_64,LONG, LOCK
386,L0CK

386

386,L0CK

386
X86_64,LONG, LOCK
X86_64,LONG
386,L0CK

386,L0CK
X86_64,LONG, LOCK
8086 ,BND

8086 ,ND, BND

8086 ,ND,NOLONG
8086 ,NOLONG, BND
8086 ,ND,NOLONG , BND
8086 ,ND,NOLONG
386,NOLONG, BND
386,ND,NOLONG, BND
386,ND,NOLONG
X86_64,LONG, BND
X86_64,LONG,ND,BND
8086 ,NOLONG

8086 ,NOLONG

8086 ,NOLONG
386,NOLONG
386,NOLONG

8086 ,NOLONG
X86_64,LONG

8086

386

X86_64,LONG
8086,ND, BND

8086 ,NOLONG,ND, BND
386,NOLONG,ND, BND
X86_64,LONG,ND, BND
8086 ,BND

8086 ,NOLONG, BND
386,NOLONG, BND
X86_64,LONG, BND
8086

386

X86_64,LONG

8086

8086

8086

286,PRIV

8086

8086

8086

8086

8086

386

386

X86_64,LONG
X86_64,LONG

8086

8086

8086

8086

386

386

X86_64,LONG
X86_64,LONG

8086

386

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMP

CMPSB
CMPSD
CMPSQ
CMPSW
CMPXCHG
CMPXCHG
CMPXCHG
CMPXCHG
CMPXCHG
CMPXCHG
CMPXCHG
CMPXCHG
CMPXCHG486
CMPXCHG486
CMPXCHG486
CMPXCHG486
CMPXCHG486
CMPXCHG486
CMPXCHG8B
CMPXCHG16B
CPUID
CPU_READ
CPU_WRITE
CQo

CwD

CWDE

DAA

DAS

DEC

DEC

DEC

DEC

DEC

DEC

DIV

DIV

DIV

DIV

DMINT

EMMS

ENTER

EQU

EQU

F2XM1

FABS

FADD

rmé64 , imm8
reg_al,imm

reg_ax,sbyteword

reg_ax,imm

reg_eax,sbytedword

reg_eax,imm

reg_rax,sbytedword

reg_rax,imm
rm8, imm
rml6,sbyteword
rm1l6,imm
rm32,sbytedword
rm32,imm

rmé64 ,sbytedword
rmé64 , imm

mem, imm8

mem, sbytewordl6
mem, imm16

mem, sbytedword32

mem, imm32
rm8, imm

mem, reg8
reg8,reg8
mem, regl6
reglé,reglé
mem, reg32
reg32,reg32
mem, reg64
regé4,reg64
mem, reg8
reg8,reg8
mem, regl6
reglé,reglé
mem, reg32
reg32,reg32
mem64
mem128

reglé
reg32
rm8
rml6
rm32
rme4
rm8
rml6
rm32
rme4

imm, imm
imm
imm: imm

mem32

X86_64,LONG
8086

8086,ND

8086

386,ND

386
X86_64,LONG,ND
X86_64,LONG
8086

8086 ,ND

8086

386,ND

386
X86_64,LONG,ND
X86_64,LONG
8086

8086,ND

8086

386,ND

386

8086 ,ND,NOLONG
8086

386
X86_64,LONG
8086

PENT, LOCK

PENT

PENT, LOCK

PENT

PENT, LOCK

PENT

X86_64,LONG, LOCK

X86_64,LONG

486,UNDOC,ND, LOCK,0BSOLETE
486,UNDOC,ND,0BSOLETE
486,UNDOC,ND, LOCK,0BSOLETE
486,UNDOC,ND,OBSOLETE
486,UNDOC,ND, LOCK,0BSOLETE
486,UNDOC,ND,0BSOLETE

PENT, LOCK

X86_64,LONG, LOCK

PENT
PENT,CYRIX
PENT,CYRIX
X86_64,LONG
8086

386

8086 ,NOLONG
8086 ,NOLONG
8086 ,NOLONG
386,NOLONG
8086,L0CK
8086, L0CK
386,L0CK

X86_64,LONG, LOCK

8086
8086

386
X86_64,LONG
P6,CYRIX
PENT ,MMX
186

8086
8086
8086, FPU
8086, FPU
8086, FPU

148

FADD
FADD
FADD
FADD
FADD
FADD
FADDP
FADDP
FADDP
FBLD
FBLD
FBSTP
FBSTP
FCHS
FCLEX
FCMOVB
FCMOVB
FCMOVB
FCMOVBE
FCMOVBE
FCMOVBE
FCMOVE
FCMOVE
FCMOVE
FCMOVNB
FCMOVNB
FCMOVNB
FCMOVNBE
FCMOVNBE
FCMOVNBE
FCMOVNE
FCMOVNE
FCMOVNE
FCMOVNU
FCMOVNU
FCMOVNU
FCMOVU
FCMOVU
FCMOVU
FCOM
FCOM
FCOM
FCOM
FCOM
FCOMI
FCOMI
FCOMI
FCOMIP
FCOMIP
FCOMIP
FCOMP
FCOMP
FCOMP
FCOMP
FCOMP
FCOMPP
FCOS
FDECSTP
FDISI
FDIV
FDIV
FDIV
FDIV
FDIV
FDIV
FDIV
FDIVP

mem64
fpureg|to
fpureg
fpureg, fpud
fpuo, fpureg

fpureg
fpureg, fpud

mem80
mem
mem80
mem

fpureg
fpuo, fpureg

fpureg
fpuo, fpureg

fpureg
fpuo, fpureg

fpureg
fpuo, fpureg

fpureg
fpuo, fpureg

fpureg
fpuo, fpureg

fpureg
fpuo, fpureg

fpureg
fpuo, fpureg

mem32

mem64
fpureg
fpuo, fpureg

fpureg
fpuo, fpureg

fpureg
fpuo, fpureg

mem32

mem64
fpureg
fpuo, fpureg

mem32

mem64
fpureg|to
fpureg
fpureg, fpud
fpuo, fpureg

fpureg

8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU,ND
8086, FPU
8086, FPU
8086, FPU,ND
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
P6,FPU
P6,FPU
P6,FPU,ND
P6,FPU
P6,FPU
P6,FPU,ND
P6,FPU
P6,FPU
P6,FPU,ND
P6,FPU
P6,FPU
P6,FPU,ND
P6,FPU
P6,FPU
P6,FPU,ND
P6,FPU
P6,FPU
P6,FPU,ND
P6,FPU
P6,FPU
P6,FPU,ND
P6,FPU
P6,FPU
P6,FPU,ND
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU,ND
P6,FPU
P6,FPU
P6,FPU,ND
P6,FPU
P6,FPU
P6,FPU,ND
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU,ND
8086, FPU
386,FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU,ND
8086, FPU

FDIVP
FDIVP
FDIVR
FDIVR
FDIVR
FDIVR
FDIVR
FDIVR
FDIVR
FDIVRP
FDIVRP
FDIVRP
FEMMS
FENI
FFREE
FFREE
FFREEP
FFREEP
FIADD
FIADD
FICOM
FICOM
FICOMP
FICOMP
FIDIV
FIDIV
FIDIVR
FIDIVR
FILD
FILD
FILD
FIMUL
FIMUL
FINCSTP
FINIT
FIST
FIST
FISTP
FISTP
FISTP
FISTTP
FISTTP
FISTTP
FISUB
FISUB
FISUBR
FISUBR
FLD
FLD
FLD
FLD
FLD
FLD1
FLDCW
FLDENV
FLDL2E
FLDL2T
FLDLG2
FLDLN2
FLDPI
FLDZ
FMUL
FMUL
FMUL
FMUL
FMUL
FMUL

fpureg, fpud

mem32

mem64
fpureg|to
fpureg, fpud
fpureg
fpuo, fpureg

fpureg
fpureg, fpud

fpureg
fpureg

mem32
meml6
mem32
meml6
mem32
meml6
mem32
meml6
mem32
meml6
mem32
meml6
mem64
mem32
meml6

mem32
meml6
mem32
meml6
mem64
meml6
mem32
mem64
mem32
meml6
mem32
meml6
mem32
mem64
mem80
fpureg

mem
mem

mem32

mem64
fpureg|to
fpureg, fpud
fpureg
fpuo, fpureg

8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU

,ND

,ND

,ND

PENT, 3DNOW

8086, FPU
8086, FPU
8086, FPU

286, FPU, UNDOC
286, FPU,UNDOC

8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU

PRESCOTT, FPU
PRESCOTT, FPU
PRESCOTT, FPU

8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU

149

150

FMUL
FMULP
FMULP
FMULP
FNCLEX
FNDISI
FNENI
FNINIT
FNOP
FNSAVE
FNSTCW
FNSTENV
FNSTSW
FNSTSW
FPATAN
FPREM
FPREM1
FPTAN
FRNDINT
FRSTOR
FSAVE
FSCALE
FSETPM
FSIN
FSINCOS
FSQRT
FST
FST
FST
FST
FSTCW
FSTENV
FSTP
FSTP
FSTP
FSTP
FSTP
FSTSW
FSTSW
FSUB
FSUB
FSUB
FSUB
FSUB
FSUB
FSUB
FSUBP
FSUBP
FSUBP
FSUBR
FSUBR
FSUBR
FSUBR
FSUBR
FSUBR
FSUBR
FSUBRP
FSUBRP
FSUBRP
FTST
FUCOM
FUCOM
FUCOM
FUCOMI
FUCOMI
FUCOMI
FUCOMIP

fpureg
fpureg, fpud

mem
mem
mem
mem
reg_ax

mem
mem

mem32
mem64
fpureg

mem
mem
mem32
mem64
mem80
fpureg

mem
reg_ax
mem32

mem64
fpureg|to
fpureg, fpud
fpureg
fpuo, fpureg

fpureg
fpureg, fpud

mem32

mem64
fpureg|to
fpureg, fpud
fpureg
fpuo, fpureg

fpureg
fpureg, fpud
fpureg
fpuo, fpureg

fpureg
fpuo, fpureg

fpureg

8086, FPU,ND
8086, FPU
8086, FPU
8086, FPU,ND
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU, SW
8086, FPU
8086, FPU, SW
286, FPU
8086, FPU
8086, FPU
386,FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
286, FPU
386,FPU
386,FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU,ND
8086, FPU, SW
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU,ND
8086, FPU, SW
286, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU,ND
8086, FPU
8086, FPU
8086, FPU,ND
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU,ND
8086, FPU
8086, FPU
8086, FPU,ND
8086, FPU
386,FPU
386,FPU
386,FPU,ND
P6,FPU
P6,FPU
P6,FPU,ND
P6,FPU

FUCOMIP
FUCOMIP
FUCOMP
FUCOMP
FUCOMP
FUCOMPP
FXAM
FXCH
FXCH
FXCH
FXCH
FXTRACT
FYL2X
FYL2XP1
HLT
IBTS
IBTS
IBTS
IBTS
ICEBP
IDIV
IDIV
IDIV
IDIV
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL
IMUL

fpuo, fpureg

fpureg
fpuo, fpureg

fpureg
fpureg, fpud
fpuo, fpureg

mem, regl6
reglé,reglé
mem, reg32
reg32,reg32

rm8

rmleé

rm32

rmé4

rm8

rmleé

rm32

rmé4

regl6,mem
reglé,reglé
reg32,mem
reg32,reg32
reg64,mem
regé4,reg64
regl6,mem,imm8
regl6,mem,sbyteword
regl6,mem,immlé
regl6,mem,imm
reglé,regl6,imm8
regl6,regl6,sbyteword
reglé,regl6,immleé
regl6,regl6,imm
reg32,mem,imm8
reg32,mem,sbytedword
reg32,mem,imm32
reg32,mem,imm
reg32,reg32,imm8
reg32,reg32,sbytedword
reg32,reg32,imm32
reg32,reg32,imm
reg64,mem,imm8
reg64,mem,sbytedword
reg64,mem,imm32
reg64,mem,imm
reg64,reg64,imm8
reg64,reg64,sbytedword
reg64,reg64,imm32
reg64,reg64,imm
regl6,imm8
regl6,sbyteword
regl6,immlé
regl6,imm

reg32,imm8
reg32,sbytedword
reg32,imm32
reg32,imm

reg64,imm8

P6,FPU
P6,FPU,ND
386,FPU
386,FPU
386,FPU,ND
386,FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU
8086, FPU,ND
8086, FPU
8086, FPU
8086, FPU
8086 ,PRIV

386, SW,UNDOC,ND,OBSOLETE

386,UNDOC,ND,0BSOLETE

386,SD,UNDOC,ND,OBSOLETE

386,UNDOC,ND,0BSOLETE
386,ND

8086

8086

386
X86_64,LONG
8086

8086

386
X86_64,LONG
386

386

386

386
X86_64,LONG
X86_64,LONG
186

186,ND

186

186,ND

186

186,ND

186

186,ND

386

386,ND

386

386,ND

386

386,ND

386

386,ND
X86_64,LONG
X86_64,LONG,ND
X86_64,LONG
X86_64,LONG,ND
X86_64,LONG
X86_64,LONG,ND
X86_64,LONG
X86_64,LONG,ND
186

186,ND

186

186,ND

386

386,ND

386

386,ND
X86_64,LONG

151

152

IMUL
IMUL
IMUL
IN

IN

IN

IN

IN

IN

INC
INC
INC
INC
INC
INC
INSB
INSD
INSW
INT
INTO1
INT1
INTO3
INT3
INTO
INVD
INVPCID
INVPCID
INVLPG
INVLPGA
INVLPGA
INVLPGA
INVLPGA
IRET
IRETD
IRETQ
IRETW
JCXZ
JECXZ
JRCXZ
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

reg64,sbytedword

reg64,imm32
reg64,imm
reg_al,imm
reg_ax,imm
reg_eax,imm

reg_al,reg_dx
reg_ax,reg_dx
reg_eax,reg_dx

reglé
reg32
rm8
rml6
rm32
rme4

imm

reg32,meml28

reg64,meml28
mem

reg_ax,reg_ecx
reg_eax,reg_ecx
reg_rax,reg_ecx

imm

imm

imm
imm|short
imm

imm
imm|near
imm| far
imm16
imm16 |near
imm16 | far
imm32
imm32 | near
imm32 | far
immé64
immé4 | near
imm:imm
imm16:imm
imm:imml6
imm32:imm
imm:imm32
mem| far
mem| far
meml6 | far
mem32 | far
mem64 | far
mem|near
rmlé|near
rm32|near
rmé4|near
mem

X86_64,LONG,ND
X86_64,LONG
X86_64,LONG,ND
8086

8086

386

8086

8086

386

8086 ,NOLONG
386,NOLONG
8086,L0CK

8086, L0CK
386,L0CK
X86_64,LONG, LOCK
186

386

186

8086

386,ND

386

8086 ,ND

8086

8086 ,NOLONG

486 ,PRIV
INVPCID,PRIV,NOLONG
INVPCID,PRIV,LONG

486 ,PRIV
X86_64,AMD ,NOLONG
X86_64,AMD
X86_64, LONG , AMD
X86_64,AMD

8086

386

X86_64,LONG

8086

8086 ,NOLONG

386

X86_64,LONG

8086

8086,ND

8086 ,BND
8086,ND, BND

8086 ,ND,NOLONG
8086 ,NOLONG, BND
8086 ,ND,NOLONG , BND
8086 ,ND,NOLONG
386,NOLONG, BND
386,ND,NOLONG , BND
386,ND,NOLONG
X86_64,LONG, BND
X86_64,LONG,ND, BND
8086 ,NOLONG

8086 ,NOLONG

8086 ,NOLONG
386,NOLONG
386,NOLONG

8086 ,NOLONG
X86_64,LONG

8086

386

X86_64,LONG

8086 ,ND, BND

8086 ,NOLONG,ND, BND
386,NOLONG,ND, BND
X86_64,LONG,ND, BND
8086 ,BND

JMP
JMP
JMP
JMPE
JMPE
JMPE
JMPE
JMPE
LAHF
LAR
LAR
LAR
LAR
LAR
LAR
LAR
LAR
LAR
LAR
LAR
LAR
LDS
LDS
LEA
LEA
LEA
LEA
LEA
LEA
LEAVE
LES
LES
LFENCE
LFS
LFS
LFS
LGDT
LGS
LGS
LGS
LIDT
LLDT
LLDT
LLDT
LMSW
LMSW
LMSW
LOADALL
LOADALL286
LODSB
LODSD
LODSQ
LODSW
LOOP
LOOP
LOOP
LOOP
LOOPE
LOOPE
LOOPE
LOOPE
LOOPNE
LOOPNE
LOOPNE
LOOPNE
LOOPNZ
LOOPNZ

rml6
rm32
rme4
imm
imml6
imm32
rml6
rm32

reglé,mem
reglé,reglé
reglé,reg32
reglé,reg64
reg32,mem
reg32,reglé
reg32,reg32
reg32,reg64
reg64,mem
regé4,reglé
regé4,reg32
regé4,reg64
reglé,mem
reg32,mem
reglé,mem
reg32,mem
reg64,mem
regl6,imm
reg32,imm
reg64,imm

regl6,mem
reg32,mem

reglé,mem
reg32,mem
reg64,mem
mem
regl6,mem
reg32,mem
reg64,mem
mem

mem

mem1l6
reglé

mem

mem1l6
reglé

imm

imm,reg_cx
imm, reg_ecx
imm,reg_rcx
imm

imm,reg_cx
imm, reg_ecx
imm,reg_rcx
imm

imm, reg_cx
imm, reg_ecx
imm,reg_rcx
imm

imm,reg_cx

8086 ,NOLONG, BND
386,NOLONG, BND
X86_64,LONG, BND
IA64

IA64

IA64

IA64

IA64

8086

286,PROT, SW
286,PROT

386,PROT
X86_64,LONG, PROT,ND
386,PROT, SW
386,PROT

386,PROT
X86_64,LONG, PROT,ND
X86_64,LONG,PROT , SW
X86_64,LONG, PROT
X86_64,LONG, PROT
X86_64,LONG, PROT
8086 ,NOLONG
386,NOLONG

8086 ,ANYSIZE
386,ANYSIZE
X86_64,LONG, ANYSIZE
8086 ,ND,ANYSIZE
386,ND,ANYSIZE
X86_64,LONG,ND,ANYSIZE
186

8086 ,NOLONG
386,NOLONG
X86_64, LONG , AMD

386

386

X86_64,LONG
286,PRIV

386

386

X86_64,LONG
286,PRIV

286,PROT, PRIV
286,PROT, PRIV
286,PROT, PRIV
286,PRIV

286,PRIV

286,PRIV
386,UNDOC,ND,0BSOLETE
286,UNDOC,ND,0BSOLETE
8086

386

X86_64,LONG

8086

8086

8086 ,NOLONG

386

X86_64,LONG

8086

8086 ,NOLONG

386

X86_64,LONG

8086

8086 ,NOLONG

386

X86_64,LONG

8086

8086 ,NOLONG

153

154

LOOPNZ
LOOPNZ
LOOPZ
LOOPZ
LOOPZ
LOOPZ
LSL

LSL

LSL

LSL

LSL

LSL

LSL

LSL

LSL

LSL

LSL

LSL

LSS

LSS

LSS

LTR

LTR

LTR
MFENCE
MONITOR
MONITOR
MONITOR
MONITORX
MONITORX
MONITORX
MONITORX
MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

MOV

imm, reg_ecx
imm,reg_rcx
imm
imm,reg_cx
imm, reg_ecx
imm,reg_rcx
reglé,mem
reglé,reglé
reglé,reg32
regl6,reg64
reg32,mem
reg32,reglé
reg32,reg32
reg32,reg64
reg64,mem
regé4,reglé
regé4,reg32
regé4,reg64
regl6,mem
reg32,mem
reg64,mem
mem

mem1l6

reglé

reg_eax,reg_ecx,reg_edx
reg_rax,reg_ecx,reg_edx

reg_rax,reg_ecx,reg_edx
reg_eax,reg_ecx,reg_edx
reg_ax,reg_ecx,reg_edx
mem,reg_sreg
reglé,reg_sreg
reg32,reg_sreg
regb4,reg_sreg
rmé4,reg_sreg
reg_sreg,mem
reg_sreg,regl6
reg_sreg,reg32
reg_sreg,reg64
reg_sreg,regl6
reg_sreg,reg32
reg_sreg,rmé4
reg_al,mem_offs
reg_ax,mem_offs
reg_eax,mem_offs
reg_rax,mem_offs
mem_offs,reg_al
mem_offs,reg_ax
mem_offs,reg_eax
mem_offs,reg_rax
reg32,reg_creg
regb4,reg_creg
reg_creg,reg32
reg_creg,reg64
reg32,reg_dreg
regb4,reg_dreg
reg_dreg,reg32
reg_dreg,reg64
reg32,reg_treg
reg_treg,reg32
mem, reg8
reg8,reg8

mem, regl6
reglé,reglé

mem, reg32

386
X86_64,LONG

8086

8086 ,NOLONG

386

X86_64,LONG
286,PROT, SW
286,PROT

386,PROT
X86_64,LONG, PROT,ND
386,PROT, SW
386,PROT

386,PROT
X86_64,LONG, PROT,ND
X86_64,LONG,PROT , SW
X86_64,LONG, PROT
X86_64,LONG, PROT
X86_64,LONG, PROT
386

386

X86_64,LONG
286,PROT, PRIV
286,PROT, PRIV
286,PROT, PRIV
X86_64, LONG , AMD
PRESCOTT
PRESCOTT,NOLONG,ND
X86_64,LONG,ND

AMD
X86_64,LONG , AMD ,ND
AMD, ND

AMD , ND

8086, SW

8086

386
X86_64,LONG,0PT,ND
X86_64,LONG

8086, SW

8086 ,0PT,ND
386,0PT,ND
X86_64,LONG,0PT,ND
8086

386

X86_64,LONG

8086

8086

386

X86_64,LONG

8086 ,NOHLE

8086 ,NOHLE
386,NOHLE

X86_64, ONG,NOHLE
386,PRIV,NOLONG
X86_64,LONG, PRIV
386,PRIV,NOLONG
X86_64,LONG, PRIV
386,PRIV,NOLONG
X86_64,LONG, PRIV
386,PRIV,NOLONG
X86_64,LONG, PRIV
386,NOLONG,ND
386,NOLONG, ND
8086

8086

8086

8086

386

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOVD
MOVD
MOVD
MOVD
MOVQ
MOVQ
MOVQ
MOVQ
MOVSB
MOVSD
MOVSQ
MOVSW
MOVSX
MOVSX
MOVSX
MOVSX
MOVSX
MOVSX
MOVSXD
MOVSX
MOVZX
MOVZX
MOVZX
MOVZX
MOVZX
MOVZX
MUL
MUL
MUL
MUL
MWAIT
MWAIT
MWAITX
MWAITX
NEG
NEG
NEG
NEG
NOP
NOP
NOP
NOP

reg32,reg32
mem, reg64
reg64,reg64
reg8,mem
reg8,reg8
reglé,mem
reglé,reglé
reg32,mem
reg32,reg32
reg64,mem
regé4,reg64
reg8,imm
regl6,imm
reg32,imm
reg64,udword
reg64,sdword
reg64,imm
rm8, imm
rm1l6,imm
rm32,imm
rmé64 , imm
rmé64 ,imm32
mem, imm8
mem, imm16
mem, imm32
mmxreg,rm32
rm32,mmxreg
mmxreg, rm64
rmé4,mmxreg
mmxreg,mmxrm
mmxrm,mmxreg
mmxreg, rm64
rmé4,mmxreg

regl6,mem
reglé,reg8
reg32,rm8
reg32,rmlé
regé4,rm8
regé4,rml6
regé4,rm32
regé4,rm32
reglé,mem
reglé,reg8
reg32,rm8
reg32,rmlé
regé4,rm8
regé4,rml6
rm8

rmlé

rm32

rmé4

reg_eax,reg_ecx

reg_eax,reg_ecx

rm8

rml6
rm32
rme4

rml6
rm32
rme4

386
X86_64,LONG
X86_64,LONG
8086

8086

8086

8086

386

386
X86_64,LONG
X86_64,LONG
8086

8086

386

X86_64,LONG,0PT,ND
X86_64,LONG,0PT,ND

X86_64,LONG
8086
8086
386
X86_64,LONG
X86_64,LONG
8086
8086
386
PENT,MMX , SD
PENT,MMX , SD

X86_64,LONG,MMX , SX,ND
X86_64,LONG, MMX , SX ,ND

PENT ,MMX
PENT ,MMX

X86_64, LONG , MMX
X86_64, LONG , MMX

8086
386
X86_64,LONG
8086

386

386

386

386
X86_64,LONG
X86_64,LONG
X86_64,LONG
X86_64,LONG,ND
386

386

386

386
X86_64,LONG
X86_64,LONG
8086

8086

386
X86_64,LONG
PRESCOTT
PRESCOTT,ND
AMD

AMD, ND
8086,L0CK
8086, L0CK
386,L0CK
X86_64,LONG, LOCK
8086

P6

P6
X86_64,LONG

155

NOT
NOT
NOT
NOT

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

ouT
ouT
ouT
ouT
ouT
ouT
ouTSB
OuUTSD
ouTSw
PACKSSDW
PACKSSWB
PACKUSWB
PADDB
PADDD
PADDSB
PADDSIW
PADDSW
PADDUSB
PADDUSW
PADDW
PAND
PANDN
PAUSE
PAVEB

156

rm8

rmleé

rm32

rmé4

mem, reg8
reg8,reg8

mem, regl6
reglé,reglé
mem, reg32
reg32,reg32
mem, reg64
regé4,reg64
reg8,mem
reg8,reg8
reglé,mem
reglé,reglé
reg32,mem
reg32,reg32
reg64,mem
reg64,reg64
rml6,imm8
rm32,imm8
rmé4 , imm8
reg_al,imm
reg_ax,sbyteword
reg_ax,imm
reg_eax,sbytedword
reg_eax,imm
reg_rax,sbytedword
reg_rax,imm
rm8, imm
rml6,sbyteword
rml6,imm
rm32,sbytedword
rm32,imm

rmé64 ,sbytedword
rmé64 , imm

mem, imm8

mem, sbytewordl6
mem, imm16

mem, sbytedword32
mem, imm32

rm8, imm
imm,reg_al

imm, reg_ax

imm, reg_eax
reg_dx,reg_al
reg_dx,reg_ax
reg_dx,reg_eax

mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm

mmxreg, mmxrm

8086, L0CK
8086, L0CK
386,L0CK
X86_64,LONG, LOCK
8086, L0CK

8086

8086,L0CK

8086

386,L0CK

386
X86_64,LONG, LOCK
X86_64,LONG

8086

8086

8086

8086

386

386

X86_64,LONG
X86_64,LONG
8086, L0CK
386,L0CK
X86_64,LONG, LOCK
8086

8086,ND

8086

386,ND

386
X86_64,LONG,ND
X86_64,LONG
8086,L0CK

8086, L0CK,ND
8086, L0CK
386,L0CK,ND
386,L0CK
X86_64,LONG, LOCK,ND
X86_64,LONG, LOCK
8086, L0CK

8086, L0CK,ND
8086, L0CK
386,L0CK,ND
386,L0CK

8086 ,L0CK,ND,NOLONG
8086

8086

386

8086

8086

386

186

386

186

PENT , MMX
PENT , MMX
PENT , MMX
PENT , MMX
PENT , MMX
PENT , MMX
PENT,MMX , CYRIX
PENT , MMX
PENT , MMX
PENT , MMX
PENT , MMX
PENT , MMX
PENT , MMX

8086
PENT,MMX , CYRIX

PAVGUSB
PCMPEQB
PCMPEQD
PCMPEQW
PCMPGTB
PCMPGTD
PCMPGTW
PDISTIB
PF2ID
PFACC
PFADD
PFCMPEQ
PFCMPGE
PFCMPGT
PFMAX
PFMIN
PFMUL
PFRCP
PFRCPIT1
PFRCPIT2
PFRSQIT1
PFRSQRT
PFSUB
PFSUBR
PI2FD
PMACHRIW
PMADDWD
PMAGW
PMULHRIW
PMULHRWA
PMULHRWC
PMULHW
PMULLW
PMVGEZB
PMVLZB
PMVNZB
PMVZB
POP

POP

POP

POP

POP

POP

POP

POP

POP

POP

POP

POP

POPA
POPAD
POPAW
POPF
POPFD
POPFQ
POPFW
POR
PREFETCH
PREFETCHW
PSLLD
PSLLD
PSLLQ
PSLLQ
PSLLW
PSLLW
PSRAD
PSRAD

mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mem
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mem
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mem
mmxreg,mem
mmxreg,mem
mmxreg,mem
reglé

reg32

reg64

rmlé

rm32

rmé4

reg_es
reg_cs
reg_ss
reg_ds
reg_fs
reg_gs

mmxreg ,mmxrm
mem

mem
mmxreg,mmxrm
mmxreg,imm
mmxreg,mmxrm
mmxreg,imm
mmxreg,mmxrm
mmxreg,imm
mmxreg,mmxrm
mmxreg,imm

PENT, 3DNOW
PENT , MMX
PENT , MMX
PENT , MMX
PENT , MMX
PENT , MMX
PENT , MMX
PENT,MMX , CYRIX
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT,MMX , CYRIX
PENT , MMX
PENT,MMX , CYRIX
PENT,MMX , CYRIX
PENT, 3DNOW
PENT,MMX , CYRIX
PENT , MMX
PENT , MMX
PENT,MMX , CYRIX
PENT,MMX , CYRIX
PENT,MMX , CYRIX
PENT,MMX , CYRIX
8086
386,NOLONG
X86_64,LONG
8086
386,NOLONG
X86_64,LONG
8086 ,NOLONG
8086 ,UNDOC,ND,OBSOLETE
8086 ,NOLONG
8086 ,NOLONG
386

386

186,NOLONG
386,NOLONG
186,NOLONG
8086
386,NOLONG
X86_64,LONG
8086

PENT , MMX

PENT, 3DNOW
PENT, 3DNOW
PENT , MMX
PENT , MMX
PENT , MMX
PENT , MMX
PENT , MMX
PENT , MMX
PENT , MMX
PENT , MMX

157

158

PSRAW mmxreg,mmxrm PENT ,MMX

PSRAW mmxreg,imm PENT ,MMX

PSRLD mmxreg,mmxrm PENT ,MMX

PSRLD mmxreg,imm PENT , MMX

PSRLQ mmxreg,mmxrm PENT ,MMX

PSRLQ mmxreg,imm PENT , MMX

PSRLW mmxreg,mmxrm PENT ,MMX

PSRLW mmxreg,imm PENT , MMX

PSUBB mmxreg,mmxrm PENT ,MMX

PSUBD mmxreg,mmxrm PENT ,MMX

PSUBSB mmxreg,mmxrm PENT ,MMX

PSUBSIW mmxreg,mmxrm PENT ,MMX, CYRIX
PSUBSW mmxreg,mmxrm PENT ,MMX

PSUBUSB mmxreg,mmxrm PENT ,MMX

PSUBUSW mmxreg,mmxrm PENT ,MMX

PSUBW mmxreg,mmxrm PENT ,MMX
PUNPCKHBW mmxreg,mmxrm PENT ,MMX
PUNPCKHDQ mmxreg,mmxrm PENT ,MMX
PUNPCKHWD mmxreg,mmxrm PENT ,MMX
PUNPCKLBW mmxreg,mmxrm PENT ,MMX
PUNPCKLDQ mmxreg,mmxrm PENT ,MMX
PUNPCKLWD mmxreg,mmxrm PENT ,MMX

PUSH reglé 8086

PUSH reg32 386, NOLONG

PUSH reg64 X86_64,LONG

PUSH rml6 8086

PUSH rm32 386, NOLONG

PUSH rmé4 X86_64,LONG

PUSH reg_es 8086,NOLONG

PUSH reg_cs 8086,NOLONG

PUSH reg_ss 8086,NOLONG

PUSH reg_ds 8086,NOLONG

PUSH reg_fs 386

PUSH reg_gs 386

PUSH imm8 186

PUSH sbytewordl6 186,AR0,SIZE,ND
PUSH imml6 186,AR0,SIZE
PUSH sbytedword32 386,NOLONG,ARO,SIZE,ND
PUSH imm32 386,NOLONG,ARO,SIZE
PUSH sbytedword32 386,NOLONG,SD,ND
PUSH imm32 386,NOLONG, SD
PUSH sbytedword64 X86_64,LONG,ARO,SIZE,ND
PUSH imm64 X86_64,LONG,ARO,SIZE
PUSH sbytedword32 X86_64,LONG,ARO,SIZE,ND
PUSH imm32 X86_64,LONG,ARO,SIZE
PUSHA 186,NOLONG
PUSHAD 386,NOLONG
PUSHAW 186,NOLONG

PUSHF 8086

PUSHFD 386,NOLONG
PUSHFQ X86_64,LONG
PUSHFW 8086

PXOR mmxreg,mmxrm PENT ,MMX

RCL rm8,unity 8086

RCL rm8,reg_cl 8086

RCL rm8, imm8 186

RCL rml6,unity 8086

RCL rml6,reg_cl 8086

RCL rml6,imm8 186

RCL rm32,unity 386

RCL rm32,reg_cl 386

RCL rm32,imm8 386

RCL rmé4,unity X86_64,LONG

RCL rmé4,reg_cl X86_64,LONG

RCL rmé4,imm8 X86_64,LONG

RCR rm8,unity 8086

RCR rm8,reg_cl 8086

RCR
RCR
RCR
RCR
RCR
RCR
RCR
RCR
RCR
RCR
RDSHR
RDMSR
RDPMC
RDTSC
RDTSCP
RET
RET
RETF
RETF
RETN
RETN
RETW
RETW
RETFW
RETFW
RETNW
RETNW
RETD
RETD
RETFD
RETFD
RETND
RETND
RETQ
RETQ
RETFQ
RETFQ
RETNQ
RETNQ
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROR
ROR
ROR
ROR
ROR
ROR
ROR
ROR
ROR
ROR
ROR
ROR
RDM
RSDC
RSLDT
RSM

rm8, imm8
rml6,unity
rml6,reg_cl
rml6,imm8
rm32,unity
rm32,reg_cl
rm32,imm8
rmé4,unity
rmé4,reg_cl
rmé64 , imm8
rm32

imm
imm
imm
imm
imm
imm
imm
imm
imm
imm
imm

imm
rm8,unity
rm8,reg_cl
rm8, imm8
rml6,unity
rml6,reg_cl
rml6,imm8
rm32,unity
rm32,reg_cl
rm32,imm8
rmé4,unity
rmé4,reg_cl
rmé4 , imm8
rm8,unity
rm8,reg_cl
rm8, imm8
rml6,unity
rml6,reg_cl
rml6,imm8
rm32,unity
rm32,reg_cl
rm32,imm8
rmé4,unity
rmé4,reg_cl
rmé4 , imm8

reg_sreg,mem80
mem80

186
8086

8086

186

386

386

386

X86_64,LONG
X86_64,LONG
X86_64,LONG
P6,CYRIX,SMM
PENT, PRIV

P6

PENT

X86_64

8086 ,BND
8086, SW, BND
8086

8086 ,SW

8086 ,BND
8086, SW, BND
8086 ,BND
8086, SW, BND
8086

8086, SW

8086 ,BND
8086, SW, BND
8086 ,BND,NOLONG
8086, SW, BND,NOLONG
8086

8086, SW

8086 ,BND,NOLONG
8086, SW, BND,NOLONG
X86_64,LONG, BND
X86_64,LONG, SW,BND
X86_64,LONG
X86_64,LONG, SW
X86_64,LONG, BND
X86_64,LONG, SW,BND
8086

8086

186

8086

8086

186

386

386

386

X86_64,LONG
X86_64,LONG
X86_64,LONG
8086

8086

186

8086

8086

186

386

386

386

X86_64,LONG
X86_64,LONG
X86_64,LONG
P6,CYRIX,ND
486,CYRIX,SMM
486,CYRIX,SMM
PENT, SMM

159

160

RSTS
SAHF
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SAL
SALC
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SAR
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SBB
SCASB

mem80

rm8,unity
rm8,reg_cl
rm8, imm8
rml6,unity
rml6,reg_cl
rml6,imm8
rm32,unity
rm32,reg_cl
rm32,imm8
rmé4,unity
rmé4,reg_cl
rmé4 , imm8

rm8,unity
rm8,reg_cl

rm8, imm8
rml6,unity
rml6,reg_cl
rml6,imm8
rm32,unity
rm32,reg_cl
rm32,imm8
rmé4,unity
rmé4,reg_cl
rmé4 , imm8

mem, reg8
reg8,reg8

mem, regl6
reglé,reglé
mem, reg32
reg32,reg32
mem, reg64
regé4,reg64
reg8,mem
reg8,reg8
regl6,mem
reglé,reglé
reg32,mem
reg32,reg32
reg64,mem
regb4,reg64
rml6,imm8
rm32,imm8
rmé4 , imm8
reg_al,imm
reg_ax,sbyteword
reg_ax,imm
reg_eax,sbytedword
reg_eax,imm
reg_rax,sbytedword
reg_rax,imm
rm8, imm
rml6,sbyteword
rm1l6,imm
rm32,sbytedword
rm32,imm

rmé64 ,sbytedword
rmé64 , imm

mem, imm8

mem, sbytewordl6
mem, imm16

mem, sbytedword32
mem, imm32

rm8, imm

486,CYRIX,SMM
8086

8086,ND
8086,ND

186,ND

8086,ND
8086,ND

186,ND

386,ND

386,ND

386,ND
X86_64,LONG,ND
X86_64,LONG,ND
X86_64,LONG,ND
8086, UNDOC
8086

8086

186

8086

8086

186

386

386

386
X86_64,LONG
X86_64,LONG
X86_64,LONG
8086, L0CK

8086

8086, L0CK

8086

386,L0CK

386
X86_64,LONG, LOCK
X86_64,LONG
8086

8086

8086

8086

386

386
X86_64,LONG
X86_64,LONG
8086,L0CK
386,L0CK
X86_64,LONG, LOCK
8086

8086,ND

8086

386,ND

386
X86_64,LONG,ND
X86_64,LONG
8086, L0CK
8086, L0CK,ND
8086, L0CK
386,L0CK,ND
386,L0CK
X86_64,LONG, LOCK,ND
X86_64,LONG, LOCK
8086, L0CK
8086, L0CK,ND
8086, L0CK
386,L0CK,ND
386,L0CK

8086, L0CK,ND,NOLONG
8086

SCASD
SCASQ
SCASW
SFENCE
SGDT
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHL
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHLD
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHR
SHRD
SHRD
SHRD
SHRD
SHRD
SHRD
SHRD
SHRD
SHRD
SHRD
SHRD
SHRD
SIDT
SLDT
SLDT
SLDT
SLDT
SLDT
SLDT
SKINIT
SMI
SMINT
SMINTOLD
SMSW
SMSW
SMSW

mem
rm8,unity
rm8,reg_cl

rm8, imm8
rml6,unity
rml6,reg_cl
rml6,imm8
rm32,unity
rm32,reg_cl
rm32,imm8
rmé4,unity
rmé4,reg_cl
rmé64 , imm8

mem, regl6,imm
regl6,regl6,imm
mem, reg32,imm
reg32,reg32,imm
mem, reg64,imm
reg64,reg64,imm
mem,regl6,reg_cl
reglé,regl6,reg_cl
mem,reg32,reg_cl
reg32,reg32,reg_cl
mem, reg64,reg_cl
reg64,reg64,reg_cl
rm8,unity
rm8,reg_cl

rm8, imm8
rml6,unity
rml6,reg_cl
rml6,imm8
rm32,unity
rm32,reg_cl
rm32,imm8
rmé4,unity
rmé4,reg_cl
rmé4 , imm8

mem, regl6,imm
regl6,regl6,imm
mem, reg32,imm
reg32,reg32,imm
mem, reg64,imm
reg64,reg64,imm
mem,regl6,reg_cl
reglé,regl6,reg_cl
mem,reg32,reg_cl
reg32,reg32,reg_cl
mem, reg64,reg_cl
reg64,reg64,reg_cl
mem

mem

mem1l6

reglé

reg32

regb64

reg64

mem
meml6
reglé

386
X86_64,LONG
8086

X86_64, LONG , AMD

286

8086

8086

186

8086

8086

186

386

386

386
X86_64,LONG
X86_64,LONG
X86_64,LONG
386

386

386

386
X86_64,LONG
X86_64,LONG
386

386

386

386
X86_64,LONG
X86_64,LONG
8086

8086

186

8086

8086

186

386

386

386
X86_64,LONG
X86_64,LONG
X86_64,LONG
386

386

386

386
X86_64,LONG
X86_64,LONG
386

386

386

386
X86_64,LONG
X86_64,LONG
286

286

286

286

386

X86_64,LONG,ND

X86_64,LONG
X86_64,LONG
386, UNDOC

P6,CYRIX,ND

486,CYRIX,ND,OBSOLETE

286
286
286

161

162

SMSW
SMSW
STC
STD
STI
STOSB
STOSD
STOSQ
STOSW
STR
STR
STR
STR
STR
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SuUB
SuUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SUB
SvDC
SVLDT
SVTS
SWAPGS
SYSCALL
SYSENTER
SYSEXIT
SYSRET
TEST
TEST
TEST
TEST
TEST
TEST

reg32
reg64

mem
meml6

reglé

reg32

reg64

mem, reg8
reg8,reg8

mem, regl6
reglé,reglé

mem, reg32
reg32,reg32

mem, reg64
regé4,reg64
reg8,mem
reg8,reg8
regl6,mem
reglé,reglé
reg32,mem
reg32,reg32
reg64,mem
regé4,reg64
rml6,imm8
rm32,imm8
rmé4 , imm8
reg_al,imm
reg_ax,sbyteword
reg_ax,imm
reg_eax,sbytedword
reg_eax,imm
reg_rax,sbytedword
reg_rax,imm

rm8, imm
rml6,sbyteword
rm1l6,imm
rm32,sbytedword
rm32,imm

rmé64 ,sbytedword
rmé64 , imm

mem, imm8

mem, sbytewordl6
mem, imm16

mem, sbytedword32
mem, imm32

rm8, imm
mem80,reg_sreg
mem80

mem80

mem, reg8
reg8,reg8
mem, regl6
reglé,reglé
mem, reg32
reg32,reg32

386
X86_64,LONG
8086

8086

8086

8086

386
X86_64,LONG
8086
286,PROT
286,PROT
286,PROT
386,PROT
X86_64,LONG
8086, L0CK
8086

8086, L0CK
8086
386,L0CK

386
X86_64,LONG, LOCK
X86_64,LONG
8086

8086

8086

8086

386

386
X86_64,LONG
X86_64,LONG
8086,L0CK
386,L0CK
X86_64,LONG, LOCK
8086

8086 ,ND

8086

386,ND

386
X86_64,LONG,ND
X86_64,LONG
8086,L0CK
8086, L0CK,ND
8086, L0CK
386,L0CK,ND
386,L0CK

X86_64, LONG, LOCK,ND
X86_64,LONG, LOCK
8086, L0CK

8086, L0CK,ND
8086, L0CK
386,L0CK,ND
386,L0CK

8086 ,L0CK,ND,NOLONG
486,CYRIX,SMM
486,CYRIX,SMM,ND
486,CYRIX,SMM
X86_64,LONG
P6,AMD

P6

P6,PRIV
P6,PRIV,AMD

8086

8086

8086

8086

386

386

TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
ubo
ubo
ubo
ubo
ubl
ubl
ubl
ubl
ubD2B
ubD2B
ubD2B
ubD2B
ub2
UD2A
umMov
uMov
uMov
uMov
uMov
uMov
uMov
umMov
umMov
uMov
uMov
uMov
VERR
VERR
VERR
VERW
VERW
VERW
FWAIT
WBINVD
WRSHR
WRMSR
XADD
XADD
XADD
XADD
XADD
XADD
XADD
XADD
XBTS
XBTS
XBTS
XBTS
XCHG
XCHG

mem, reg64
reg64,reg64
reg8,mem
reglé,mem
reg32,mem
reg64,mem
reg_al,imm
reg_ax,imm
reg_eax,imm
reg_rax,imm
rm8, imm
rm1l6,imm
rm32,imm
rmé64 , imm
mem, imm8
mem, imm16
mem, imm32

reglé,rml6
reg32,rm32
regé4,rmé4
reglé,rml6
reg32,rm32
regé4,rmé4

reglé,rml6
reg32,rm32
regé4,rmé4

mem, reg8
reg8,reg8
mem, regl6
reglé,reglé
mem, reg32
reg32,reg32
reg8,mem
reg8,reg8
regl6,mem
reglé,reglé
reg32,mem
reg32,reg32
mem

mem1l6

reglé

mem

meml1l6

reglé

rm32

mem, reg8
reg8,reg8
mem, reglé
reglé,reglé
mem, reg32
reg32,reg32
mem, reg64
regé4,reg64
regl6,mem
reglé,reglé
reg32,mem
reg32,reg32
reg_ax,reglé

reg_eax,reg32na

X86_64,LONG
X86_64,LONG
8086

8086

386
X86_64,LONG
8086

8086

386
X86_64,LONG
8086

8086

386
X86_64,LONG
8086

8086

386
186,0BSOLETE
186

186

186

186

186

186

186,ND
186,ND
186,ND
186,ND
186,ND

186

186,ND

386, UNDOC,ND
386, UNDOC, ND
386, UNDOC,ND
386, UNDOC,ND
386, UNDOC, ND
386, UNDOC,ND
386, UNDOC,ND
386, UNDOC,ND
386, UNDOC, ND
386, UNDOC, ND
386, UNDOC, ND
386, UNDOC,ND
286,PROT
286,PROT
286,PROT
286,PROT
286,PROT
286,PROT
8086

486 ,PRIV
P6,CYRIX,SMM
PENT, PRIV
486,L0CK

486

486,L0CK

486

486,L0CK

486

X86_64,LONG, LOCK

X86_64,LONG

386, SW,UNDOC,ND

386, UNDOC, ND

386,5SD,UNDOC,ND

386, UNDOC, ND
8086
386

163

164

XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XCHG
XLATB
XLAT
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
CMOVcc
CMOVcc
CMOVcc
CMOVcc
CMOVcc

reg_rax,regé64
reglé,reg_ax
reg32na,reg_eax
regb4,reg_rax
reg_eax,reg_eax
reg8,mem
reg8,reg8
reglé,mem
reglé,reglé
reg32,mem
reg32,reg32
reg64,mem
regé4,reg64
mem, reg8
reg8,reg8
mem, regl6
reglé,reglé
mem, reg32
reg32,reg32
mem, reg64
regé4,reg64

mem, reg8
reg8,reg8

mem, regl6
reglé,reglé
mem, reg32
reg32,reg32
mem, reg64
regé4,reg64
reg8,mem
reg8,reg8
reglé,mem
reglé,reglé
reg32,mem
reg32,reg32
reg64,mem
regé4,reg64
rml6,imm8
rm32,imm8
rmé4 , imm8
reg_al,imm
reg_ax,sbyteword
reg_ax,imm
reg_eax,sbytedword
reg_eax,imm
reg_rax,sbytedword
reg_rax,imm
rm8, imm
rml6,sbyteword
rm1l6,imm
rm32,sbytedword
rm32,imm

rmé64 ,sbytedword
rmé64 , imm

mem, imm8

mem, sbytewordl6
mem, imm16

mem, sbytedword32
mem, imm32

rm8, imm
regl6,mem
reglé,reglé
reg32,mem
reg32,reg32
reg64,mem

X86_64,LONG
8086

386

X86_64,LONG
386,NOLONG
8086,L0CK

8086

8086,L0CK

8086

386,L0CK

386
X86_64,LONG, LOCK
X86_64,LONG
8086, L0CK

8086

8086, L0CK

8086

386,L0CK

386
X86_64,LONG, LOCK
X86_64,LONG

8086

8086

8086, L0CK

8086

8086, L0CK

8086

386,L0CK

386
X86_64,LONG, LOCK
X86_64,LONG

8086

8086

8086

8086

386

386

X86_64,LONG
X86_64,LONG
8086,L0CK
386,L0CK
X86_64,LONG, LOCK
8086

8086,ND

8086

386,ND

386
X86_64,LONG,ND
X86_64,LONG
8086, L0CK

8086, L0CK,ND
8086, L0CK
386,L0CK,ND
386,L0CK
X86_64,LONG, LOCK,ND
X86_64,LONG, LOCK

8086, L0CK
8086, L0CK,ND

8086, L0CK
386,L0CK,ND
386,L0CK

8086, L0CK,ND,NOLONG
P6

P6

P6

P6

X86_64,LONG

B.1.3

CMOVcc
Jcc
Jcc
Jcc
Jcc
Jcc
Jcc
Jcc
Jcc
Jcc
SETcc
SETcc

reg64,reg64
imm|near
imm16 |near
imm32 | near
immé4 | near
imm|short
imm

imm

imm

imm

mem

reg8

X86_64,LONG
386,BND
386,NOLONG, BND
386,NOLONG, BND
X86_64,LONG, BND
8086,ND, BND
8086,ND, BND
386,ND, BND
8086,ND, BND
8086 ,BND

386

386

Katmai Streaming SIMD instructions (SSE -- a.k.a. KNI, XMM, MMX2)

ADDPS
ADDSS
ANDNPS
ANDPS
CMPEQPS
CMPEQSS
CMPLEPS
CMPLESS
CMPLTPS
CMPLTSS
CMPNEQPS
CMPNEQSS
CMPNLEPS
CMPNLESS
CMPNLTPS
CMPNLTSS
CMPORDPS
CMPORDSS
CMPUNORDPS
CMPUNORDSS
CMPPS
CMPSS
COMISS
CVTPI2PS
CVTPS2PI
CVTSI2SS
CVTSI2SS
CVTSI2SS
CVTSS2SI
CVTSS2SI
CVTSS2SI
CVTSS2SI
CVTTPS2PI
CVTTSS2SI
CVTTSS2SI
DIVPS
DIVSS
LDMXCSR
MAXPS
MAXSS
MINPS
MINSS
MOVAPS
MOVAPS
MOVHPS
MOVHPS
MOVLHPS
MOVLPS
MOVLPS
MOVHLPS
MOVMSKPS
MOVMSKPS

xmmreg,xmmrml28
xmmreg,xmmrm32
xmmreg,xmmrml28
xmmreg,xmmrml28
xmmreg,xmmrml28
xmmreg,xmmrm32
xmmreg,xmmrml28
xmmreg,xmmrm32
xmmreg,xmmrml28
xmmreg,xmmrm32
xmmreg,xmmrml28
xmmreg,xmmrm32
xmmreg,xmmrml28
xmmreg,xmmrm32
xmmreg,xmmrml28
xmmreg,xmmrm32
xmmreg,xmmrml28
xmmreg,xmmrm32
xmmreg,xmmrml28
xmmreg,xmmrm32
xmmreg,xmmrml28,imm8
xmmreg,xmmrm32,imm8
xmmreg,xmmrm32
xmmreg,mmxrmé64
mmxreg,Xxmmrmé64
xmmreg,mem
xmmreg, rm32
xmmreg, rm64
reg32,xmmreg
reg32,mem
regé4,xmmreg
reg64,mem
mmxreg,xmmrm
reg32,xmmrm
reg64,xmmrm
xmmreg,xmmrml28
xmmreg,xmmrm32
mem32
xmmreg,xmmrml28
xmmreg,xmmrm32
xmmreg,xmmrml28
xmmreg,xmmrm32
xmmreg,xmmrml28
Xxmmrml28,xmmreg
xmmreg,mem64
memé64 , xmmreg
xmmreg,xmmreg
xmmreg,mem64
memé64 , xmmreg
xmmreg,xmmreg
reg32,xmmreg
reg64,xmmreg

KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE , MMX
KATMAT , SSE , MMX
KATMAT , SSE,SD,AR1,ND
KATMAI, SSE,SD,AR1
X86_64,LONG,SSE,AR1
KATMAI, SSE,SD,AR1
KATMAI, SSE,SD,AR1
X86_64,LONG,SSE,SD,AR1
X86_64,LONG,SSE,SD,AR1
KATMAT , SSE , MMX
KATMAI, SSE,SD,AR1
X86_64,LONG,SSE,SD,AR1
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
KATMAT , SSE
X86_64,LONG,SSE

165

B.1.4

B.1.5 XSAVE group (AVX and extended state)

B.1.6

B.1.7

166

MOVNTPS
MOVSS
MOVSS
MOVUPS
MOVUPS
MULPS
MULSS
ORPS
RCPPS
RCPSS
RSQRTPS
RSQRTSS
SHUFPS
SQRTPS
SQRTSS
STMXCSR
SUBPS
SUBSS
UCOMISS
UNPCKHPS
UNPCKLPS
XORPS

meml28,xmmreg
xmmreg,xmmrm32
Xxmmrm32 ,xmmreg
xmmreg,xmmrml28
Xxmmrml28,xmmreg
xmmreg,xmmrml28
xmmreg,xmmrm32
xmmreg,xmmrml28
xmmreg,xmmrml28
xmmreg,xmmrm32
xmmreg,xmmrml28
xmmreg,xmmrm32

xmmreg,xmmrml28,imm8

xmmreg,xmmrml28
xmmreg,xmmrm32
mem32
xmmreg,xmmrml28
xmmreg,xmmrm32
xmmreg,xmmrm32
xmmreg,xmmrml28
xmmreg,xmmrml28
xmmreg,xmmrml28

KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE
KATMAI,SSE

Introduced in Deschutes but necessary for SSE support

FXRSTOR
FXRSTORG64
FXSAVE
FXSAVE64

XGETBV
XSETBV
XSAVE
XSAVEG64
XSAVEC
XSAVEC64
XSAVEOPT
XSAVEOPT64
XSAVES
XSAVES64
XRSTOR
XRSTOR64
XRSTORS
XRSTORS64

mem
mem
mem
mem

mem
mem
mem
mem
mem
mem
mem
mem
mem
mem
mem
mem

Generic memory operations

PREFETCHNTA
PREFETCHTO
PREFETCHT1
PREFETCHT2
SFENCE

mem8
mem8
mem8
mem8

P6,SSE,FPU
X86_64,LONG,SSE, FPU
P6,SSE,FPU

X86_64,LONG,SSE, FPU

NEHALEM
NEHALEM, PRIV
NEHALEM
LONG,NEHALEM

LONG
LONG

LONG
NEHALEM
LONG,NEHALEM

LONG

KATMAI
KATMAI
KATMAI
KATMAI
KATMAI

New MMX instructions introduced in Katmai

MASKMOVQ
MOVNTQ
PAVGB
PAVGW
PEXTRW
PINSRW
PINSRW
PINSRW
PMAXSW
PMAXUB
PMINSW

mmxreg,mmxreg
mem,mmxreg
mmxreg ,mmxrm
mmxreg ,mmxrm
reg32,mmxreg,imm
mmxreg,mem,imm
mmxreg,rml6,imm
mmxreg,reg32,imm
mmxreg ,mmxrm
mmxreg ,mmxrm
mmxreg ,mmxrm

KATMAT ,MMX
KATMAT ,MMX
KATMAT ,MMX
KATMAT ,MMX
KATMAT ,MMX
KATMAT ,MMX
KATMAT ,MMX
KATMAT ,MMX
KATMAT ,MMX
KATMAT ,MMX
KATMAT ,MMX

PMINUB
PMOVMSKB
PMULHUW
PSADBW
PSHUFW

mmxreg,mmxrm
reg32,mmxreg
mmxreg,mmxrm
mmxreg,mmxrm
mmxreg,mmxrm,imm

KATMAT ,MMX
KATMAT ,MMX
KATMAT ,MMX
KATMAT ,MMX
KATMAT ,MMX

B.1.8 AMD Enhanced 3DNow! (Athlon) instructions

PF2IW
PFNACC
PFPNACC
PI2FW
PSWAPD

B.1.9 Willamette SSE2 Cacheabili

MASKMOVDQU
CLFLUSH
MOVNTDQ
MOVNTI
MOVNTI
MOVNTPD
LFENCE
MFENCE

B.1.10 Willamette MMX instructions (SSE2 SIMD Integer Instructions)

MOVD
MOVD
MOVD
MOVD
MOVDQA
MOVDQA
MOVDQU
MOVDQU
MOVDQ2Q
MOVQ
MOVQ
MOVQ
MOVQ
MOVQ
MOVQ
MOVQ2DQ
PACKSSWB
PACKSSDW
PACKUSWB
PADDB
PADDW
PADDD
PADDQ
PADDQ
PADDSB
PADDSW
PADDUSB
PADDUSW
PAND
PANDN
PAVGB
PAVGW
PCMPEQB
PCMPEQW
PCMPEQD
PCMPGTB
PCMPGTW
PCMPGTD
PEXTRW
PEXTRW
PINSRW

mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm
mmxreg, mmxrm

xmmreg,xmmreg
mem

mem, xmmreg
mem, reg32
mem, reg64
mem, xmmreg

mem, xmmreg
xmmreg,mem
xmmreg, rm32
rm32,xmmreg
xmmreg,xmmrml28
xmmrml28,xmmreg
xmmreg,xmmrml28
xmmrml28,xmmreg
mmxreg,xmmreg
xmmreg,xmmreg
xmmreg,xmmreg
mem, xmmreg
xmmreg,mem
xmmreg, rm64
rmé4,xmmreg
xmmreg,mmxreg
xmmreg , xmmrm
xmmreg , xmmrm
xmmreg , xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
mmxreg,mmxrm
xmmreg , xmmrm
xmmreg , xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg , xmmrm
xmmreg , xmmrm
xmmreg , xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg , xmmrm
reg32,xmmreg,imm
reg64,xmmreg,imm
xmmreg,regl6,imm

PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW
PENT, 3DNOW

ty Instructions

WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SD
X86_64,LONG
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2

WILLAMETTE,SSE2,SD
WILLAMETTE,SSE2,SD
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
X86_64,LONG,SSE2
X86_64,LONG,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE ,MMX
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2
X86_64,LONG,SSE2,ND
WILLAMETTE,SSE2

B.1.11

168

PINSRW
PINSRW
PINSRW
PINSRW
PMADDWD
PMAXSW
PMAXUB
PMINSW
PMINUB
PMOVMSKB
PMULHUW
PMULHW
PMULLW
PMULUDQ
PMULUDQ
POR
PSADBW
PSHUFD
PSHUFD
PSHUFHW
PSHUFHW
PSHUFLW
PSHUFLW
PSLLDQ
PSLLW
PSLLW
PSLLD
PSLLD
PSLLQ
PSLLQ
PSRAW
PSRAW
PSRAD
PSRAD
PSRLDQ
PSRLW
PSRLW
PSRLD
PSRLD
PSRLQ
PSRLQ
PSUBB
PSUBW
PSUBD
PSUBQ
PSUBQ
PSUBSB
PSUBSW
PSUBUSB
PSUBUSW
PUNPCKHBW
PUNPCKHWD
PUNPCKHDQ
PUNPCKHQDQ
PUNPCKLBW
PUNPCKLWD
PUNPCKLDQ
PUNPCKLQDQ
PXOR

xmmreg,reg32,imm
xmmreg,reg64,imm
xmmreg,mem, imm
xmmreg,meml6,imm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
reg32,xmmreg
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
mmxreg,mmxrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg,xmmreg,imm
xmmreg,mem,imm
xmmreg,xmmreg,imm
xmmreg,mem, imm
xmmreg,xmmreg,imm
xmmreg,mem, imm
xmmreg,imm
xmmreg, xmmrm
xmmreg,imm
xmmreg, xmmrm
xmmreg,imm
xmmreg, xmmrm
xmmreg,imm
xmmreg, xmmrm
xmmreg,imm
xmmreg, xmmrm
xmmreg,imm
xmmreg,imm
Xxmmreg, xmmrm
xmmreg,imm
xmmreg, xmmrm
xmmreg,imm
xmmreg, xmmrm
xmmreg,imm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
mmxreg,mmxrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
Xxmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm
xmmreg, xmmrm

WILLAMETTE,SSE2,ND
X86_64,LONG,SSE2,ND
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2,S0

Willamette Streaming SIMD instructions (SSE2)

ADDPD
ADDSD
ANDNPD
ANDPD
CMPEQPD

xmmreg, Xxmmrm
xmmreg, Xxmmrm
xmmreg, Xxmmrm
xmmreg, Xxmmrm
xmmreg, Xxmmrm

WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2

WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO

CMPEQSD
CMPLEPD
CMPLESD
CMPLTPD
CMPLTSD
CMPNEQPD
CMPNEQSD
CMPNLEPD
CMPNLESD
CMPNLTPD
CMPNLTSD
CMPORDPD
CMPORDSD
CMPUNORDPD
CMPUNORDSD
CMPPD
CMPSD
COMISD
CVTDQ2PD
CVTDQ2PS
CVTPD2DQ
CVTPD2PI
CVTPD2PS
CVTPI2PD
CVTPS2DQ
CVTPS2PD
CVTSD2SI
CVTSD2SI
CVTSD2SI
CVTSD2SI
CVTSD2SS
CVTSI2SD
CVTSI2SD
CVTSI2SD
CVTSS2SD
CVTTPD2PI
CVTTPD2DQ
CVTTPS2DQ
CVTTSD2SI
CVTTSD2SI
CVTTSD2SI
CVTTSD2SI
DIVPD
DIVSD
MAXPD
MAXSD
MINPD
MINSD
MOVAPD
MOVAPD
MOVHPD
MOVHPD
MOVLPD
MOVLPD
MOVMSKPD
MOVMSKPD
MOVSD
MOVSD
MOVUPD
MOVUPD
MULPD
MULSD
ORPD
SHUFPD
SQRTPD
SQRTSD
SUBPD

xmmreg, Xxmmrm
xmmreg, Xxmmrm
xmmreg, Xxmmrm
xmmreg, Xxmmrm
xmmreg, Xxmmrm
xmmreg, Xxmmrm
xmmreg, Xxmmrm
xmmreg, Xxmmrm
xmmreg, Xxmmrm
xmmreg, Xxmmrm
xmmreg, Xxmmrm
xmmreg, Xxmmrm
xmmreg, Xxmmrm
xmmreg, Xxmmrm
xmmreg, Xxmmrm

xmmreg,xmmrml28,imm8
xmmreg,xmmrml28,imm8

xmmreg,Xxmmrmé64
xmmreg , xmmrm
xmmreg , xmmrm
xmmreg , xmmrm
mmxreg,xmmrm
xmmreg , xmmrm
xmmreg,mmxrm
xmmreg, xmmrm
xmmreg , xmmrm
reg32,xmmreg
reg32,mem
reg64,xmmreg
reg64,mem
xmmreg , xmmrm
xmmreg,mem
xmmreg, rm32
xmmreg, rm64
xmmreg, xmmrm
mmxreg,xmmrm
xmmreg , xmmrm
xmmreg , xmmrm
reg32,xmmreg
reg32,mem
reg64,xmmreg
reg64,mem
xmmreg , xmmrm
xmmreg, xmmrm
xmmreg , xmmrm
xmmreg , xmmrm
xmmreg, xmmrm
xmmreg , xmmrm
xmmreg,xmmrml28
Xxmmrml28,xmmreg
memé64 , xmmreg
xmmreg,mem64
memé64 , xmmreg
xmmreg,mem64
reg32,xmmreg
reg64,xmmreg
xmmreg,Xxmmrmé64
xmmrmé4 ,xmmreg
xmmreg,xmmrml28
xmmrml28,xmmreg
xmmreg,xmmrml28
xmmreg,Xxmmrmé64
xmmreg,xmmrml28

xmmreg,xmmrml28,imm8

xmmreg,xmmrml28
xmmreg,xmmrmé64
xmmreg,xmmrml28

WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,AR1

X86_64,LONG,SSE2,ARL
X86_64,LONG,SSE2,AR1

WILLAMETTE,SSE2

WILLAMETTE,SSE2,SD,ARL,ND
WILLAMETTE,SSE2,SD,AR1
X86_64,LONG,SSE2,AR1

WILLAMETTE,SSE2,SD
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,SO
WILLAMETTE,SSE2,AR1
WILLAMETTE,SSE2,AR1

X86_64,LONG,SSE2,AR1
X86_64,LONG,SSE2,AR1

WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
X86_64,LONG,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0
WILLAMETTE,SSE2
WILLAMETTE,SSE2,S0

169

B.1.12

SUBSD
UCOMISD
UNPCKHPD
UNPCKLPD
XORPD

Prescott New Instructions (SSE3)

ADDSUBPD
ADDSUBPS
HADDPD
HADDPS
HSUBPD
HSUBPS
LDDQU
MOVDDUP
MOVSHDUP
MOVSLDUP

xmmreg,xmmrmé64
xmmreg,xmmrmé64
xmmreg,xmmrml28
xmmreg,xmmrml28
xmmreg,xmmrml28

xmmreg,xmmrml28
xmmreg,xmmrml28
xmmreg,xmmrml28
xmmreg,xmmrml28
xmmreg,xmmrml28
xmmreg,xmmrml28
xmmreg,meml28
xmmreg,xmmrmé64
xmmreg,xmmrml28
xmmreg,xmmrml28

B.1.13 VMX/SVM Instructions

B.1.14

B.1.15

170

CLGI
STGI
VMCALL
VMCLEAR
VMFUNC
VMLAUNCH
VMLOAD
VMMCALL
VMPTRLD
VMPTRST
VMREAD
VMREAD
VMRESUME
VMRUN
VMSAVE
VMWRITE
VMWRITE
VMXOFF
VMXON

mem
mem
mem
rm32,reg32
rmé4,reg64
reg32,rm32
regé4,rmé4
mem

WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2
WILLAMETTE,SSE2

PRESCOTT,SSE3, SO
PRESCOTT,SSE3, SO
PRESCOTT,SSE3, SO
PRESCOTT,SSE3, SO
PRESCOTT,SSE3, SO
PRESCOTT,SSE3, SO
PRESCOTT,SSE3, SO
PRESCOTT,SSE3

PRESCOTT,SSE3

PRESCOTT,SSE3

VMX , AMD

VMX , AMD

VMX

VMX

VMX

VMX

VMX , AMD

VMX , AMD

VMX

VMX
VMX,NOLONG, SD
X86_64, LONG , VMX
VMX

VMX , AMD

VMX , AMD

VMX ,NOLONG, SD
X86_64, LONG , VMX
VMX

VMX

Extended Page Tables VMX instructions

INVEPT
INVEPT
INVVPID
INVVPID

Tejas New Instructions (SSSE3)

PABSB
PABSB
PABSW
PABSW
PABSD
PABSD
PALIGNR
PALIGNR
PHADDW
PHADDW
PHADDD
PHADDD
PHADDSW
PHADDSW
PHSUBW
PHSUBW
PHSUBD
PHSUBD

reg32,mem
reg64,mem
reg32,mem
reg64,mem

mmxreg,mmxrm
xmmreg,xmmrml28
mmxreg,mmxrm
xmmreg,xmmrml28
mmxreg,mmxrm
xmmreg,xmmrml28
mmxreg,mmxrm,imm
xmmreg, xmmrm, imm
mmxreg,mmxrm
xmmreg,xmmrml28
mmxreg,mmxrm
xmmreg,xmmrml28
mmxreg,mmxrm
xmmreg,xmmrml28
mmxreg,mmxrm
xmmreg,xmmrml28
mmxreg,mmxrm
xmmreg,xmmrml28

VMX, SO, NOLONG

VMX, SO0, LONG
VMX,SO,NOLONG
VMX, SO0, LONG
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3
SSSE3,MMX
SSSE3

PHSUBSW
PHSUBSW
PMADDUBSW
PMADDUBSW
PMULHRSW
PMULHRSW
PSHUFB
PSHUFB
PSIGNB
PSIGNB
PSIGNW
PSIGNW
PSIGND
PSIGND

B.1.16 AMD SSE4A

EXTRQ
EXTRQ
INSERTQ
INSERTQ
MOVNTSD
MOVNTSS

mmxreg,mmxrm
xmmreg,xmmrml28
mmxreg,mmxrm
xmmreg,xmmrml28
mmxreg,mmxrm
xmmreg,xmmrml28
mmxreg,mmxrm
xmmreg,xmmrml28
mmxreg,mmxrm
xmmreg,xmmrml28
mmxreg,mmxrm
xmmreg,xmmrml28
mmxreg,mmxrm
xmmreg,xmmrml28

xmmreg,imm,imm
xmmreg,xmmreg
xmmreg,xmmreg,imm,imm
xmmreg,xmmreg
memé64 , xmmreg
mem32,xmmreg

B.1.17 New instructions in Barcelona

LZCNT
LZCNT
LZCNT

reglé,rml6
reg32,rm32
regé4,rmé4

B.1.18 Penryn New Instructions (SSE4.1)

BLENDPD
BLENDPS
BLENDVPD
BLENDVPD
BLENDVPS
BLENDVPS
DPPD
DPPS
EXTRACTPS
EXTRACTPS
INSERTPS
MOVNTDQA
MPSADBW
PACKUSDW
PBLENDVB
PBLENDVB
PBLENDW
PCMPEQQ
PEXTRB
PEXTRB
PEXTRB
PEXTRD
PEXTRQ
PEXTRW
PEXTRW
PEXTRW
PHMINPOSUW
PINSRB
PINSRB
PINSRB
PINSRD
PINSRQ
PMAXSB
PMAXSD
PMAXUD
PMAXUW

xmmreg,xmmrml28,imm8
xmmreg,xmmrml28,imm8
xmmreg,xmmrml28,xmmo
xmmreg,xmmrml28
xmmreg,Xxmmrml28,xmmo
xmmreg,xmmrml28
xmmreg,xmmrml28,imm8
xmmreg,xmmrml28,imm8
rm32,xmmreg, imm8
reg64,xmmreg,imm8
xmmreg,xmmrm32,imm8
xmmreg,meml28
xmmreg,xmmrml28,imm8
xmmreg,xmmrml28
xmmreg,xmmrm, Xxmmo
xmmreg,xmmrml28
xmmreg,xmmrml28,imm8
xmmreg,xmmrml28
reg32,xmmreg,imm8
mem8 , xmmreg, imm8
reg64,xmmreg,imm8
rm32,xmmreg, imm8
rmé4,xmmreg, imm8
reg32,xmmreg,imm8
meml1l6,xmmreg, imm8
reg64,xmmreg,imm8
xmmreg,xmmrml28
xmmreg,mem, imm8
xmmreg, rm8,imm8
xmmreg,reg32,imm8
xmmreg,rm32,imm8
xmmreg, rmé4,imm8
xmmreg,xmmrml28
xmmreg,xmmrml28
xmmreg,xmmrml28
xmmreg,xmmrml28

SSSE3
SSSE3
SSSE3
SSSE3
SSSE3
SSSE3
SSSE3
SSSE3
SSSE3
SSSE3
SSSE3
SSSE3
SSSE3
SSSE3

SSE4A
SSE4A
SSE4A
SSE4A
SSE4A
SSE4A

, MMX
, MMX
, MMX
, MMX
, MMX
, MMX

, MMX

, AMD
, AMD
, AMD
,AMD
, AMD
,AMD, SD

P6,AMD
P6,AMD
X86_64, LONG , AMD

SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41
SSE41

,X86_64,LONG

,X86_64,LONG

,X86_64,LONG

,X86_64,LONG

,X86_64,LONG

171

PMINSB xmmreg,xmmrml28 SSE41

PMINSD xmmreg,xmmrml28 SSE41

PMINUD xmmreg,xmmrml28 SSE41

PMINUW xmmreg,xmmrml28 SSE41

PMOVSXBW xmmreg,xmmrmé64 SSE41

PMOVSXBD xmmreg,xmmrm32 SSE41,SD

PMOVSXBQ xmmreg,xmmrml6 SSE41,SW

PMOVSXWD xmmreg,xmmrmé64 SSE41

PMOVSXWQ xmmreg,xmmrm32 SSE41,SD

PMOVSXDQ xmmreg,xmmrmé64 SSE41

PMOVZXBW xmmreg,xmmrmé64 SSE41

PMOVZXBD xmmreg,xmmrm32 SSE41,SD

PMOVZXBQ xmmreg,xmmrml6é SSE41,SW

PMOVZXWD xmmreg,xmmrmé64 SSE41

PMOVZXWQ xmmreg,xmmrm32 SSE41,SD

PMOVZXDQ xmmreg,xmmrmé64 SSE41

PMULDQ xmmreg,xmmrml28 SSE41

PMULLD xmmreg,xmmrml28 SSE41

PTEST xmmreg,xmmrml28 SSE41

ROUNDPD xmmreg,xmmrml28,imm8 SSE41

ROUNDPS xmmreg,xmmrml28,imm8 SSE41

ROUNDSD xmmreg, xmmrmé4 , imm8 SSE41

ROUNDSS xmmreg,xmmrm32,imm8 SSE41
B.1.19 Nehalem New Instructions (SSE4.2)

CRC32 reg32,rm8 SSE42

CRC32 reg32,rmlé SSE42

CRC32 reg32,rm32 SSE42

CRC32 reg64,rm8 SSE42,X86_64,LONG

CRC32 reg64,rme4 SSE42,X86_64,LONG

PCMPESTRI xmmreg,xmmrml28,imm8 SSE42

PCMPESTRM xmmreg,xmmrml28,imm8 SSE42

PCMPISTRI xmmreg,xmmrml28,imm8 SSE42

PCMPISTRM xmmreg,xmmrml28,imm8 SSE42

PCMPGTQ xmmreg,xmmrml28 SSE42

POPCNT reglé,rml6 NEHALEM, SW

POPCNT reg32,rm32 NEHALEM, SD

POPCNT reg64,rm64 NEHALEM, LONG
B.1.20 Intel SMX

GETSEC KATMAI
B.1.21 Geode (Cyrix) 3DNow! additions

PFRCPV mmxreg,mmxrm PENT,3DNOW, CYRIX

PFRSQRTV mmxreg,mmxrm PENT,3DNOW, CYRIX

B.1.22 Intel new instructionsin ???

MOVBE reglé,meml6 NEHALEM
MOVBE reg32,mem32 NEHALEM
MOVBE reg64,memé64 NEHALEM
MOVBE meml6,regl6 NEHALEM
MOVBE mem32,reg32 NEHALEM
MOVBE memé64, reg64 NEHALEM

B.1.23 Intel AES instructions

172

AESENC
AESENCLAST
AESDEC
AESDECLAST
AESIMC
AESKEYGENASSIST

xmmreg,xmmrml28
xmmreg,xmmrml28
xmmreg,xmmrml28
xmmreg,xmmrml28
xmmreg,xmmrml28

xmmreg,xmmrml28,imm8

SSE,WESTMERE
SSE,WESTMERE
SSE,WESTMERE
SSE,WESTMERE
SSE,WESTMERE
SSE,WESTMERE

B.1.24 Intel AVX AES instructions

B.1.25

B.1.26

VAESENC
VAESENCLAST
VAESDEC
VAESDECLAST
VAESIMC

xmmreg,xmmregk ,xmmrml28
xmmreg,xmmregx,xmmrml28
xmmreg,xmmregk,xmmrml28
xmmreg,xmmregx ,xmmrml28
xmmreg,xmmrml28

VAESKEYGENASSIST xmmreg,xmmrml28,imm8

Intel instruction extension based on pub number 319433-030 dated October 2017

VAESENC
VAESENCLAST
VAESDEC
VAESDECLAST
VAESENC
VAESENC
VAESENCLAST
VAESENCLAST
VAESDEC
VAESDEC
VAESDECLAST
VAESDECLAST
VAESENC
VAESENCLAST
VAESDEC
VAESDECLAST

ymmreg,ymmregk,ymmrm256
ymmreg,ymmregk,ymmrm256
ymmreg,ymmregk,ymmrm256
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
zmmreg,zmmreg* ,zmmrm512
zmmreg,zmmreg* ,zmmrm512
zmmreg,zmmreg* ,zmmrm512
zmmreg,zmmreg* ,zmmrm512

Intel AVX instructions

VADDPD
VADDPD
VADDPS
VADDPS
VADDSD
VADDSS
VADDSUBPD
VADDSUBPD
VADDSUBPS
VADDSUBPS
VANDPD
VANDPD
VANDPS
VANDPS
VANDNPD
VANDNPD
VANDNPS
VANDNPS
VBLENDPD
VBLENDPD
VBLENDPS
VBLENDPS
VBLENDVPD
VBLENDVPD
VBLENDVPS
VBLENDVPS
VBROADCASTSS
VBROADCASTSS
VBROADCASTSD
VBROADCASTF128
VCMPEQ_OSPD
VCMPEQ_OSPD
VCMPEQPD
VCMPEQPD
VCMPLT_OSPD
VCMPLT_OSPD
VCMPLTPD

xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmreg* , xmmrmé4
xmmreg,xmmregx , xmmrm32
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,mem32
ymmreg,mem32
ymmreg,mem64
ymmreg,meml28
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

VAES

VAES

VAES

VAES
AVX512VL,VAES
AVX512VL,VAES
AVX512VL,VAES
AVX512VL,VAES
AVX512VL,VAES
AVX512VL,VAES
AVX512VL,VAES
AVX512VL,VAES
AVX512,VAES
AVX512,VAES
AVX512,VAES
AVX512,VAES

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE
,imm8 AVX, SANDYBRIDGE
,imm8 AVX,SANDYBRIDGE
,imm8 AVX, SANDYBRIDGE
,imm8 AVX,SANDYBRIDGE
,xmmreg AVX,SANDYBRIDGE
,ymmreg AVX,SANDYBRIDGE
,xmmreg AVX,SANDYBRIDGE
,ymmreg AVX,SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE

173

VCMPLTPD
VCMPLE_OSPD
VCMPLE_OSPD
VCMPLEPD
VCMPLEPD
VCMPUNORD_QPD
VCMPUNORD_QPD
VCMPUNORDPD
VCMPUNORDPD
VCMPNEQ_UQPD
VCMPNEQ_UQPD
VCMPNEQPD
VCMPNEQPD
VCMPNLT_USPD
VCMPNLT_USPD
VCMPNLTPD
VCMPNLTPD
VCMPNLE_USPD
VCMPNLE_USPD
VCMPNLEPD
VCMPNLEPD
VCMPORD_QPD
VCMPORD_QPD
VCMPORDPD
VCMPORDPD
VCMPEQ_UQPD
VCMPEQ_UQPD
VCMPNGE_USPD
VCMPNGE_USPD
VCMPNGEPD
VCMPNGEPD
VCMPNGT_USPD
VCMPNGT_USPD
VCMPNGTPD
VCMPNGTPD
VCMPFALSE_OQPD
VCMPFALSE_OQPD
VCMPFALSEPD
VCMPFALSEPD
VCMPNEQ_OQPD
VCMPNEQ_OQPD
VCMPGE_OSPD
VCMPGE_OSPD
VCMPGEPD
VCMPGEPD
VCMPGT_OSPD
VCMPGT_OSPD
VCMPGTPD
VCMPGTPD
VCMPTRUE_UQPD
VCMPTRUE_UQPD
VCMPTRUEPD
VCMPTRUEPD
VCMPEQ_OSPD
VCMPEQ_OSPD
VCMPLT_OQPD
VCMPLT_OQPD
VCMPLE_OQPD
VCMPLE_OQPD
VCMPUNORD_SPD
VCMPUNORD_SPD
VCMPNEQ_USPD
VCMPNEQ_USPD
VCMPNLT_UQPD
VCMPNLT_UQPD
VCMPNLE_UQPD
VCMPNLE_UQPD

ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

VCMPORD_SPD
VCMPORD_SPD
VCMPEQ_USPD
VCMPEQ_USPD
VCMPNGE_UQPD
VCMPNGE_UQPD
VCMPNGT_UQPD
VCMPNGT_UQPD
VCMPFALSE_OSPD
VCMPFALSE_OSPD
VCMPNEQ_OSPD
VCMPNEQ_OSPD
VCMPGE_OQPD
VCMPGE_OQPD
VCMPGT_OQPD
VCMPGT_OQPD
VCMPTRUE_USPD
VCMPTRUE_USPD
VCMPPD

VCMPPD
VCMPEQ_OSPS
VCMPEQ_OSPS
VCMPEQPS
VCMPEQPS
VCMPLT_OSPS
VCMPLT_OSPS
VCMPLTPS
VCMPLTPS
VCMPLE_OSPS
VCMPLE_OSPS
VCMPLEPS
VCMPLEPS
VCMPUNORD_QPS
VCMPUNORD_QPS
VCMPUNORDPS
VCMPUNORDPS
VCMPNEQ_UQPS
VCMPNEQ_UQPS
VCMPNEQPS
VCMPNEQPS
VCMPNLT_USPS
VCMPNLT_USPS
VCMPNLTPS
VCMPNLTPS
VCMPNLE_USPS
VCMPNLE_USPS
VCMPNLEPS
VCMPNLEPS
VCMPORD_QPS
VCMPORD_QPS
VCMPORDPS
VCMPORDPS
VCMPEQ_UQPS
VCMPEQ_UQPS
VCMPNGE_USPS
VCMPNGE_USPS
VCMPNGEPS
VCMPNGEPS
VCMPNGT_USPS
VCMPNGT_USPS
VCMPNGTPS
VCMPNGTPS
VCMPFALSE_OQPS
VCMPFALSE_OQPS
VCMPFALSEPS
VCMPFALSEPS
VCMPNEQ_OQPS

xmmreg,xmmregx,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregx,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

,imm8 AVX, SANDYBRIDGE
,imm8 AVX, SANDYBRIDGE

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

175

VCMPNEQ_OQPS
VCMPGE_OSPS
VCMPGE_OSPS
VCMPGEPS
VCMPGEPS
VCMPGT_OSPS
VCMPGT_OSPS
VCMPGTPS
VCMPGTPS
VCMPTRUE_UQPS
VCMPTRUE_UQPS
VCMPTRUEPS
VCMPTRUEPS
VCMPEQ_OSPS
VCMPEQ_OSPS
VCMPLT_OQPS
VCMPLT_OQPS
VCMPLE_OQPS
VCMPLE_OQPS
VCMPUNORD_SPS
VCMPUNORD_SPS
VCMPNEQ_USPS
VCMPNEQ_USPS
VCMPNLT_UQPS
VCMPNLT_UQPS
VCMPNLE_UQPS
VCMPNLE_UQPS
VCMPORD_SPS
VCMPORD_SPS
VCMPEQ_USPS
VCMPEQ_USPS
VCMPNGE_UQPS
VCMPNGE_UQPS
VCMPNGT_UQPS
VCMPNGT_UQPS
VCMPFALSE_OSPS
VCMPFALSE_OSPS
VCMPNEQ_OSPS
VCMPNEQ_OSPS
VCMPGE_OQPS
VCMPGE_OQPS
VCMPGT_OQPS
VCMPGT_OQPS
VCMPTRUE_USPS
VCMPTRUE_USPS
VCMPPS

VCMPPS
VCMPEQ_OSSD
VCMPEQSD
VCMPLT_OSSD
VCMPLTSD
VCMPLE_OSSD
VCMPLESD
VCMPUNORD_QSD
VCMPUNORDSD
VCMPNEQ_UQSD
VCMPNEQSD
VCMPNLT_USSD
VCMPNLTSD
VCMPNLE_USSD
VCMPNLESD
VCMPORD_QSD
VCMPORDSD
VCMPEQ_UQSD
VCMPNGE_USSD
VCMPNGESD
VCMPNGT_USSD

ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregx,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256

xmmreg,xmmreg* ,xmmrml28,imm8 AVX,SANDYBRIDGE
ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE

Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé64
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg ,Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg ,Xxmmregk , xmmrmé4
Xmmreg ,Xxmmregk , xmmrmé4
Xmmreg ,Xxmmregk , xmmrmé4
Xmmreg ,Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

VCMPNGTSD
VCMPFALSE_0OQSD
VCMPFALSESD
VCMPNEQ_OQSD
VCMPGE_OSSD
VCMPGESD
VCMPGT_OSSD
VCMPGTSD
VCMPTRUE_UQSD
VCMPTRUESD
VCMPEQ_OSSD
VCMPLT_0OQSD
VCMPLE_0OQSD
VCMPUNORD_SSD
VCMPNEQ_USSD
VCMPNLT_UQSD
VCMPNLE_UQSD
VCMPORD_SSD
VCMPEQ_USSD
VCMPNGE_UQSD
VCMPNGT_UQSD
VCMPFALSE_OSSD
VCMPNEQ_OSSD
VCMPGE_0QSD
VCMPGT_0QSD
VCMPTRUE_USSD
VCMPSD
VCMPEQ_OSSS
VCMPEQSS
VCMPLT_OSSS
VCMPLTSS
VCMPLE_OSSS
VCMPLESS
VCMPUNORD_QSS
VCMPUNORDSS
VCMPNEQ_UQSS
VCMPNEQSS
VCMPNLT_USSS
VCMPNLTSS
VCMPNLE_USSS
VCMPNLESS
VCMPORD_QSS
VCMPORDSS
VCMPEQ_UQSS
VCMPNGE_USSS
VCMPNGESS
VCMPNGT_USSS
VCMPNGTSS
VCMPFALSE_0QSS
VCMPFALSESS
VCMPNEQ_0QSS
VCMPGE_O0SSS
VCMPGESS
VCMPGT_0SSS
VCMPGTSS
VCMPTRUE_UQSS
VCMPTRUESS
VCMPEQ_OSSS
VCMPLT_0QSS
VCMPLE_0QSS
VCMPUNORD_SSS
VCMPNEQ_USSS
VCMPNLT_UQSS
VCMPNLE_UQSS
VCMPORD_SSS
VCMPEQ_USSS
VCMPNGE_UQSS

Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé64
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , xmmregk , xmmrmé64
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé64
Xmmreg ,Xxmmregk , xmmrmé64
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé64
Xmmreg ,Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé64
Xmmreg ,Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé64
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg ,Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé64
Xmmreg , Xxmmregk , xmmrmé64
Xmmreg , xmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg ,Xxmmregk , xmmrmé4
Xmmreg ,Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé64
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg ,Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg ,Xxmmregk , xmmrmé4
Xmmreg ,Xxmmregk , xmmrmé4
Xmmreg ,Xxmmregk , xmmrmé4
Xmmreg ,Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
,imm8 AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

177

178

VCMPNGT_UQSS
VCMPFALSE_OSSS
VCMPNEQ_OSSS
VCMPGE_0QSS
VCMPGT_0QSS
VCMPTRUE_USSS
VCMPSS
VCOMISD
VCOMISS
VCVTDQ2PD
VCVTDQ2PD
VCVTDQ2PS
VCVTDQ2PS
VCVTPD2DQ
VCVTPD2DQ
VCVTPD2DQ
VCVTPD2DQ
VCVTPD2PS
VCVTPD2PS
VCVTPD2PS
VCVTPD2PS
VCVTPS2DQ
VCVTPS2DQ
VCVTPS2PD
VCVTPS2PD
VCVTSD2SI
VCVTSD2SI
VCVTSD2SS
VCVTSI2SD
VCVTSI2SD
VCVTSI2SD
VCVTSI2SS
VCVTSI2SS
VCVTSI2SS
VCVTSS2SD
VCVTSS2SI
VCVTSS2SI
VCVTTPD2DQ
VCVTTPD2DQ
VCVTTPD2DQ
VCVTTPD2DQ
VCVTTPS2DQ
VCVTTPS2DQ
VCVTTSD2SI
VCVTTSD2SI
VCVTTSS2SI
VCVTTSS2SI
VDIVPD
VDIVPD
VDIVPS
VDIVPS
VDIVSD
VDIVSS
VDPPD

VDPPS

VDPPS
VEXTRACTF128
VEXTRACTPS
VHADDPD
VHADDPD
VHADDPS
VHADDPS
VHSUBPD
VHSUBPD
VHSUBPS
VHSUBPS
VINSERTF128

Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , Xxmmregk , xmmrmé64
Xmmreg , Xxmmregk , xmmrmé4
Xmmreg , xmmregk , xmmrmé64

xmmreg,xmmreg* ,xmmrm64,imm8 AVX,SANDYBRIDGE

xmmreg,xmmrmé64
xmmreg,xmmrm32
xmmreg,xmmrmé64
ymmreg,xmmrml28
xmmreg,xmmrml28
ymmreg,ymmrm256
xmmreg,xmmreg
xmmreg,meml28
xmmreg,ymmreg
xmmreg,mem256
xmmreg,xmmreg
xmmreg,meml28
xmmreg,ymmreg
xmmreg,mem256
xmmreg,xmmrml28
ymmreg,ymmrm256
xmmreg,xmmrmé64
ymmreg,xmmrml28
reg32,xmmrmé64
reg64,xmmrmé4
xmmreg,xmmreg* , xmmrmé4

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, SO

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, SY

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, SO

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, SY

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE

xmmreg,xmmregx,rm32
xmmreg,xmmregx ,mem32
xmmreg,xmmreg*, rm64
xmmreg,xmmregx,rm32
xmmreg,xmmregx ,mem32
xmmreg,xmmregk, rm64

AVX, SANDYBRIDGE , SD
AVX, SANDYBRIDGE ,ND, SD
AVX, SANDYBRIDGE , LONG
AVX, SANDYBRIDGE , SD

AVX, SANDYBRIDGE ,ND, SD
AVX, SANDYBRIDGE , LONG

xmmreg,xmmregx , xmmrm32
reg32,xmmrm32
reg64,xmmrm32
xmmreg,xmmreg
xmmreg,meml28
xmmreg,ymmreg
xmmreg,mem256
xmmreg,xmmrml28
ymmreg,ymmrm256
reg32,xmmrmé4
reg64,xmmrmé4
reg32,xmmrm32
reg64,xmmrm32
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmreg* , xmmrmé4
xmmreg,xmmregx , xmmrm32

xmmreg,xmmreg* ,xmmrml28,imm8 AVX,SANDYBRIDGE
xmmreg,xmmreg* ,xmmrml128,imm8 AVX,SANDYBRIDGE
ymmreg,ymmreg*,ymmrm256,imm8 AVX,SANDYBRIDGE

xmmrml28,ymmreg, imm8
rm32,xmmreg, imm8
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256
xmmreg,xmmregk ,xmmrml28
ymmreg,ymmregk,ymmrm256

ymmreg,ymmreg* ,xmmrml28,imm8 AVX,SANDYBRIDGE

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, SO

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, SY

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE

AVX, SANDYBRIDGE, LONG

AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SANDYBRIDGE
AVX, SA