NASM - The Netwide Assembler
version 2.16rc0-20201010

© 1996-2020 The NASM Development Team — All Rights Reserved

This document is redistributable under the license given in the section "License".

Contents

Chapter 1: Introduction L 17
L1WhatIsNASM?. . . . L e e e e e e e e e e e e e 17
LLILICENSE . . . o o v it e e e e e e e e e 17
Chapter 2: Running NASM e e 19
2.1NASM Command-LineSyntax L 19
2.1.1 The -o Option: Specifying the Output FileName 19
2.1.2 The -f Option: Specifying the Output FileFormat 20
2.1.3The -1 Option: Generatinga ListingFile 20
2.1.4 The -L Option: Additional or Modified ListingInfo 20
2.1.5The -M Option: Generate Makefile Dependencies. 21
2.1.6 The -MG Option: Generate Makefile Dependencies 21
2.1.7 The -MF Option: Set Makefile Dependency File 21
2.1.8 The -MD Option: Assemble and Generate Dependencies 21
2.1.9 The -MT Option: Dependency TargetName. 21
2.1.10 The -MQ Option: Dependency Target Name (Quoted) 21
2.1.11The-Mp Option: Emitphony targets. 21
2.1.12 The -Mw Option: Watcom Make quotingstyle 21
2.1.13 The -F Option: Selecting a Debug InformationFormat 22
2.1.14The -g Option: Enabling Debug Information. 22
2.1.15The -x Option: Selecting an Error Reporting Format 22
2.1.16 The-z Option: Send ErrorstoaFile. 22
2.1.17The-sOption: Send Errorstostdout o . 22
2.1.18 The -1 Option: Include File Search Directories 23
2.1.19The-p Option: Pre-IncludeaFile 23
2.1.20 The-d Option: Pre-DefineaMacro 23
2.1.21The-uOption: UndefineaMacro 23
2.1.22The-EOption: PreprocessOnly ittt 24
2.1.23The -a Option: Don’t Preprocess AtAIl 24
2.1.24 The -0 Option: Specifying Multipass Optimization 24
2.1.25The -t Option: Enable TASM CompatibilityMode 24
2.1.26 The -w and -w Options: Enable or Disable Assembly Warnings. 25
2.1.27The -v Option: Display VersionInfo 29
2.1.28 The --(g| U prefix, --(g|)postfixOptions. 29

2.1.29The—-pragmaOption e 29

2.130The—-beforeOption i 29
2.131The—-limit-xOption. e 29
2.1.32The—-keep-allOption o it 30
2.1.33The-—-no-lineOption. 30
2.1.34The —-reproducibleOption. e 30
2.1.35 The NASMENV EnvironmentVariable oo oL 30
2.2Quick Start for MASM USEIS o i e e e e e e e e e e 30
22.1NASMIsCase-Sensitive. L Lo e 30
2.2.2 NASM Requires Square Brackets For Memory References. 30
2.2.3NASM Doesn’t Store Variable Types 31
224NASMDOESNEASSUME. . o . v v vt et e e e e e e e e e e e e e e e 31
2.2.5NASM Doesn’t Support MemoryModels L oL 31
2.2.6 Floating-Point Differences L 31
2.2.70ther Differences. L 32
2.2.8 MASM compatibilitypackage. L 32
Chapter3: The NASM Language o v v v v i it et e e e e e e e e e e 33
3.1LayoutofaNASM Sourceline. L e e 33
3.2Pseudo-Instructions. L L L L 34
3.2.1Dx: Declaring Initialized Data L 34
3.2.2rResB and Friends: Declaring UninitializedData 35
3.2.3 INCBIN: Including External Binary Files oo 35
3.2.4€eQu: DefiningConstants L L 35
3.2.5 TIMES: Repeating InstructionsorData L. 36
33 Effective Addresses L L e 36
34Constants oL L e e e 37
34 1NumericConstants. L. 37
3.4.2Character Strings. L L e e e 38
3.43CharacterConstants L L e e e 39
344StringConstants Lo 39
3.45UnicodeStrings L L e e e e e 39
3.4.6Floating-PointConstants. e 39
347PackedBCDConstants e e e 41
35EXPressions L L e e e e e e 41
3.5.12..::ConditionalOperator e 41

3.5.2:|]:Boolean OROperator o i e e 41

3.5.3: 720 Boolean XOROperator. o v v v i e e e 41

3.5.4:88: Boolean AND Operator. o v i e e 41
3.5.5:Comparison Operators e e e e e e e e e 41
3.5.6 |:Bitwise OROperator e e e e e e e 42
3.5.7 A~ Bitwise XOROperator o e e e e e 42
3.5.8& Bitwise AND Operator e e e 42
3.59BitShiftOperators e 42
3.5.10 + and -: Addition and Subtraction Operators 42
3.5.11 Multiplication, Divisionand Modulo. 42
3.5.12UnaryOperators e e e e e e e e e e e e e e e 42
36SEGANAWRT . . . o o o e e e e e e e e e e e 43
3.7 sTRICT: Inhibiting Optimization 43
3.8Critical EXpressions L e e e e e 44
39Locallabels. e 44
Chapter 4: The NASM Preprocessor v v v v v v v vt e e e e e e e e e e e e 47
4.1Single-LineMacros e e e e 47
4.1.1TheNormalWay: %define v v i i i it i e s e e e e e 47
4.1.2 Resolving %definer%xdefine v v v i i e e e e e 48
4.13MacroIndirection: %[...7 e e e e 49
4.1.4 Concatenating Single Line MacroTokens: %+ oo 49
4.1.5TheMacroNameltself:%2and %22 i i 50
4.1.6 The Single-Line MacroName: %x2and %*22. v v v v i v v i v v v o 50
4.1.7 Undefining Single-Line Macros: sundef. o . o 51
4.1.8 Preprocessor Variables: %assign Lo 51
4.1.9Defining Strings: %defstr. o o i e e e e e e e 51
4.1.10 Defining Tokens: %deftok« v v v v v v i e e e e e e e 52
4.1.11 Defining Aliases: sdefalias« v v v v i i i e e e e e 52
4.1.12 Conditional Comma Operator: %, o v v i i it e e e e 52
4.2 String ManipulationinMacros. L 52
4.2.1Concatenating Strings: %strcat L o 53
422Stringlength:%strien L L L e e e e 53
4.2.3 Extracting Substrings: %substr. L. Lo e e 53
43 Multi-Line Macros: %macro. v v v v v e e e e e e e e e e e e e e e e e e e 53
4.3.10verloading Multi-LineMacros o e e e 54
4.3.2Macro-LocalLabels. e 55
433 Greedy MacroParameters e e e e 55

4.3.4Macro ParametersRange. o oL s 56

4.3.5 Default Macro Parameters L 56
4.3.6 %0: Macro ParameterCounter. Lo oo e 57
4.3.7%00: Label PreceedingMacro L 57
4.3.8%rotate: RotatingMacro Parameters. L o oL 57
4.3.9 Concatenating Macro Parameters e 58
4.3.10 Condition Codes as Macro Parameters i e 59
4.3.11 Disabling Listing Expansion L e e e 59
4.3.12 Undefining Multi-Line Macros: %unmacro v ..o e e 60
4.4 Conditional Assembly L 60
4.4.1 %ifdef: Testing Single-Line MacroExistence 60
4.4.2 %ifmacro: Testing Multi-Line Macro Existence 61
443 %ifctx: TestingtheContextStack L oo 61
4.4.4%if: Testing Arbitrary Numeric Expressions o oo 61
4.45%ifidnand %ifidni: Testing Exact TextIdentity 61
4.4.6%ifid, %ifnum, %ifstr: Testing TokenTypes o oo 62
447 %iftoken: TestforaSingleToken. 62
4.48%ifempty: Testfor Empty Expansion Lo e 63
4.49%ifenv: Test If EnvironmentVariable Exists. 63
4.5 Preprocessor LOOPS: %rep .« v v v v v vt e 63
4.6 Source Filesand Dependencieso e e 64
4.6.1%include: IncludingOtherFiles. 64
4.6.2 %pathsearch: SearchthelncludePath 64
4.6.3 %depend: Add DependentFiles L 64
4.6.4%use: Include Standard MacroPackage. oL 65
47TheContextStack. o e 65
4.7.1 %push and %pop: Creating and RemovingContexts 65
4.7.2Context-Locallabels. L 65
4.7.3 Context-Local Single-LineMacros e 66
4.7.4 Context Fall-Through Lookup (deprecated). 66
4.75%repl:RenamingaContext. L L L 67
4.7.6 Example Use of the Context Stack:Block IFs 67
4.8 Stack Relative Preprocessor Directives L 68
4.8 1%argDirective e e e e e e 68
4.82%stacksizeDirective. L e e 69

4.83%localDirective L e e e e e e e 69

4.9 Reporting User-Defined Errors: %error, %warning,%fatal. 70

4.10%pragma: Setting Options. L 70
4.10.1 Preprocessor Pragmas oo e e e e e e e e e 71
4.11 Other Preprocessor Directives o e 71
4.11.1%lineDirective oL 71
4.11.2 %tvariable: Read an EnvironmentVariable. o 0oL 72
4.11.3 %clear: Clear All Macro Definitions oo 72
Chapter5:Standard Macros o e e e e e e e e e e 73
5. 1NASMVersion Macros o o oo e e e e e e e e 73
5.1.1 __?NASM_VERSION_ID?__:NASMVersionID 73
5.1.2 __?NASM_VER?__:NASMVersionString o 73
5.2 __?FILE?__and __?LINE?__:FileNameand LineNumber. 73
5.3 __?BITS?__:Current Code GenerationMode 74
5.4 __?0UTPUT_FORMAT?__: CurrentOutputFormat, 74
5.5 __?DEBUG_FORMAT?__:CurrentDebugFormat 74
5.6 Assembly Dateand Time Macros o v i v i i i it e 74
5.7 __?USE_package?__:PackagelncludeTest 75
5.8 __7PASS?__:AssemblyPass 75
5.9StructureDataTypes L e e e e e e e e e 75
5.9.1 sTRUC and ENDSTRUC: Declaring StructureData Types. 75
5.9.2 ISTRUC, AT and IEND: Declaring Instances of Structures. 76
5.10AlignmentControl L e e 77
5.10.1 ALIGN and ALIGNB: Code and Data Alignment 77
5.10.2 SECTALIGN: Section Alignment. e 78
Chapter 6: Standard Macro Packages i e e e e e e 79
6.1 altreg: Alternate RegisterNames. L L 79
6.2 smartalign: SMart ALIGNMAcCro. o o i v i e e e e e e e 79
6.3 fp: Floating-pointmacros. L. 80
6.4ifunc:Integerfunctions. L. L 80
6.4.1Integer logarithms L 80
6.5 masm: MASM compatibility L 80
Chapter 7: Assembler Directives o 83
7.1B1TS: Specifying Target ProcessorMode. L Lo o 83
7.1.1usEl6 & USE32: AliasesforBITS L 84
7.2 DEFAULT: Change theassemblerdefaults o . 84
7.2.1REL & ABS: RIP-relativeaddressing 84

T.22BND&NOBND: BND prefix o o o o 84

7.3 SECTION or SEGMENT: Changing and Defining Sections 84
7.3.1The __?2SECT?__MacCro v v vt i e e e e e 84
7.4 ABSOLUTE: Defining Absolute Labels o 85
7.5 EXTERN: Importing Symbols from OtherModules 86
7.6 REQUIRED: Unconditionally Importing Symbols from Other Modules. 86
7.7 GLOBAL: Exporting Symbolsto OtherModules L. 86
7.8 commoN: Defining Common DataAreas. 87
7.9 STATIC: Local SymbolswithinModules 87
7.10 (G|L)PREFIX, (G|L)POSTFIX: ManglingSymbols 87
7.11cpu: Defining CPU Dependencies. o o i i i e e 88
7.12 FLOAT: Handling of floating-pointconstants oL, 88
7.13 [WARNING]: Enable ordisablewarnings. Lo o o 89
Chapter8: OQutput Formats. e e e e e e e e 91
8.1bin:Flat-FormBinaryOutput 91
8.1.10RG: Binary File Program Origin. 91
8.1.2 bin Extensions to the SECTION Directive, bin extensionsto} 91
8.1.3 Multisection Support forthebinFormat 92
8.14MapFiles. e 92
8.24th:IntelHexOutput 92
8.3 srec:Motorola S-RecordsQutput L 92
8.4 obj: Microsoft OMF Object Files 93
8.4.1 obj Extensions to the SEGMENT Directive, 93
8.4.2 GRouP: Defining Groupsof Segments L Lo 94
8.4.3 UPPERCASE: Disabling Case SensitivityinOutput 94
8.4.4 IMPORT: Importing DLLSymbols 95
8.4.5 EXPORT: Exporting DLLSymbols. 95
8.4.6 . .start: Defining the Program Entry Point. 95
8.4.7 obj Extensionstothe EXTERN Directive 96
8.4.8 obj Extensions to the coMmoN Directive 96
8.4.9 Embedded File Dependency Information. L oL 97
8.5win32: Microsoft Win32 ObjectFiles 97
8.5.1win32 Extensions to the SECTION Directive 97
8.5.2 win32: Safe Structured Exception Handling. 98
8.5.3 Debugging formatsforWindows Lo o 99

8.6 wine4: Microsoft Win64 Object Files 99

8.6.1 wine4: Writing Position-IndependentCode. 99

8.6.2wine64: Structured ExceptionHandling L Lo oL 100
8.7 coff:Common Object FileFormat. 102
8.8 macho32 and macho64: Mach Object FileFormat 102

8.8.1 macho extensions to the SECTION Directive 103

8.8.2 Thread Local Storage in Mach-O: macho special symbolsandwrT. 103

8.8.3 macho specfic directive subsections_via_symbols 103

8.8.4 macho specfic directive no_dead_strip oL 103

8.8.5 macho specific extensions to the GLOBAL Directive: private_extern. 104
8.9 e1f32, elf64, elfx32: Executable and Linkable Format Object Files. 104

8.9.1 ELF specificdirectiveosabi. L 104

8.9.2 ELF extensions to the SECTION Directive 104

8.9.3 Position-Independent Code: ELF Special SymbolsandwrT. 105

8.9.4 Thread Local Storage in ELF: e1f Special SymbolsandwrT. 106

8.9.5 elf Extensionsto the GLOBAL Directive L L L. 106

8.9.6 elf Extensionsto the EXTERN Directive oL 107

8.9.7 elf Extensions to the coMMON Directive Lo 107

8.9.816-bitcodeandELF e 107

8.9.9Debugformatsand ELF 107
8.10 aout: Linuxa.out ObjectFiles L 107
8.11 aoutb: NetBSD/FreeBSD/OpenBSD a.out ObjectFiles 107
8.12 asg86: Minix/Linux asge Object Files. 108
8.13 rdf: Relocatable Dynamic Object File Format (deprecated) 108

8.13.1 Requiring a Library: The LIBRARY Directive 108

8.13.2 Specifying a Module Name: The MODULE Directive 108

8.13.3 rdf Extensions to the GLOBAL Directive 108

8.13.4 rdf Extensions to the EXTERN Directive L. 109
8.14dbg: Debugging Format L 109

Chapter 9: Writing 16-bit Code (DOS, Windows 3/3.1) o v i v i vt v i 111
9.1Producing .EXEFiles. L e e 111

9.1.1 Using the obj Format To Generate .ExEFiles. 111

9.1.2 Using the bin Format To Generate .ExEFiles. 112
9.2Producing .COMFiles. L e e 113

9.2.1 Using the bin Format To Generate .CoMFiles. 113

9.2.2 Using the obj Format To Generate .CoMFiles. 113
9.3Producing .SYSFiles. L e e 114

10

9.4 Interfacingto 16-bit CPrograms. L L 114

9.4.1 External SymbolNames 114
9.42MemoryModels. 115

9.4.3 Function Definitionsand FunctionCalls 115
9.4.4AccessingDataltems. L L 117

9.4.5 c16.mac: Helper Macros for the 16-bitCInterface. 118

9.5 Interfacing to Borland Pascal Programs.. Lo o 119
9.5.1ThePascal CallingConvention 119

9.5.2 Borland Pascal Segment Name Restrictions 120
9.5.3Using c16.mac With Pascal Programs. 120
Chapter 10: Writing 32-bit Code (Unix, Win32,DJGPP) v v v 123
10.1Interfacingto 32-bit CPrograms L e 123
10.1.1 External SymbolNames. e 123
10.1.2 Function Definitions and FunctionCalls. 123
10.1.3 AccessingDataltems L 124
10.1.4 c32.mac: Helper Macros for the 32-bitCinterface 125

10.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries. 126
10.2.1 Obtaining the Addressof the GOT. 126
10.2.2 Finding Your Local Dataltems. L 127
10.2.3 Finding Externaland Common Dataltems, 127
10.2.4 Exporting Symbols tothe LibraryUser oL 127
10.2.5 Calling Procedures Outside the Library 128
10.2.6 Generating the LibraryFile L 128
Chapter 11: Mixing 16-and 32-bitCode 131
111 Mixed-Size JUMPS L L e e e e e e 131
11.2 Addressing Between Different-Size Segments L oo oo 131
11.3 Other Mixed-Size Instructions e 132
Chapter 12: Writing 64-bit Code (Unix, Win64) o i v i it it et et e 133
12.1 Register Namesin 64-bitMode. 133
12.2 Immediates and Displacementsin 64-bitMode Lo 133
12.3 Interfacing to 64-bit C Programs (Unix). o e 134
12.4 Interfacing to 64-bit C Programs (Win64). e 135
Chapter 13: Troubleshooting. 137
13.1Common Problems L e e e e 137
13.1.1 NASM Generates InefficientCode L L o oL 137
13.1.2MyJumpsareOutofRange L 137

13.1.30rRG Doesn'tWork e e e e 137

13.14T7IMES Doesn’tWork oL 138
Appendix A: Ndisasm. e e e e e 139
Allntroduction. L e e e e 139
A2Running NDISASM. L e e e e e e e 139
A.2.1COMFiles: Specifyingan Origin. i 139
A.2.2 Code Following Data: Synchronization. 139
A.2.3 Mixed Code and Data: Automatic (Intelligent) Synchronization 140
A2.40therOptions L e 140
Appendix B: Instruction List L e 143
B.lIntroduction e e 143
B.1.1 Special instructions (pseudo-ops) Lo 143
B.1.2 Conventionalinstructions L e 143
B.1.3 Katmai Streaming SIMD instructions (SSE —— a.k.a. KNI, XMM, MMX2) 165
B.1.4 Introduced in Deschutes but necessary for SSEsupport 166
B.1.5 XSAVE group (AVX and extended state). Lo L. 166
B.1.6 Genericmemoryoperations L Lo e e e e e 166
B.1.7 New MMX instructions introducedinKatmai. 166
B.1.8 AMD Enhanced 3DNow! (Athlon) instructions 167
B.1.9 Willamette SSE2 Cacheability Instructions 167
B.1.10 Willamette MMX instructions (SSE2 SIMD Integer Instructions) 167
B.1.11 Willamette Streaming SIMD instructions (SSE2). 168
B.1.12 Prescott New Instructions (SSE3) e 170
B.L.13VMX/SVM Instructions. e e e e e e 170
B.1.14 Extended Page Tables VMXinstructions. L. 170
B.1.15 Tejas New Instructions (SSSE3) i o i e e e 170
B.1LI6AMD SSE4A e e e e e e e e e e e e e e e 171
B.1.17 New instructionsin Barcelona e 171
B.1.18 Penryn New Instructions (SSE4.1). i i i e e e 171
B.1.19 Nehalem New Instructions (SSE4.2). i i i i it e i e e 172
B.1.20 Intel SMX e e e e 172
B.1.21 Geode (Cyrix) 3DNow! additions e 172
B.1.22 Intel new instructionsin 222. L L e e e e e 172
B.1.23 Intel AESinstructions L e e e e e e e e 172
B.1.24 Intel AVX AES instructions. L e e e 173

B.1.25 Intel instruction extension based on pub number 319433-030 dated October 2017. . . .173

11

B.1.26 Intel AVXinstructions e e 173

B.1.27 Intel Carry-Less Multiplication instructions (CLMUL) 183
B.1.28 Intel AVX Carry-Less Multiplication instructions (CLMUL) 183
B.1.29 Intel Fused Multiply-Add instructions (FMA). 184
B.1.30 Intel post-32 nm processorinstructions. L oo 187
B.1.31VIA (Centaur) security instructions e 187
B.1.32 AMD Lightweight Profiling (LWP) instructions. 187
B.1.33 AMD XOP and FMA4 instructions (SSE5) e 187
B.1.34 Intel AVX2 instructions L e e e e e 190
B.1.35 Intel Transactional Synchronization Extensions (TSX). 192
B.1.36 Intel BMI1 and BMI2 instructions, AMD TBM instructions 193
B.1.37 Intel Memory Protection Extensions (MPX) 193
B.1.38 Intel SHA accelerationinstructions L L 194
B.1.39 AVX-512 mask registerinstructions oL L Lo 194
B.1.40 AVX-512 mask register instructions (aliases requiring explicit size support) 195
B.1.41 AVX-512instructions L e e e e e e e e 196
B.1.42 Intel memory protection keys for userspace (PKU aka PKEYs). 227
B.1.43Read ProcessorID. L e e e e e e e e e e e e e 227
B.1.44 New memory instructions. L Lo 227
B.1.45Processortracewrite L L e e e e e e e e 228
B.1.46 Instructions from the Intel Instruction Set Extensions, 228
B.1.47doc 319433-034 May 2018. e e e e e e e e e e e e e 228
B.1.48 Galois field operations (GFNI) e 228
B.1.49 AVX512 Vector Bit Manipulation Instructions2 Lo 228
B.1.50 AVXSI12VNNI . . . o o e e e e e e e e e e e e e e e 229
B.1.51 AVX512 Bit Algorithms. e e e e e 229
B.1.52 AVX512 4-iteration Multiply-Add 230
B.1.53 AVX512 4-iteration Dot Product e 230
B.1.54 Intel Software Guard Extensions (SGX) 230
B.1.55 Intel Control-Flow Enforcement Technology (CET) 230
B.1.56 Instructions from ISE doc 319433-040,June2020. oo 230
B.1.57 AVX512 Bfloatl6instructions L 230
B.1.58 AVX512 mask intersectinstructions. Lo L oo 231
B.1.59 Intel Advanced Matrix Extensions (AMX). 231
B.1.60 Systematic names for the hinting nop instructions 231

Appendix C: NASM Version History L L e 235

C.INASM 2 Series. . . v v o e e e e e e e e e e e e e e e 235

C.L1Version2.15.06. o i i e e e e e e e e e e e e e e e e 235
C.12Version2.15.05. L e e e e e e e e e e e e e 235
C.13Version2.15.04. e e e e e e e e e e 235
C.1l4Version2.15.03. L e e e e e e e e e e e e e 235
C.15Version2.15.02. L e e e e e e e e e e e e e e 236
C.16Version2.15.01. L e e e e e e e e e e e e e e 236
C.L7Version2.15 L L e e e e e e e e e e e e 236
C.18Version2.14.03. o i e e e e e e e e e e e e e e 237
C.1OVersion2.14.02. L e e e e e e e e e e e e e e e e e 237
C.L10Version 2.14.01 L o e e e e e e e e e e e e e e e 238
C.L11Version2.14. . . . L o e e e e e e e e e e e e 238
C.L12Version2.13.03 o e e e e e e e e e e e e e e e e e e 239
C.LI3Version2.13.02 o vt e e e e e e e e e e e e e e e e e e 239
C.1.14Version 2.13.01 o o e e e e e e e e e e e e e e e 240
C.LA5Version2.13. . . . L L e e e e e e e e e e e e e e e e 240
C.L16Version2.12.02 ot e e e e e e e e e e e e e e e e e e e 241
C.LI7Version2.12.01 o ot e e e e e e e e e e e e e e e e 241
C.LIBVErsion2.12. . . . L o it e e e e e e e e e e e e e e e e e e e 241
C.L19Version 2.11.09 L o e e e e e e e e e e e e e e 242
C.1.20Version 2.11.08 i e e e e e e e e e e e e e e e e e e 242
C.121Version 2.11.07 v v e 242
C.1.22Version 2.11.06 o o e e e e e e e e e e e e e e e e e e 242
C.1.23Version 2.11.05 e e e e e e e e e e e e e e 242
C.1.24Version 2.11.04 o e e e e e e e e e e e e e e 242
C.1.25Version 2.11.03 L e e e e e e e e e e e e e e e e e e e 243
C.1.26Version 2.11.02 o o e 243
C.127Version 2.11.01 o o e e e e e e e e e e e e e e e 243
C.L28Version2.11. . . . L v it s e e e e e e e e e e e e e e e e e e e 243
C.1.29Version 2.10.09 e e e e e e e e e e e e e 244
C.1.30Version2.10.08 e e e e e e e e e e e e e e 244
C.1.31Version 2.10.07 o v v e e e e e e e e e e e e e e e e e e e 244
C.1.32Version 2.10.06 o e e e e e e e e e e e e e e e e 244
C.1.33Version2.10.05 L e e e e e e e e e e e e 244
C.1.34Version 2.10.04 L e e e e e e e e e e e 244
C.1.35Version 2.10.03 e e e e e e e e e e e e e e e e 245

14

C.1.36Version 2.10.02 e e e e e e e e e e 245

C.137Version2.10.01 o . e e e e e e e e e e e e e e 245
C.138Version2.10. . . . o ot e e e e e e e e e e e e e e e e e e e 245
C.1.39Version 2.09.10 e e e e e e e e e e e e e e e e 245
C.1.40Version 2.09.09 e e e e e e e e e e e 245
C.1.41Version2.09.08 e e e e e e e e e e e e 245
C.1.42Version 2.09.07 o o i e e e e e e e e e e e e e e e 245
C.1.43Version2.09.06 e e e e e e e e e e e e e 245
C.1.44Version 2.09.05 e e e e e e e e 246
C.1.45Version 2.09.04 e e e e e e e e e e e 246
C.1.46Version 2.09.03 e e e e e e e e e e e e 246
C.LATVersion2.09.02 o it e e e e e e e e e e e e 246
C.1.48Version 2.09.01 e e e e e e e e e e e 246
C.149Version2.09. e e e e e e e e e e e 246
C.1.50Version 2.08.02 e e e e e e e e e e e e e 247
C.1.51Version2.08.01 e e e e e e e e e e e e e e 247
C.1.52Version 2.08. e e e e e e e e e e 247
C.L53Version2.07. o v vt e e e e e e e e e e e e e e e e e 248
C.154Version2.06. i i e e e e e e e e e e e e e e e e 248
C.1.55Version 2.05.01 e e e e e e e e e e e 249
C.156Version2.05. L e e e e e e e e e e e e e e 249
C.L57Version2.04. o e e e e e e e e e e e 249
C.1.58Version2.03.01 e e e e e e e e e e e e 250
C.159Version2.03. L e e e e e e e e e e e e e 250
C.LB0Version2.02. i e e e e e e e e e e e e e e e e 251
C.161Version2.01. o i e e e e e e e e e e e e e e e e 251
C.1.62Version2.00. L e e e e e e e e e e e e e e e e e 252
C.2NASMO0.98SEries . . . v v v e e e e e e e e e e e e e e e e 252
C.2.1Version 0.98.39. L e e e e e e e e 252
C.2.2Version 0.98.38 L e e e e e e e e 253
C.2.3Version 0.98.37 o i e e e e e e e e e e e 253
C.2.4Version0.98.36. i e e e e e e e e e e e e e e 253
C.2.5Version 0.98.35. e e e e e e e e e 254
C.2.6Version0.98.34. L e e e e e e e 254
C.2.7Version 0.98.33 L e e e e e e e e 254
C.2.8Version 0.98.32. e e e e e e e e e 254

C.2.9Version 0.98.31 e e e e e e e e 255

C.2.10Version 0.98.30 e e e e e e e e e e e e e e e 255
C.2.11Version 0.98.28 e e e e e e e e e e 255
C.2.12Version 0.98.26 e e e e e e e e e e e e e e e e 255
C.2.13Version 0.98.25alt. e e 255
C.2.14Version 0.98.25 L e e e e e e e 255
C.2.15Version 0.98.24p1 e e e e e e 255
C.2.16Version 0.98.24 e e e e e e e e e e 256
C.2.17Version 0.98.23 L e e e e e e e e e 256
C.2.18Version 0.98.22 L L e e e e e e e e e e e 256
C.2.19Version 0.98.21 L L e e e e e e e e e e e e e 256
C.2.20Version 0.98.20 e e e e e e e e e e e e 256
C.2.21Version 0.98.19 L e e e e e e e e e e 256
C.2.22Version 0.98.18 e e e e e e e e e e e 256
C.2.23Version 0.98.17 e e e e e e e e e e e e 256
C.2.24Version 0.98.16 e e e e e e e e e e e e e e 256
C.2.25Version 0.98.15 L e e e e e e e e 256
C.2.26Version 0.98.14 L. e e e e e e e e 256
C.2.27Version 0.98.13 L e e e e e e e e e e 256
C.2.28Version 0.98.12 L e e e e e e e e e e e e 256
C.2.29Version 0.98.11 e e e e e e e e e e e e e 256
C.2.30Version 0.98.10 e e e e e e e e e e e e e e 256
C.2.31Version 0.98.09 e e e e e e e e 257
C.2.32Version 0.98.08 L e e e e e e e e e e 257
C.2.33 Version 0.98.09b with John Coffman patches released 28-Oct-2001. 257
C.2.34Version 0.98.07 released 01/28/01. o i v i i i e e e e 257
C.2.35Version 0.98.06f released 01/18/01 e 258
C.2.36 Version 0.98.06e released 01/09/01 i i i i e 258
C.2.37Version 0.98p1 L e e e e 258
C.2.38Version 0.98bf (bug-fixed). 258
C.2.39 Version 0.98.03 with John Coffman’s changes released 27-Jul-2000. 258
C.2.40Version 0.98.03 e e e e e e e e e e 259
C.2.41Version 0.98. L e e e e e e e e 261
C.2.42Version 0.98Pp9 L e e e e e 262
C.2.43Version 0.98Pp8 L e e 262
C.2.44Version 0.98Pp7 L e e e e e 262

C.2.45Version 0.98p6 L e e e e e e 263

C.2.46Version 0.98P3.7 L e e e e e e e 263
C.247Version 0.98Pp3.6 L e e e e 263
C.2.48Version 0.98p3.5 L L e 263
C.2.49Version 0.98Pp3.4 L L e e e 264
C.2.50Version 0.98p3.3 L L e e e 264
C.2.51Version 0.98Pp3.2 L e e e e e 264
C.2.52Version 0.98p3-hpa 264
C.2.53Version 0.98 pre-release3. e e 264
C.2.54Version 0.98 pre-release2. o i e 265
C.2.55Version 0.98 pre-release 1. o .o e e e 265
C3NASMO0.9Series. v o e e e e e e e e e e e e e e e e 266
C.3.1Version 0.97 released December1997o 266
C.3.2Version 0.96 released November1997 oL 266
C.3.3Version 0.95released July 1997 268
C.3.4Version 0.94 released April 1997 270
C.3.5Version 0.93 released January 1997 e 270
C.3.6Version 0.92released January 1997 271
C.3.7Version 0.91 released November1996 271
C.3.8Version 0.90 released October1996 271
Appendix D: Building NASM from Source. L Lo 273
D.1Building froma Source Archive L 273
D.2 Building fromthe git Repository 273
D.3 Buildingthedocumentation 273
Appendix E: Contact Information L L 275
ElWebsite e e e 275
E.LLIUSerFOrums o o o o e 275
E.1.2 Development Community L e 275

E2ReportingBugs 275

1.1

1.1.1

Chapter 1: Introduction

What Is NASM?

The Netwide Assembler, NASM, is an 80x86 and x86-64 assembler designed for portability and
modularity. It supports a range of object file formats, including Linux and *BSD a.out, ELF, Mach-O,
16-bit and 32-bit .obj (OMF) format, COFF (including its Win32 and Win64 variants.) It can also output
plain binary files, Intel hex and Motorola S-Record formats. Its syntax is designed to be simple and easy
to understand, similar to the syntax in the Intel Software Developer Manual with minimal complexity. It
supports all currently known x86 architectural extensions, and has strong support for macros.

License
NASM is under the so-called 2-clause BSD license, also known as the simplified BSD license:
Copyright 1996-2020 the NASM Authors - All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

+ Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

+ Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

17

18

2.1

2.1.1

Chapter 2: Running NASM

NASM Command-Line Syntax

To assemble a file, you issue a command of the form
nasm -f <format> <filename> [-o <output>]

For example,

nasm -f elf myfile.asm

will assemble myfile.asminto an ELF object file myfile.o. And

nasm -f bin myfile.asm -o myfile.com
will assemble myfile.asminto a raw binary file myfile.com.

To produce a listing file, with the hex codes output from NASM displayed on the left of the original
sources, use the -1 option to give a listing file name, for example:

nasm -f coff myfile.asm -1 myfile.lst

To get further usage instructions from NASM, try typing

nasm -h
The option --help is an alias for the -h option.

If you use Linux but aren’t sure whether your system is a.out or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like
nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1

then your system is ELF, and you should use the option -f elf when you want NASM to produce Linux
object files. If it says

nasm: Linux/i386 demand-paged executable (QMAGIC)

or something similar, your system is a.out, and you should use -f aout instead (Linux a.out systems
have long been obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won’t see any output at
all, unless it gives error messages.

The -o Option: Specifying the Output File Name

NASM will normally choose the name of your output file for you; precisely how it does this is dependent
on the object file format. For Microsoft object file formats (obj, win32 and winé4), it will remove the .asm
extension (or whatever extension you like to use - NASM doesn’t care) from your source file name and
substitute .obj. For Unix object file formats (aout, as86, coff, elf32, elf64, elfx32, ieee, macho32 and
macho64) it will substitute .o. For dbg, rdf, ith and srec, it will use .dbg, .rdf, .ith and .srec,
respectively, and for the bin format it will simply remove the extension, so that myfile.asm produces
the output file myfite.

If the output file already exists, NASM will overwrite it, unless it has the same name as the input file, in
which case it will give a warning and use nasm. out as the output file name instead.

For situations in which this behaviour is unacceptable, NASM provides the -o command-line option,
which allows you to specify your desired output file name. You invoke -o by following it with the name
you wish for the output file, either with or without an intervening space. For example:

19

2.1.2

2.1.3

2.1.4

20

nasm -f bin program.asm -o program.com
nasm -f bin driver.asm -odriver.sys

Note that this is a small o, and is different from a capital O , which is used to specify the number of
optimization passes required. See section 2.1.24.

The -f Option: Specifying the Output File Format

If you do not supply the -f option to NASM, it will choose an output file format for you itself. In the
distribution versions of NASM, the default is always b1in; if you’ve compiled your own copy of NASM, you
can redefine OF_DEFAULT at compile time and choose what you want the default to be.

Like -o, the intervening space between -f and the output file format is optional; so -f elf and -felf
are both valid.

A complete list of the available output file formats can be given by issuing the command nasm -h.
The -1 Option: Generating a Listing File

If you supply the -1 option to NASM, followed (with the usual optional space) by a file name, NASM wiill
generate a source-listing file for you, in which addresses and generated code are listed on the left, and
the actual source code, with expansions of multi-line macros (except those which specifically request
no expansion in source listings: see section 4.3.11) on the right. For example:

nasm -f elf myfile.asm -1 myfile.lst

If a list file is selected, you may turn off listing for a section of your source with [1ist -1, and turn it
back on with [list +], (the default, obviously). There is no "user form" (without the brackets). This can
be used to list only sections of interest, avoiding excessively long listings.

The -L Option: Additional or Modified Listing Info

Use this option to specify listing output details.

Supported options are:

+ -Lbshow builtin macro packages (standard and %use)

+ -Ld show byte and repeat counts in decimal, not hex

+ -Le show the preprocessed input

« -Lfignore .nolist and force listing output

+ -Lmshow multi-line macro calls with expanded parameters

« -Lpoutput a list file in every pass, in case of errors

+ -Ls show all single-line macro definitions

« -Lw flush the output after every line (very slow, mainly useful to debug NASM crashes)
+ -L+enable all listing options except -Lw (very verbose)

These options can be enabled or disabled at runtime using the %pragma 1ist options directive:
%pragma list options [+|-]flags...

For example, to turn on the d and m flags but disable the s flag:

%pragma list options +dm -s

For forward compatility reasons, an undefined flag will be ignored. Thus, a new flag introduced in a
newer version of NASM can be specified without breaking older versions. Listing flags will always be a
single alphanumeric character and are case sensitive.

2.1.5

2.1.6

2.1.7

2.1.8

2.19

2.1.10

2.1.11

2.1.12

The -m Option: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This can be redirected to a file
for further processing. For example:

nasm -M myfile.asm > myfile.dep
The -MG Option: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This differs from the -M option in
that if a nonexisting file is encountered, it is assumed to be a generated file and is added to the
dependency list without a prefix.

The -MF Option: Set Makefile Dependency File

This option can be used with the -M or -MG options to send the output to a file, rather than to stdout. For
example:

nasm -M -MF myfile.dep myfile.asm
The -Mp Option: Assemble and Generate Dependencies

The -MD option acts as the combination of the -m and -MF options (i.e. a filename has to be specified.)
However, unlike the - or -MG options, -MD does not inhibit the normal operation of the assembler. Use
this to automatically generate updated dependencies with every assembly session. For example:

nasm -f elf -o myfile.o -MD myfile.dep myfile.asm

If the argument after -MD is an option rather than a filename, then the output filename is the first
applicable one of:

» thefilename setin the -MF option;
» the output filename from the -o option with .d appended;

+ theinput filename with the extension set to .d.

The -MT Option: Dependency Target Name

The -MT option can be used to override the default name of the dependency target. This is normally the
same as the output filename, specified by the -o option.

The -mQ Option: Dependency Target Name (Quoted)

The -MQ option acts as the -MT option, except it tries to quote characters that have special meaning in
Makefile syntax. This is not foolproof, as not all characters with special meaning are quotable in Make.
The default output (if no -MT or -MQ option is specified) is automatically quoted.

The -mp Option: Emit phony targets

When used with any of the dependency generation options, the -Mp option causes NASM to emit a
phony target without dependencies for each header file. This prevents Make from complaining if a
header file has been removed.

The -mw Option: Watcom Make quoting style

This option causes NASM to attempt to quote dependencies according to Watcom Make conventions
rather than POSIX Make conventions (also used by most other Make variants.) This quotes # as $# rather
than \#, uses & rather than \ for continuation lines, and encloses filenames containing whitespace in
double quotes.

21

2.1.13 The -F Option: Selecting a Debug Information Format

This option is used to select the format of the debug information emitted into the output file, to be
used by a debugger (or will be). Prior to version 2.03.01, the use of this switch did not enable output of
the selected debug info format. Use -g, see section 2.1.14, to enable output. Versions 2.03.01 and later
automatically enable -g if -F is specified.

A complete list of the available debug file formats for an output format can be seen by issuing the
command nasm -h. Not all output formats currently support debugging output.

This should not be confused with the -f dbg output format option, see section 8.14.

2.1.14 The -g Option: Enabling Debug Information.

2.1.15

2.1.16

2.1.17

22

This option can be used to generate debugging information in the specified format. See section 2.1.13.
Using -g without -F results in emitting debug info in the default format, if any, for the selected output
format. If no debug information is currently implemented in the selected output format, -g is silently
ignored.

The -x Option: Selecting an Error Reporting Format

This option can be used to select an error reporting format for any error messages that might be
produced by NASM.

Currently, two error reporting formats may be selected. They are the -xvc option and the -xgnu option.
The GNU format is the default and looks like this:

filename.asm:65: error: specific error message

where filename.asm is the name of the source file in which the error was detected, 65 is the source file
line number on which the error was detected, error is the severity of the error (this could be warning),
and specific error message is a more detailed text message which should help pinpoint the exact
problem.

The other format, specified by -xvc is the style used by Microsoft Visual C++ and some other programs.
It looks like this:

filename.asm(65) : error: specific error message
where the only difference is that the line number is in parentheses instead of being delimited by colons.

See also the visual c++ output format, section 8.5.

The -z Option: Send Errors to a File

Under Ms-Dos it can be difficult (though there are ways) to redirect the standard-error output of a
program to a file. Since NASM usually produces its warning and error messages on stderr, this can
make it hard to capture the errors if (for example) you want to load them into an editor.

NASM therefore provides the -z option, taking a filename argument which causes errors to be sent to
the specified files rather than standard error. Therefore you can redirect the errors into a file by typing

nasm -Z myfile.err -f obj myfile.asm

In earlier versions of NASM, this option was called -, but it was changed since -E is an option
conventionally used for preprocessing only, with disastrous results. See section 2.1.22.

The -s Option: Send Errors to stdout

The -s option redirects error messages to stdout rather than stderr, so it can be redirected under
MS-D0S. To assemble the file myfile.asmand pipe its output to the more program, you can type:

nasm -s -f obj myfile.asm | more

See also the -z option, section 2.1.16.

2.1.18

2.1.19

2.1.20

2.1.21

The -1 Option: Include File Search Directories

When NASM sees the %include or %pathsearch directive in a source file (see section 4.6.1, section 4.6.2
or section 3.2.3), it will search for the given file not only in the current directory, but also in any
directories specified on the command line by the use of the -i option. Therefore you can include files
from a macro library, for example, by typing

nasm -ic:\macrolib\ -f obj myfile.asm
(As usual, a space between -1i and the path name is allowed, and optional).

Prior NASM 2.14 a path provided in the option has been considered as a verbatim copy and providing a
path separator been up to a caller. One could implicitly concatenate a search path together with a
filename. Still this was rather a trick than something useful. Now the trailing path separator is made to
always present, thus -1 foo will be considered as the -1 foo/ directory.

If you want to define a standard include search path, similar to /usr/include on Unix systems, you
should place one or more -1 directives in the NASMENV environment variable (see section 2.1.35).

For Makefile compatibility with many C compilers, this option can also be specified as -1.

The -p Option: Pre-Include aFile

NASM allows you to specify files to be pre-included into your source file, by the use of the -p option. So
running

nasm myfile.asm -p myinc.inc

is equivalent to running nasm myfile.asm and placing the directive %include "myinc.inc" at the start
of thefile.

--include option is also accepted.

For consistency with the -1, -b and -u options, this option can also be specified as -p.

The -d Option: Pre-Define a Macro

Just as the —p option gives an alternative to placing %include directives at the start of a source file, the
-d option gives an alternative to placing a %define directive. You could code

nasm myfile.asm -dF00=100

as an alternative to placing the directive
%define FOO 100

at the start of the file. You can miss off the macro value, as well: the option -dFoo is equivalent to
coding %define F00. This form of the directive may be useful for selecting assembly-time options which
are then tested using %1 fdef, for example -dDEBUG.

For Makefile compatibility with many C compilers, this option can also be specified as -D.

The -u Option: Undefine a Macro

The -u option undefines a macro that would otherwise have been pre-defined, either automatically or
by a -p or -d option specified earlier on the command lines.

For example, the following command line:
nasm myfile.asm -dF00=100 -uFO0O

would result in Foo not being a predefined macro in the program. This is useful to override options
specified at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can also be specified as -u.

23

2.1.22

2.1.23

2.1.24

2.1.25

24

The -E Option: Preprocess Only

NASM allows the preprocessor to be run on its own, up to a point. Using the -E option (which requires
no arguments) will cause NASM to preprocess its input file, expand all the macro references, remove all
the comments and preprocessor directives, and print the resulting file on standard output (or save it to
afile, if the -o option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate expressions
which depend on the values of symbols: so code such as

%assign tablesize ($-tablestart)
will cause an error in preprocess-only mode.

For compatiblity with older version of NASM, this option can also be written -e. -E in older versions of
NASM was the equivalent of the current -z option, section 2.1.16.

The -a Option: Don’t Preprocess At All

If NASM is being used as the back end to a compiler, it might be desirable to suppress preprocessing
completely and assume the compiler has already done it, to save time and increase compilation
speeds. The -a option, requiring no argument, instructs NASM to replace its powerful preprocessor with
a stub preprocessor which does nothing.

The -0 Option: Specifying Multipass Optimization

Using the -0 option, you can tell NASM to carry out different levels of optimization. Multiple flags can be
specified after the -0 options, some of which can be combined in a single option, e.g. -0xv.

« -00: No optimization. All operands take their long forms, if a short form is not specified, except
conditional jumps. This is intended to match NASM 0.98 behavior.

« -01: Minimal optimization. As above, but immediate operands which will fit in a signed byte are
optimized, unless the long form is specified. Conditional jumps default to the long form unless
otherwise specified.

» -0x (where x is the actual letter x): Multipass optimization. Minimize branch offsets and signed
immediate bytes, overriding size specification unless the strict keyword has been used (see section
3.7). For compatibility with earlier releases, the letter x may also be any number greater than one.
This number has no effect on the actual number of passes.

« -0v: At the end of assembly, print the number of passes actually executed.
The -ox mode is recommended for most uses, and is the default since NASM 2.09.

Note that this is a capital 0, and is different from a small o, which is used to specify the output file name.
See section 2.1.1.

The -t Option: Enable TASM Compatibility Mode

NASM includes a limited form of compatibility with Borland’s TasM. When NASM’s -t option is used, the
following changes are made:

+ local labels may be prefixed with ee instead of .

+ size override is supported within brackets. In TASM compatible mode, a size override inside square
brackets changes the size of the operand, and not the address type of the operand as it does in
NASM syntax. E.g. mov eax, [DWORD val] is valid syntax in TASM compatibility mode. Note that you
lose the ability to override the default address type for the instruction.

+ unprefixed forms of some directives supported (arg, elif, else, endif, if, ifdef, ifdifi, ifndef,
include, local)

2.1.26 The -wand -w Options: Enable or Disable Assembly Warnings

NASM can observe many conditions during the course of assembly which are worth mentioning to the
user, but not a sufficiently severe error to justify NASM refusing to generate an output file. These
conditions are reported like errors, but come up with the word ‘warning’ before the message. Warnings
do not prevent NASM from generating an output file and returning a success status to the operating
system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the user.
Therefore NASM supports the -w command-line option, which enables or disables certain classes of
assembly warning. Such warning classes are described by a name, for example label-orphan; you can
enable warnings of this class by the command-line option -w+label-orphan and disable it by
-w-label-orphan.

The current warning classes are:

« allisan group alias for all warning classes. Thus, -w+all enables all available warnings, and -w-al1l
disables warnings entirely (since NASM 2.13).

+ bad-pragma is a backwards compatibility alias for pragma-bad.

+ bnd warns about ineffective use of the BND prefix when the auMp instruction is converted to the sHorT
form. This should be extremely rare since the short aMp only is applicable to jumps inside the same
module, but if it is legitimate, it may be necessary to use bnd jmp dword.

Enabled by default.

+ db-empty warns about a DB, Dw, etc declaration with no operands, producing no output. This is
permitted, but often indicative of an error. See section 3.2.1.

Enabled by default.

+ environment warns if a nonexistent environment variable is accessed using the %! preprocessor
construct (see section 4.11.2.) Such environment variables are treated as empty (with this warning
issued) starting in NASM 2.15; earlier versions of NASM would treat this as an error.

Enabled by default.

+ float is a group alias for all warning classes prefixed by float-; currently float-denorm,
float-overflow, float-toolong, and float-underflow.

+ float-denormwarns about denormal floating point constants.
Disabled by default.
+ float-overflow warns about floating point underflow.
Enabled by default.
+ float-toolong warns about too many digits in floating-point numbers.
Enabled by default.
+ float-underflow warns about floating point underflow (a nonzero constant rounded to zero.)
Disabled by default.
+ hlewarns about invalid use of the HLE XACQUIRE or XRELEASE prefixes.
Enabled by default.

+ label is a group alias for all warning classes prefixed by label-; currently label-orphan,
label-redef, and label-redef-late.

25

26

label-orphan warns about source lines which contain no instruction but define a label without a
trailing colon. This is most likely indicative of a typo, but is technically correct NASM syntax (see
section 3.1.)

Enabled by default.

label-redef warns if a label is defined more than once, but the value is identical. It is an
unconditional error to define the same label more than once to different values.

Disabled by default.

label-redef-late the value of a label changed during the final, code-generation pass. This may be
the result of strange use of the preprocessor. This is very likely to produce incorrect code and may
end up being an unconditional error in a future version of NASM.

Enabled and promoted to error by default.
lock warns about Lock prefixes on unlockable instructions.
Enabled by default.

macro is a group alias for all warning classes prefixed by macro-; currently macro-def-case-single,
macro-def-greedy-single, macro-def-param-single, macro-defaults, macro-params-legacy,
macro-params-multi, and macro-params-single.

macro-def is a group alias for all warning classes prefixed by macro-def-; currently
macro-def-case-single, macro-def-greedy-single, and macro-def-param-single.

macro-def-case-single warns when a single-line macro is defined both case sensitive and case
insensitive. The new macro definition will override (shadow) the original one, although the original
macro is not deleted, and will be re-exposed if the new macro is deleted with %undef, or, if the
original macro is the case insensitive one, the macro call is done with a different case.

Enabled by default.

macro-def-greedy-single definition shadows greedy macro warns when a single-line macro is
defined which would match a previously existing greedy definition. The new macro definition will
override (shadow) the original one, although the original macro is not deleted, and will be
re-exposed if the new macro is deleted with %undef, and will be invoked if called with a parameter
count that does not match the new definition.

Enabled by default.

macro-def-param-single warns if the same single-line macro is defined with and without
parameters. The new macro definition will override (shadow) the original one, although the original
macro is not deleted, and will be re-exposed if the new macro is deleted with %undef.

Enabled and promoted to error by default.

macro-defaults warns when a macro has more default parameters than optional parameters. See
section 4.3.5 for why might want to disable this warning.

Enabled by default.

macro-params is a group alias for all warning classes prefixed by macro-params-; currently
macro-params-legacy, macro-params-multi, and macro-params-single.

macro-params-legacy warns about multi-line macros being invoked with the wrong number of
parameters, but for bug-compatibility with NASM versions older than 2.15, NASM tried to fix up the
parameters to match the legacy behavior and call the macro anyway. This can happen in certain
cases where there are empty arguments without braces, sometimes as a result of macro expansion.

The legacy behavior is quite strange and highly context-dependent, and can be disabled with:

%pragma preproc sane_empty_expansion true
It is highly recommended to use this option in new code.
Enabled by default.

macro-params-multi warns about multi-line macros being invoked with the wrong number of
parameters. See section 4.3.1 for an example of why you might want to disable this warning.

Enabled by default.

macro-params-single warns about single-line macros being invoked with the wrong number of
parameters.

Enabled by default.

negative-rep warns about negative counts given to the %rep preprocessor directive.
Enabled by default.

not-my-pragma is a backwards compatibility alias for pragma-na.

number-overflow covers warnings about numeric constants which don’t fit in 64 bits.
Enabled by default.

obsolete is a group alias for all warning classes prefixed by obsolete-; currently obsolete-nop,
obsolete-removed, and obsolete-valid.

obsolete-nop warns for an instruction which has been removed from the architecture, but has been
architecturally defined to be a noop for future CPUs.

Enabled by default.

obsolete-removed warns for an instruction which has been removed from the architecture, and is no
longer included in the CPU definition given in the [cpu] directive, for example pop cs, the opcode
for which, eFh, instead is an opcode prefix on CPUs newer than the first generation 8086.

Enabled by default.

obsolete-valid warns for an instruction which has been removed from the architecture, but is still
valid on the specific CPU given in the cpu directive. Code using these instructions is most likely not
forward compatible.

Enabled by default.

orphan-labels is a backwards compatibility alias for label-orphan.
other specifies any warning not included in any specific warning class.
Enabled by default.

phase warns about symbols having changed values during the second-to-last assembly pass. This is
not inherently fatal, but may be a source of bugs.

Disabled by default.

pragma is a group alias for all warning classes prefixed by pragma-; currently pragma-bad,
pragma-empty, pragma-na, and pragma-unknown.

pragma-bad warns about a malformed or otherwise unparsable %pragma directive.
Disabled by default.

pragma—empty warns about a %pragma directive containing nothing. This is treated identically to
%pragma ignore except for this optional warning.

Disabled by default.

27

28

+ pragma-na warns about a %pragma directive which is not applicable to this particular assembly
session. This is not yet implemented.

Disabled by default.

+ pragma-unknown warns about an unknown %pragma directive. This is not yet implemented for most
cases.

Disabled by default.

+ ptr warns about keywords used in other assemblers that might indicate a mistake in the source
code. Currently only the MASM pPTR keyword is recognized. See also section 6.5.

Enabled by default.

+ regsize warns about a register with implicit size (such as Eax, which is always 32 bits) been given an
explicit size specification which is inconsistent with the size of the named register, e.g. WoRD EAX.
DWORD EAX Or WORD AX are permitted, and do not trigger this warning. Some registers which do not
imply a specific size, such as ke, may need this specification unless the instruction itself implies the
instruction size:

KMOVW K@, [foo] ; Permitted, KMOVW implies 16 bits

KMOV WORD KO, [foo] ; Permitted, WORD KO specifies instruction size
KMOV KO,WORD [foo] ; Permitted, WORD [foo] specifies instruction size
KMOV K@, [foo] ; Not permitted, instruction size ambiguous

Enabled by default.
» unknown-pragma is a backwards compatibility alias for pragma-unknown.

+ unknown-warning warns about a -w or -w option or a [WARNING] directive that contains an unknown
warning name or is otherwise not possible to process.

Disabled by default.
+ user controls output of swarning directives (see section 4.9).
Enabled by default.

+ warn-stack-empty a [WARNING POP] directive was executed when the warning stack is empty. This
is treated as a [WARNING *all] directive.

Enabled by default.

+ zeroing a RESx directive was used in a section which contains initialized data, and the output format
does not support this. Instead, this will be replaced with explicit zero content, which may produce a
large output file.

Enabled by default.
+ zext-reloc warns that a relocation has been zero-extended due to limitations in the output format.
Enabled by default.

Since version 2.15, NASM has group aliases for all prefixed warnings, so they can be used to enable or
disable all warnings in the group. For example, -w+float enables all warnings with names starting with
float-*.

Since version 2.00, NASM has also supported the gcc-like syntax -wWwarning-class and
-Wno-warning-class instead of -w+warning-class and -w-warning-class, respectively; both syntaxes
work identically.

The option -w+error or -Werror can be used to treat warnings as errors. This can be controlled on a per
warning class basis (-w+error=warning-class or -werror=warning-class); if no warning-class is specified
NASM treats it as -w+error=all; the same applies to -w-error or -wno-error, of course.

2.1.27

2.1.28

2.1.29

2.1.30

2.1.31

In addition, you can control warnings in the source code itself, using the [WARNING] directive. See
section 7.13.

The -v Option: Display Version Info

Typing NAsM -v will display the version of NASM which you are using, and the date on which it was
compiled.

You will need the version number if you report a bug.

For command-line compatibility with Yasm, the form --v is also accepted for this option starting in
NASM version 2.11.05.

The --(g|1)prefix, -—(g| 1) postfix Options.

The --(g)prefix options prepend the given argument to all extern, common, static, and global
symbols, and the --1prefix option prepends to all other symbols. Similarly, --(g)postfix and
--lpostfix options append the argument in the exactly same way as the --xxprefix options does.

Running this:
nasm -f macho --gprefix _

is equivalent to place the directive with %pragma macho gprefix _ atthe start of the file (section 7.10).
It will prepend the underscore to all global and external variables, as C requires it in some, but not all,
system calling conventions.

The --pragma Option

NASM accepts an argument as %pragma option, which is like placing a %pragma preprocess statement at
the beginning of the source. Running this:

nasm -f macho --pragma "macho gprefix _"

is equivalent to the example in section 2.1.28. See section 4.10.

The --before Option

A preprocess statement can be accepted with this option. The example shown in section 2.1.29 is the
same as running this:

nasm -f macho --before "%pragma macho gprefix _"
The --1imit-x Option

This option allows user to setup various maximum values after which NASM will terminate with a fatal
error rather than consume arbitrary amount of compute time. Each limit can be set to a positive
number or unlimited.

+ —-limit-passes: Number of maximum allowed passes. Default is unlimited.
+ --limit-stalled-passes: Maximum number of allowed unfinished passes. Default is 1000.
+ --limit-macro-levels: Define maximum depth of macro expansion (in preprocess). Default is 10000

+ --limit-macro-tokens: Maximum number of tokens processed during single-line macro expansion.
Default is 10000000.

+ —-limit-mmacros: Maximum number of multi-line macros processed before returning to the
top-level input. Default is 100000.

+ —-limit-rep: Maximum number of allowed preprocessor loop, defined under %rep. Default is
1000000.

+ --limit-eval: This number sets the boundary condition of allowed expression length. Default is
8192 on most systems.

29

2.1.32

2.1.33

2.1.34

2.1.35

2.2

2.2.1

2.2.2

30

+ --limit-lines: Total number of source lines allowed to be processed. Default is 2000000000.

For example, set the maximum line count to 1000:

nasm --limit-lines 1000

Limits can also be set via the directive %pragma 1imit, for example:

%pragma limit lines 1000

The --keep-all Option

This option prevents NASM from deleting any output files even if an error happens.
The --no-11ine Option

If this option is given, all %line directives in the source code are ignored. This can be useful for
debugging already preprocessed code. See section 4.11.1.

The --reproducible Option

If this option is given, NASM will not emit information that is inherently dependent on the NASM version
or different from run to run (such as timestamps) into the output file.

The NASMENV Environment Variable

If you define an environment variable called NASMENV, the program will interpret it as a list of extra
command-line options, which are processed before the real command line. You can use this to define
standard search directories for include files, by putting -i options in the NASMENV variable.

The value of the variable is split up at white space, so that the value -s -ic:\nasmlib\ will be treated
as two separate options. However, that means that the value -dNAME="my name" won’t do what you
might want, because it will be split at the space and the NASM command-line processing will get
confused by the two nonsensical words -dNAME="my and name".

To get round this, NASM provides a feature whereby, if you begin the NASMENV environment variable
with some character that isn’t a minus sign, then NASM will treat this character as the separator
character for options. So setting the NASMENV variable to the value !-s!-ic:\nasmlib\ is equivalent to
settingitto -s -ic:\nasmlib\, but ! -dNAME="my name" will work.

This environment variable was previously called NASM. This was changed with version 0.98.31.

Quick Start for MASM Users

If you’re used to writing programs with MASM, or with TASM in MASM-compatible (non-Ideal) mode, or
with age, this section attempts to outline the major differences between MASM’s syntax and NASM’s. If
you’re not already used to MASM, it’s probably worth skipping this section.

NASM Is Case-Sensitive

One simple difference is that NASM is case-sensitive. It makes a difference whether you call your label
foo, Foo or FOO. If you’re assembling to Dos or 0s/2 .0BJ files, you can invoke the UPPERCASE directive
(documented in section 8.4) to ensure that all symbols exported to other code modules are forced to be
upper case; but even then, within a single module, NASM will distinguish between labels differing only
in case.

NASM Requires Square Brackets For Memory References

NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that it should
be possible, as far as is practical, for the user to look at a single line of NASM code and tell what opcode
is generated by it. You can’t do this in MASM: if you declare, for example,

foo equ 1
bar dw 2

2.2.3

2.2.4

2.2.5

2.2.6

then the two lines of code

mov ax, foo
mov ax,bar

generate completely different opcodes, despite having identical-looking syntaxes.

NASM avoids this undesirable situation by having a much simpler syntax for memory references. The
rule is simply that any access to the contents of a memory location requires square brackets around the
address, and any access to the address of a variable doesn’t. So an instruction of the form mov ax, foo
will always refer to a compile-time constant, whether it’s an EQu or the address of a variable; and to
access the contents of the variable bar, you must code mov ax, [bar].

This also means that NASM has no need for MASM’s OFFSET keyword, since the MASM code
mov ax,offset bar means exactly the same thing as NASM’s mov ax,bar. If you’re trying to get large
amounts of MASM code to assemble sensibly under NASM, you can always code %idefine offset to
make the preprocessor treat the oFFSET keyword as a no-op.

This issue is even more confusing in age, where declaring a label with a trailing colon defines it to be a
‘label’ as opposed to a ‘variable’ and causes ag6 to adopt NASM-style semantics; so in ag6,mov ax,var has
different behaviour depending on whether var was declared as var: dw o (a label) or var dw o (a
word-size variable). NASM is very simple by comparison: everything is a label.

NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by MASM and
its clones, such as mov ax,table[bx], where a memory reference is denoted by one portion outside
square brackets and another portion inside. The correct syntax for the above is mov ax, [table+bx].
Likewise, mov ax,es:[di] iswrongandmov ax,[es:di] isright.

NASM Doesn’t Store Variable Types

NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM will
remember, on seeing var dw 0, that you declared var as a word-size variable, and will then be able to
fill in the ambiguity in the size of the instruction mov var,2, NASM will deliberately remember nothing
about the symbol var except where it begins, and so you must explicitly code mov word [var],2.

For this reason, NASM doesn’t support the LoDS, MOVS, STOS, SCAS, CMPS, INS, or OUTS instructions, but
only supports the forms such as LoDsB, Movsw, and ScAsD, which explicitly specify the size of the
components of the strings being manipulated.

NASM Doesn’t ASSUME

As part of NASM’s drive for simplicity, it also does not support the AssumME directive. NASM will not keep
track of what values you choose to put in your segment registers, and will never automatically generate
a segment override prefix.

NASM Doesn’t Support Memory Models

NASM also does not have any directives to support different 16-bit memory models. The programmer
has to keep track of which functions are supposed to be called with a far call and which with a near call,
and is responsible for putting the correct form of RET instruction (RETN or RETF; NASM accepts RET itself
as an alternate form for RETN); in addition, the programmer is responsible for coding CALL FAR
instructions where necessary when calling external functions, and must also keep track of which
external variable definitions are far and which are near.

Floating-Point Differences

NASM uses different names to refer to floating-point registers from MASM: where MASM would call them
ST (@), ST(1) and so on, and age would call them simply o, 1 and so on, NASM chooses to call them sto,
stl etc.

31

2.2.7

2.2.8

32

As of version 0.96, NASM now treats the instructions with ‘nowait’ forms in the same way as
MASM-compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was based on
a misunderstanding by the authors.

Other Differences

For historical reasons, NASM uses the keyword TworD where MASM and compatible assemblers use
TBYTE.

Historically, NASM does not declare uninitialized storage in the same way as MASM: where a MASM
programmer might use stack db 64 dup (?), NASM requires stack resb 64, intended to be read as
‘reserve 64 bytes’. For a limited amount of compatibility, since NASM treats ? as a valid character in
symbol names, you can code ? equ © and then writing dw ? will at least do something vaguely useful.

As of NASM 2.15, the MASM syntax is also supported.

In addition to all of this, macros and directives work completely differently to MASM. See chapter 4 and
chapter 7 for further details.

MASM compatibility package

See section 6.5.

Chapter 3: The NASM Language

3.1 Layout of a NASM Source Line

Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor directive or
an assembler directive: see chapter 4 and chapter 7) some combination of the four fields

label: instruction operands ; comment

As usual, most of these fields are optional; the presence or absence of any combination of a label, an
instruction and a comment is allowed. Of course, the operand field is either required or forbidden by
the presence and nature of the instruction field.

NASM uses backslash (\) as the line continuation character; if a line ends with backslash, the next line is
considered to be a part of the backslash-ended line.

NASM places no restrictions on white space within a line: labels may have white space before them, or
instructions may have no space before them, or anything. The colon after a label is also optional. (Note
that this means that if you intend to code lodsb alone on a line, and type lodab by accident, then that’s
still a valid source line which does nothing but define a label. Running NASM with the command-line
option -w+orphan-1labels will cause it to warn you if you define a label alone on a line without a trailing
colon.)

Valid characters in labels are letters, numbers, _, $, #, @, ~, ., and ?. The only characters which may be
used as the first character of an identifier are letters, . (with special meaning: see section 3.9), _and 2.
An identifier may also be prefixed with a $ to indicate that it is intended to be read as an identifier and
not a reserved word; thus, if some other module you are linking with defines a symbol called eax, you
can refer to $eax in NASM code to distinguish the symbol from the register. Maximum length of an
identifier is 4095 characters.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU
instructions, MMX instructions and even undocumented instructions are all supported. The instruction
may be prefixed by LOCK, REP, REPE/REPZ, REPNE/REPNZ, XACQUIRE/XRELEASE or BND/NOBND, in the usual
way. Explicit address-size and operand-size prefixes A16, A32, A64, 016 and 032, 064 are provided - one
example of their use is given in chapter 11. You can also use the name of a segment register as an
instruction prefix: coding es mov [bx],ax is equivalent to coding mov [es:bx],ax. We recommend the
latter syntax, since it is consistent with other syntactic features of the language, but for instructions
such as LoDsB, which has no operands and yet can require a segment override, there is no clean
syntactic way to proceed apart from es 1lodsb.

An instruction is not required to use a prefix: prefixes such as cs, A32, LOCK or REPE can appear on a line
by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM also supports a number of pseudo-instructions,
described in section 3.2.

Instruction operands may take a number of forms: they can be registers, described simply by the
register name (e.g. ax, bp, ebx, cro: NASM does not use the gas-style syntax in which register names
must be prefixed by a % sign), or they can be effective addresses (see section 3.3), constants (section
3.4) or expressions (section 3.5).

For x87 floating-point instructions, NASM accepts a wide range of syntaxes: you can use two-operand
forms like MASM supports, or you can use NASM’s native single-operand forms in most cases. For
example, you can code:

fadd stl ; this sets stO := st® + stl
fadd stO,stl ; so does this

33

fadd stl,stoO ; this sets stl := stl + sto
fadd to stl ; so does this

Almost any x87 floating-point instruction that references memory must use one of the prefixes bworDp,
QWORD or TWORD to indicate what size of memory operand it refers to.

3.2 Pseudo-Instructions

Pseudo-instructions are things which, though not real x86 machine instructions, are used in the
instruction field anyway because that’s the most convenient place to put them. The current
pseudo-instructions are DB, Dw, DD, DQ, DT, DO, DY and Dz; their uninitialized counterparts RESB, RESW,
RESD, RESQ, REST, RESO, RESY and RESZ; the INCBIN command, the EQU command, and the TIMES prefix.

In this documentation, the notation "bx
directives, respectively.

and "Resx" is used to indicate all the pB and RESB type

3.2.1 px: Declaring Initialized Data

DB, DW, DD, DQ, DT, DO, DY and Dz (collectively "Dx" in this documentation) are used, much as in MASM, to
declare initialized data in the output file. They can be invoked in a wide range of ways:

db 0x55 ; just the byte 0x55

db 0x55,0x56,0x57 three bytes in succession

db ’a’,0x55 character constants are OK

db ’hello’,13,10,’$’ so are string constants

dw 0x1234 0x34 0x12

dw ’a’ Ox61 Ox00 (it’s just a number)
dw ’ab’ 0x61 0x62 (character constant)
dw >abc’ 0x61 0x62 0x63 0x00 (string)

dd 0x12345678
dd 1.234567e20
dq 0x123456789%abcdefo
dq 1.234567e20
dt 1.234567e20

0x78 Ox56 0x34 0x12
floating-point constant
eight byte constant
double-precision float
extended-precision float

DT, DO, DY and Dz do not accept integer numeric constants as operands.
Starting in NASM 2.15, a the following MASM-like features have been implemented:
» A?argumentto declare uninitialized storage:

db ? 3 uninitialized

+ A superset of the bup syntax. The NASM version of this has the following syntax specification; capital
letters indicate literal keywords:

dx =DB | DW | DD | DQ | DT | DO | DY | DZ

type = BYTE | WORD | DWORD | QWORD | TWORD | OWORD | YWORD | ZWORD
atom = expression | string | float | ’?’

parlist := ’(’ value [, value ...])’

duplist := expression DUP [type] [’%’] parlist

list = duplist | ’%’ parlist | type [’%’] parlist

value = atom | type value | list

stmt := dx value [, value...]

Note that a list needs to be prefixed with a % sign unless prefixed by either bup or a type in order to
avoid confusing it with a parentesis starting an expression. The following expressions are all valid:

db 33
db (44) ; Integer expression
; db (44,55) ; Invalid - error

db %(44,55)
db %(’XX?,’YY?)

db (’AA’) ; Integer expression - outputs single byte
db %(’BB’) ; List, containing a string
db ?

34

3.2.2

3.2.3

3.24

db
db

dup (33)
dup (33, 34)

db 7 dup (99)

db 7 dup dword (?, word ?, ?)

dw byte (?7,44)

6
6

db 6 dup (33, 34), 35
7

dw 3 dup (0xcc, 4 dup byte (’PQR’), ?), Oxabcd
dd 16 dup (Oxaaaa, ?, Oxbbbbbb)

dd 64 dup (2)

The use of $ (current address) in a bx statement is undefined in the current version of NASM, except in

the following cases:

+ For thefirst expression in the statement, either a bup or a data item.

+ An expression of the form "value - $", which is converted to a self-relative relocation.

Future versions of NASM is likely to produce a different result or issue an error this case.

There is no such restriction on using $$ or section-relative symbols.

RESB and Friends: Declaring Uninitialized Data

RESB, RESW, RESD, RESQ, REST, RESO, RESY and RESZ are designed to be used in the BSS section of a
module: they declare uninitialized storage space. Each takes a single operand, which is the number of
bytes, words, doublewords or whatever to reserve. The operand to a RESB-type pseudo-instruction is a

critical expression: see section 3.8.

For example:

buffer: resb
wordvar: resw
realarray resq
ymmval: resy
zmmvals: resz

64
1
10
1
32

reserve 64 bytes
reserve a word
array of ten reals
one YMM register
32 ZMM registers

Since NASM 2.15, the MASM syntax of using ? and DuP in the Dx directives is also supported. Thus, the

above example could also be written:

buffer: db
wordvar: dw
realarray dq
ymmval: dy
zmmvals: dz

64 dup (?)
?
10 dup (?)
2

32 dup (?)

; reserve 64 bytes

; reserve a word

; array of ten reals
; one YMM register

; 32 ZMM registers

INCBIN: Including External Binary Files

INCBIN includes binary file data verbatim into the output file. This can be handy for (for example)
including graphics and sound data directly into a game executable file. It can be called in one of these

three ways:

incbin "file.dat"

incbin "file.dat",1024
incbin "file.dat",1024,512

include the whole file

skip the first 1024 bytes
skip the first 1024, and
actually 1include at most 512

INCBIN is both a directive and a standard macro; the standard macro version searches for the file in the
include file search path and adds the file to the dependency lists. This macro can be overridden if

desired.

EQu: Defining Constants

EQU defines a symbol to a given constant value: when EQu is used, the source line must contain a label.
The action of EQu is to define the given label name to the value of its (only) operand. This definition is
absolute, and cannot change later. So, for example,

35

3.25

3.3

36

message db ’hello, world’
msglen equ $-message

defines msglen to be the constant 12. msglen may not then be redefined later. This is not a preprocessor
definition either: the value of msglen is evaluated once, using the value of $ (see section 3.5 for an
explanation of $) at the point of definition, rather than being evaluated wherever it is referenced and
using the value of $ at the point of reference.

TIMES: Repeating Instructions or Data

The TIMES prefix causes the instruction to be assembled multiple times. This is partly present as NASM’s
equivalent of the pup syntax supported by MASM-compatible assemblers, in that you can code

zerobuf: times 64 db 0

or similar things; but TIMES is more versatile than that. The argument to TIMES is not just a numeric
constant, but a numeric expression, so you can do things like

buffer: db ’hello, world’
times 64-$+buffer db ’ °

which will store exactly enough spaces to make the total length of buffer up to 64. Finally, TIMES can be
applied to ordinary instructions, so you can code trivial unrolled loops in it:

times 100 movsb

Note that there is no effective difference between times 100 resb 1 and resb 100, except that the
latter will be assembled about 100 times faster due to the internal structure of the assembler.

The operand to TIMES is a critical expression (section 3.8).

Note also that TIMES can’t be applied to macros: the reason for this is that TIMES is processed after the
macro phase, which allows the argument to TIMES to contain expressions such as 64-$+buffer as
above. To repeat more than one line of code, or a complex macro, use the preprocessor %rep directive.

Effective Addresses

An effective address is any operand to an instruction which references memory. Effective addresses, in
NASM, have a very simple syntax: they consist of an expression evaluating to the desired address,
enclosed in square brackets. For example:

wordvar dw 123
mov ax, [wordvar]
mov ax, [wordvar+1]
mov ax, [es:wordvar+bx]

Anything not conforming to this simple system is not a valid memory reference in NASM, for example
es:wordvar[bx].

More complicated effective addresses, such as those involving more than one register, work in exactly
the same way:

mov eax, [ebxx2+ecx+offset]
mov ax, [bp+di+8]

NASM is capable of doing algebra on these effective addresses, so that things which don’t necessarily
look legal are perfectly all right:

mov eax, [ebx*5] ; assembles as [ebxx4+ebx]
mov eax, [labell*2-Tlabel2] ; ie [labell+(labell-label2)]

Some forms of effective address have more than one assembled form; in most such cases NASM will
generate the smallest form it can. For example, there are distinct assembled forms for the 32-bit
effective addresses [eaxx2+0] and [eax+eax], and NASM will generally generate the latter on the
grounds that the former requires four bytes to store a zero offset.

3.4

34.1

NASM has a hinting mechanism which will cause [eax+ebx] and [ebx+eax] to generate different
opcodes; this is occasionally useful because [esi+ebp] and [ebp+esi] have different default segment
registers.

However, you can force NASM to generate an effective address in a particular form by the use of the
keywords BYTE, WORD, DWORD and NOSPLIT. If you need [eax+3] to be assembled using a double-word
offset field instead of the one byte NASM will normally generate, you can code [dword eax+3].
Similarly, you can force NASM to use a byte offset for a small value which it hasn’t seen on the first pass
(see section 3.8 for an example of such a code fragment) by using [byte eax+offset]. As special cases,
[byte eax] will code [eax+8] with a byte offset of zero, and [dword eax] will code it with a
double-word offset of zero. The normal form, [eax], will be coded with no offset field.

The form described in the previous paragraph is also useful if you are trying to access data in a 32-bit
segment from within 16 bit code. For more information on this see the section on mixed-size
addressing (section 11.2). In particular, if you need to access data with a known offset that is larger than
will fit in a 16-bit value, if you don’t specify that it is a dword offset, nasm will cause the high word of the
offset to be lost.

Similarly, NASM will split [eax*2] into [eax+eax] because that allows the offset field to be absent and
space to be saved; in fact, it will also split [eax*2+offset] into [eax+eax+offset]. You can combat this
behaviour by the use of the NosPLIT keyword: [nosplit eaxx2] will force [eax*2+0] to be generated
literally. [nosplit eaxx1] also has the same effect. In another way, a split EA form [0, eax*2] can be
used, too. However, NOSPLIT in [nosplit eax+eax] will be ignored because user’s intention here is
considered as [eax+eax].

In 64-bit mode, NASM will by default generate absolute addresses. The REL keyword makes it produce
RIP-relative addresses. Since this is frequently the normally desired behaviour, see the DEFAULT
directive (section 7.2). The keyword ABS overrides REL.

A new form of split effective addres syntax is also supported. This is mainly intended for mib operands
as used by MPX instructions, but can be used for any memory reference. The basic concept of this form
is splitting base and index.

mov eax, [ebx+8,ecx*4] ; ebx=base, ecx=index, 4=scale, 8=disp

For mib operands, there are several ways of writing effective address depending on the tools. NASM
supports all currently possible ways of mib syntax:

5 bndstx

; next 5 lines are parsed same

; base=rax, index=rbx, scale=1, displacement=3
bndstx [rax+0x3,rbx], bndo ;5 NASM - split EA

bndstx [rbxxl+rax+0x3], bnd0@ ; GAS - ’x1’ indecates an index reg
bndstx [rax+rbx+3], bndo ;5 GAS - without hints

bndstx [rax+0x3], bnd0, rbx ; ICC-1

bndstx [rax+0x3], rbx, bndo ; ICC-2

When broadcasting decorator is used, the opsize keyword should match the size of each element.

VDIVPS zmm4, zmm5, dword [rbx]{ltol6} ; single-precision float
VDIVPS zmm4, zmm5, zword [rbx] ; packed 512 bit memory
Constants

NASM understands four different types of constant: numeric, character, string and floating-point.

Numeric Constants

A numeric constant is simply a number. NASM allows you to specify numbers in a variety of number
bases, in a variety of ways: you can suffix H or x, D or T, Q or 0, and B or Y for hexadecimal, decimal, octal
and binary respectively, or you can prefix ox, for hexadecimal in the style of C, or you can prefix $ for
hexadecimal in the style of Borland Pascal or Motorola Assemblers. Note, though, that the $ prefix does

37

double duty as a prefix on identifiers (see section 3.1), so a hex number prefixed with a $ sign must have
a digit after the $ rather than a letter. In addition, current versions of NASM accept the prefix oh for
hexadecimal, od or ot for decimal, 6o or oq for octal, and eb or oy for binary. Please note that unlike C, a
o prefix by itself does not imply an octal constant!

Numeric constants can have underscores (_) interspersed to break up long strings.

Some examples (all producing exactly the same code):

mov ax,200 ; decimal
mov ax,0200 ; still decimal
mov ax,0200d ; explicitly decimal
mov ax,0d200 ; also decimal
mov ax,0c8h 5 hex
mov ax,$0c8 ; hex again: the 0 is required
mov ax,0xc8 ; hex yet again
mov ax,0hc8 3 still hex
mov ax,310q ; octal
mov ax,3100 ; octal again
mov ax,00310 ; octal yet again
mov ax,0q310 ; octal yet again
mov ax,11001000b 3 binary
mov ax,1100_100060b ; same binary constant
mov ax,1100_1000y ; same binary constant once more
mov ax,0b1100_1000 ; same binary constant yet again
mov ax,0yl100_1000 ; same binary constant yet again
3.4.2 Character Strings
A character string consists of up to eight characters enclosed in either single quotes (’...’), double

quotes ("...") or backquotes (¢..

.¢). Single or double quotes are equivalent to NASM (except of

course that surrounding the constant with single quotes allows double quotes to appear within it and
vice versa); the contents of those are represented verbatim. Strings enclosed in backquotes support
C-style \~escapes for special characters.

The following escape sequences are recognized by backquoted strings:

Up to 3 octal digits - literal byte
Up to 2 hexadecimal digits - literal byte

\’ single quote (’)
\" double quote (")
\¢ backquote (¢)

\\ backslash (\)

\? question mark (?)
\a BEL (ASCII 7)

\b BS (ASCII 8)

\t TAB (ASCII 9)

\n LF (ASCII 10)
\v VT (ASCII 11)
\f FF (ASCII 12)
\r CR (ASCII 13)
\e ESC (ASCII 27)
\377

\xFF

\ul234

4 hexadecimal digits - Unicode character

\U12345678 8 hexadecimal digits - Unicode character

All other escape sequences are reserved. Note that \o, meaning a NuL character (ASCII 0), is a special

case of the octal escape sequence.

Unicode characters specified with \u or \u are converted to UTF-8. For example, the following lines are

all equivalent:

db ¢\u263a‘
db ‘\xe2\x98\xba*¢
db OE2h, 098h, OBAh

38

; UTF-8 smiley face
; UTF-8 smiley face
; UTF-8 smiley face

3.4.3

344

3.45

3.4.6

Character Constants

A character constant consists of a string up to eight bytes long, used in an expression context. It is
treated as if it was an integer.

A character constant with more than one byte will be arranged with little-endian order in mind: if you
code

mov eax, ’abcd’
then the constant generated is not ox61626364, but 0x64636261, so that if you were then to store the

value into memory, it would read abcd rather than dcba. This is also the sense of character constants
understood by the Pentium’s cPUID instruction.

String Constants

String constants are character strings used in the context of some pseudo-instructions, namely the b8
family and INCBIN (where it represents a filename.) They are also used in certain preprocessor
directives.

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum-size character constants for the conditions. So the following are equivalent:

db ’hello’ ; string constant
db ’h?,’e’,’1°,’1°,%0° ; equivalent character constants

And the following are also equivalent:

dd ’ninechars’ ; doubleword string constant
dd ’nine’,’char’,’s’ ; becomes three doublewords
db ’ninechars’,0,0,0 ; and really looks like this

Note that when used in a string-supporting context, quoted strings are treated as a string constants
even if they are short enough to be a character constant, because otherwise db ’ab’ would have the
same effect as db ’a’, which would be silly. Similarly, three-character or four-character constants are
treated as strings when they are operands to bw, and so forth.

Unicode Strings

The special operators __?utfi16?__, __?utfiele?__, __?utflébe?__, __?utf32?__, __?utf32le?__ and
__?utf32be?__ allows definition of Unicode strings. They take a string in UTF-8 format and converts it
to UTF-16 or UTF-32, respectively. Unless the be forms are specified, the output is littleendian.

For example:

%define u(x) __?utfle?__(x)
%define w(x) __?utf32?__(x)

dw u(’C:\WINDOWS’), @ ; Pathname +in UTF-16
dd w(‘A + B = \u206a‘), 0 ; String in UTF-32

The UTF operators can be applied either to strings passed to the bs family instructions, or to character
constants in an expression context.

Floating-Point Constants

Floating-point constants are acceptable only as arguments to DB, bw, DD, DQ, DT, and DO, or as arguments
to the special operators __?float8?__, __?floatl6?__, __?bfloatl6?__, __?float32?__,
__?float64?__, __?float86m?__, __?float80e?__, __?float1281?__, and __?float128h?__. See also
section 6.3.

Floating-point constants are expressed in the traditional form: digits, then a period, then optionally
more digits, then optionally an E followed by an exponent. The period is mandatory, so that NASM can

39

40

distinguish between dd 1, which declares an integer constant, and dd 1.e which declares a
floating-point constant.

NASM also support C99-style hexadecimal floating-point: ex, hexadecimal digits, period, optionally
more hexadeximal digits, then optionally a p followed by a binary (not hexadecimal) exponent in
decimal notation. As an extension, NASM additionally supports the oh and $ prefixes for hexadecimal,
as well binary and octal floating-point, using the ob or oy and oo or aq prefixes, respectively.

Underscores to break up groups of digits are permitted in floating-point constants as well.

Some examples:

db -0.2 "Quarter precision"
dw -0.5 IEEE 754r/SSE5 half precision
dd 1.2 an easy one

)
)
>
dd 1.222_222_222 ; underscores are permitted
dd Ox1p+2 ; 1.0x272 = 4.0
dq Ox1p+32 5 1.0x2232 = 4 294 967 296.0

>

)

)

)

)

dq 1l.el0 10 000 000 000.0

dq l.e+10 synonymous with 1.el0

dq 1l.e-10 0.000 000 000 1

dt 3.141592653589793238462 pi

do 1.e+4000 IEEE 754r quad precision

The 8-bit "quarter-precision" floating-point format is sign:exponent:mantissa = 1:4:3 with an exponent
bias of 7. This appears to be the most frequently used 8-bit floating-point format, although it is not
covered by any formal standard. This is sometimes called a "minifloat."

The bfloat1i6 format is effectively a compressed version of the 32-bit single precision format, with a
reduced mantissa. It is effectively the same as truncating the 32-bit format to the upper 16 bits, except
for rounding. There is no Dx directive that corresponds to bfloat16 as it obviously has the same size as
the IEEE standard 16-bit half precision format, see however section 6.3.

The special operators are used to produce floating-point numbers in other contexts. They produce the
binary representation of a specific floating-point number as an integer, and can use anywhere integer
constants are used in an expression. __?float8em?__ and __?float80e?__ produce the 64-bit mantissa
and 16-bit exponent of an 80-bit floating-point number, and __?float1281?__ and __?float128h?__
produce the lower and upper 64-bit halves of a 128-bit floating-point number, respectively.

For example:

mov rax,__?float64?__(3.141592653589793238462)
... would assign the binary representation of pi as a 64-bit floating point number into rRaX. This is exactly
equivalent to:

mov rax,0x400921fb54442d18
NASM cannot do compile-time arithmetic on floating-point constants. This is because NASM is designed
to be portable - although it always generates code to run on x86 processors, the assembler itself can
run on any system with an ANSI C compiler. Therefore, the assembler cannot guarantee the presence of
a floating-point unit capable of handling the Intel number formats, and so for NASM to be able to do

floating arithmetic it would have to include its own complete set of floating-point routines, which
would significantly increase the size of the assembler for very little benefit.

The special tokens __?Infinity?__, __?QNaN?__ (or __?NaN?__) and __?SNaN?__ can be used to
generate infinities, quiet NaNs, and signalling NaNs, respectively. These are normally used as macros:

%define Inf __?Infinity?__
%define NaN __?QNaN?__

dq +1.5, -Inf, NaN ; Double-precision constants

The %use fp standard macro package contains a set of convenience macros. See section 6.3.

3.4.7

3.5

3.5.1

Packed BCD Constants

x87-style packed BCD constants can be used in the same contexts as 80-bit floating-point numbers.
They are suffixed with p or prefixed with ep, and can include up to 18 decimal digits.

As with other numeric constants, underscores can be used to separate digits.

For example:

dt 12_345_678_901_245_678p
dt -12_345_678_901_245_678p
dt +0p33

dt 33p

Expressions

Expressions in NASM are similar in syntax to those in C. Expressions are evaluated as 64-bit integers
which are then adjusted to the appropriate size.

NASM supports two special tokens in expressions, allowing calculations to involve the current assembly
position: the $ and $$ tokens. $ evaluates to the assembly position at the beginning of the line
containing the expression; so you can code an infinite loop using JMp $. $$ evaluates to the beginning
of the current section; so you can tell how far into the section you are by using ($-$3).

The arithmetic operators provided by NASM are listed here, in increasing order of precedence.

A boolean value is true if nonzero and false if zero. The operators which return a boolean value always
return 1 for true and 0 for false.

? ... :: Conditional Operator

The syntax of this operator, similar to the C conditional operator, is:
boolean ? trueval : falseval

This operator evaluates to trueval if boolean is true, otherwise to falseval.

Note that NASM allows ? characters in symbol names. Therefore, it is highly advisable to always put
spaces around the ? and : characters.

3.5.2 : | |: Boolean OR Operator

The || operator gives a boolean OR: it evaluates to 1 if both sides of the expression are nonzero,
otherwise 0.

3.5.3 : ~r: Boolean XOR Operator

The ~» operator gives a boolean XOR: it evaluates to 1 if any one side of the expression is nonzero,
otherwise 0.

3.5.4 : &&: Boolean AND Operator

The && operator gives a boolean AND: it evaluates to 1 if both sides of the expression is nonzero,
otherwise 0.

3.5.5 : Comparison Operators

NASM supports the following comparison operators:
« =or==compare for equality.

» I=or <> compare for inequality.

+ < compares signed less than.

« <=compares signed less than or equal.

41

3.5.6

3.5.7

3.5.8

3.5.9

3.5.10

3.5.11

3.5.12

42

« >compares signed greater than.

+ >=compares signed greather than or equal.

These operators evaluate to 0 for false or 1 for true.

+ <=>does a signed comparison, and evaluates to -1 for less than, 0 for equal, and 1 for greater than.

At this time, NASM does not provide unsigned comparison operators.

| : Bitwise OR Operator

The | operator gives a bitwise OR, exactly as performed by the or machine instruction.

A: Bitwise XOR Operator

» provides the bitwise XOR operation.

&: Bitwise AND Operator

& provides the bitwise AND operation.

Bit Shift Operators

<< gives a bit-shift to the left, just as it does in C. So 5<<3 evaluates to 5 times 8, or 40. >> gives an
unsigned (logical) bit-shift to the right; the bits shifted in from the left are set to zero.

<<< gives a bit-shift to the left, exactly equivalent to the << operator; it is included for completeness. >>>
gives an signed (arithmetic) bit-shift to the right; the bits shifted in from the left are filled with copies of
the most significant (sign) bit.

+and -: Addition and Subtraction Operators

The + and - operators do perfectly ordinary addition and subtraction.

Multiplication, Division and Modulo

* is the multiplication operator.

/ and // are both division operators: / is unsigned division and // is signed division.
Similarly, % and %% provide unsigned and signed modulo operators respectively.

Since the % character is used extensively by the macro preprocessor, you should ensure that both the
signed and unsigned modulo operators are followed by white space wherever they appear.

NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo operator.
On most systems it will match the signed division operator, such that:

b* (a//b)+ (a%%sb)=a (b 1= 0)
Unary Operators

The highest-priority operators in NASM’s expression grammar are those which only apply to one
argument. These are:

« - negates (2’s complement) its operand.

» +does nothing; it’s provided for symmetry with -.

» ~computes the bitwise negation (1’s complement) of its operand.

« ! isthe boolean negation operator. It evaluates to 1 if the argument is 0, otherwise 0.

+ SEG provides the segment address of its operand (explained in more detail in section 3.6).

3.6

3.7

+ A set of additional operators with leading and trailing double underscores are used to implement
the integer functions of the ifunc macro package, see section 6.4.

SEG and WRT

When writing large 16-bit programs, which must be split into multiple segments, it is often necessary to
be able to refer to the segment part of the address of a symbol. NASM supports the SEG operator to
perform this function.

The SeG operator evaluates to the preferred segment base of a symbol, defined as the segment base
relative to which the offset of the symbol makes sense. So the code

mov ax,seg symbol
mov es,ax
mov bx,symbol

will load ES:BX with a valid pointer to the symbol symbol.

Things can be more complex than this: since 16-bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one.
NASM lets you do this, by the use of the wrT (With Reference To) keyword. So you can do things like

mov ax,weird_seg ; weird_seg is a segment base
mov es,ax
mov bx,symbol wrt weird_seg

to load Es:Bx with a different, but functionally equivalent, pointer to the symbol symbol.

NASM supports far (inter-segment) calls and jumps by means of the syntax call segment:offset,
where segment and offset both represent immediate values. So to call a far procedure, you could code
either of

call (seg procedure) :procedure
call weird_seg: (procedure wrt weird_seg)

(The parentheses are included for clarity, to show the intended parsing of the above instructions. They
are not necessary in practice.)

NASM supports the syntax call far procedure as a synonym for the first of the above usages. Jwp
works identically to cALL in these examples.

To declare a far pointer to a data item in a data segment, you must code
dw symbol, seg symbol
NASM supports no convenient synonym for this, though you can always invent one using the macro
processor.
STRICT: Inhibiting Optimization

When assembling with the optimizer set to level 2 or higher (see section 2.1.24), NASM will use size
specifiers (BYTE, WORD, DWORD, QWORD, TWORD, OWORD, YWORD or ZwORD), but will give them the smallest
possible size. The keyword STRICT can be used to inhibit optimization and force a particular operand to
be emitted in the specified size. For example, with the optimizer on, and in BITS 16 mode,

push dword 33

is encoded in three bytes 66 6A 21, whereas

push strict dword 33
is encoded in six bytes, with a full dword immediate operand 66 68 21 60 00 o©o.

With the optimizer off, the same code (six bytes) is generated whether the sTRICT keyword was used or
not.

43

3.8

3.9

44

Critical Expressions

Although NASM has an optional multi-pass optimizer, there are some expressions which must be
resolvable on the first pass. These are called Critical Expressions.

The first pass is used to determine the size of all the assembled code and data, so that the second pass,
when generating all the code, knows all the symbol addresses the code refers to. So one thing NASM
can’t handle is code whose size depends on the value of a symbol declared after the code in question.
For example,

times (label-$) db 0
label: db ’Where am I?’

The argument to TIMES in this case could equally legally evaluate to anything at all; NASM will reject
this example because it cannot tell the size of the TIMES line when it first sees it. It will just as firmly
reject the slightly paradoxical code

times (label-$+1) db ©
label: db ’NOW where am I?’

in which any value for the TIMES argument is by definition wrong!

NASM rejects these examples by means of a concept called a critical expression, which is defined to be
an expression whose value is required to be computable in the first pass, and which must therefore
depend only on symbols defined before it. The argument to the TIMES prefix is a critical expression.

Local Labels

NASM gives special treatment to symbols beginning with a period. A label beginning with a single
period is treated as a local label, which means that it is associated with the previous non-local label. So,
for example:

labell ; some code

. loop
; some more code
jne . loop
ret

label2 ; some code

. loop
; some more code
jne . loop

ret

In the above code fragment, each JNE instruction jumps to the line immediately before it, because the
two definitions of .loop are kept separate by virtue of each being associated with the previous
non-local label.

This form of local label handling is borrowed from the old Amiga assembler DevPac; however, NASM
goes one step further, in allowing access to local labels from other parts of the code. This is achieved by
means of defining a local label in terms of the previous non-local label: the first definition of .1o0p
above is really defining a symbol called 1labeli.loop, and the second defines a symbol called
label2.loop. So, if you really needed to, you could write

label3 ; some more code
; and some more

jmp labell.loop

Sometimes it is useful - in a macro, for instance - to be able to define a label which can be referenced
from anywhere but which doesn’t interfere with the normal local-label mechanism. Such a label can’t be
non-local because it would interfere with subsequent definitions of, and references to, local labels; and
it can’t be local because the macro that defined it wouldn’t know the label’s full name. NASM therefore
introduces a third type of label, which is probably only useful in macro definitions: if a label begins with
the special prefix . . @, then it does nothing to the local label mechanism. So you could code

labell:
.local:
..@foo:
label2:
.local:

jmp

..@foo

3

3
)
)
)

)

a non-local label

this is really labell.local
this is a special symbol
another non-local label
this is really label2.local

; this will jump three lines up

NASM has the capacity to define other special symbols beginning with a double period: for example,
..start is used to specify the entry point in the obj output format (see section 8.4.6), . .1imagebase is
used to find out the offset from a base address of the current image in the wine4 output format (see
section 8.6.1). So just keep in mind that symbols beginning with a double period are special.

45

46

4.1
4.1.1

Chapter 4: The NASM Preprocessor

NASM contains a powerful macro processor, which supports conditional assembly, multi-level file
inclusion, two forms of macro (single-line and multi-line), and a ‘context stack’ mechanism for extra
macro power. Preprocessor directives all begin with a % sign.

The preprocessor collapses all lines which end with a backslash (\) character into a single line. Thus:

%define THIS_VERY_LONG_MACRO_NAME_IS_DEFINED_TO \
THIS_VALUE

will work like a single-line macro without the backslash-newline sequence.

Single-Line Macros
The Normal Way: %define

Single-line macros are defined using the %define preprocessor directive. The definitions work in a
similar way to C; so you can do things like
%define ctrl Ox1F &
%define param(a,b) ((a)+(a)x(b))
mov byte [param(2,ebx)], ctrl ’D’

which will expand to
mov byte [(2)+(2)*(ebx)], Ox1F & ’D’

When the expansion of a single-line macro contains tokens which invoke another macro, the expansion
is performed at invocation time, not at definition time. Thus the code

%define a(x) 1+b(x)
%define b(x) 2%Xx
mov ax,a(8)

will evaluate in the expected way to mov ax,1+2x8, even though the macro b wasn’t defined at the time
of definition of a.

Note that single-line macro argument list cannot be preceded by whitespace. Otherwise it will be
treated as an expansion. For example:

%define foo (a,b) ; no arguments, (a,b) is the expansion
%define bar(a,b) ; two arguments, empty expansion

Macros defined with %define are case sensitive: after %define foo bar, only foo will expand to bar: Foo
or Foo will not. By using %idefine instead of %define (the ‘i’ stands for ‘insensitive’) you can define all the
case variants of a macro at once, so that ¥idefine foo bar would cause foo, Foo, FOO, f00 and so on all
to expand to bar.

There is a mechanism which detects when a macro call has occurred as a result of a previous expansion
of the same macro, to guard against circular references and infinite loops. If this happens, the
preprocessor will only expand the first occurrence of the macro. Hence, if you code

%define a(x) 1+a(x)
mov ax,a(3)

the macro a(3) will expand once, becoming 1+a(3), and will then expand no further. This behaviour
can be useful: see section 10.1 for an example of its use.

You can overload single-line macros: if you write

47

4.1.2

48

%define foo(x) 1+x
%define foo(x,y) 1l+xxy

the preprocessor will be able to handle both types of macro call, by counting the parameters you pass;
so foo (3) will become 1+3 whereas foo (ebx,2) will become 1+ebxx2. However, if you define

%define foo bar

then no other definition of foo will be accepted: a macro with no parameters prohibits the definition of
the same name as a macro with parameters, and vice versa.

This doesn’t prevent single-line macros being redefined: you can perfectly well define a macro with
%define foo bar

and then re-define it later in the same source file with

%define foo baz

Then everywhere the macro foo is invoked, it will be expanded according to the most recent definition.
This is particularly useful when defining single-line macros with %assign (see section 4.1.8).

The following additional features were added in NASM 2.15:

It is possible to define an empty string instead of an argument name if the argument is never used. For
example:

%define ereg(foo,) e %+ foo
mov eax,ereg(dx,cx)

A single pair of parentheses is a subcase of a single, unused argument:

%define myreg() eax
mov edx,myreg()

This is similar to the behavior of the C preprocessor.
+ If declared with an =, NASM will evaluate the argument as an expression after expansion.

« If an argument declared with an &, a macro parameter will be turned into a quoted string after
expansion.

+ If declared with a +, it is a greedy or variadic parameter; it includes any subsequent commas and
parameters.

+ Ifdeclared with an !, NASM will not strip whitespace and braces (useful in conjunction with &).

For example:

%define xyzzy(=expr,&val) expr, str
%define plugh(x) xyzzy(x,x)
db plugh(3+5), “\0¢‘ ; Expands to: db 8, "3+5", ‘\0¢

You can pre-define single-line macros using the ‘-d’ option on the NASM command line: see section
2.1.20.

Resolving %define: %xdefine

To have a reference to an embedded single-line macro resolved at the time that the embedding macro
is defined, as opposed to when the embedding macro is expanded, you need a different mechanism to
the one offered by %define. The solution is to use %xdefine, or it’s case-insensitive counterpart
%ixdefine

Suppose you have the following code:

%define 1disTrue 1
%define 1disFalse isTrue
%define 1disTrue 0

4.1.3

4.1.4

vall: db isFalse
%define 1disTrue 1
val2: db isFalse

In this case, val1i is equal to 0, and val2 is equal to 1. This is because, when a single-line macro is
defined using %define, it is expanded only when it is called. As isFalse expands to isTrue, the
expansion will be the current value of isTrue. The first time it is called that is 0, and the second time it
is 1.

If you wanted isFalse to expand to the value assigned to the embedded macro isTrue at the time that
isFalse was defined, you need to change the above code to use %xdefine.

%xdefine isTrue 1
%xdefine isFalse isTrue
%xdefine isTrue 0
vall: db isFalse
%xdefine isTrue 1

val2: db isFalse

Now, each time that isFalse is called, it expands to 1, as that is what the embedded macro isTrue
expanded to at the time that isFalse was defined.

%xdefine and %ixdefine supports argument expansion exactly the same way that %define and
%idefine does.

Macro Indirection: %[...]

The %[...] construct can be used to expand macros in contexts where macro expansion would
otherwise not occur, including in the names other macros. For example, if you have a set of macros
named Foo16, Foo32 and Foo64, you could write:

mov ax,Foo%[__?BITS?__] ; The Foo value

to use the builtin macro __?B1TS?__ (see section 5.3) to automatically select between them. Similarly,
the two statements:

%xdefine Bar Quux ; Expands due to %xdefine
%define Bar %[Quux] ; Expands due to %[...]

have, in fact, exactly the same effect.

%[...] concatenates to adjacent tokens in the same way that multi-line macro parameters do, see
section 4.3.9 for details.

Concatenating Single Line Macro Tokens: %+

Individual tokens in single line macros can be concatenated, to produce longer tokens for later
processing. This can be useful if there are several similar macros that perform similar functions.

Please note that a space is required after %+, in order to disambiguate it from the syntax %+1 used in
multiline macros.

As an example, consider the following:

%define BDASTART 400h ; Start of BIOS data area
struc tBIOSDA ; its structure

.COMladdr RESW 1

.COM2addr RESW 1

; ..and so on
endstruc

49

Now, if we need to access the elements of tBIOSDA in different places, we can end up with:

mov ax,BDASTART + tBIOSDA.COMladdr
mov bx,BDASTART + tBIOSDA.COM2addr

This will become pretty ugly (and tedious) if used in many places, and can be reduced in size
significantly by using the following macro:
; Macro to access BIOS variables by their names (from tBDA):

%define BDA(x) BDASTART + tBIOSDA. %+ X

Now the above code can be written as:

mov ax,BDA(COMladdr)
mov bx ,BDA (COM2addr)

Using this feature, we can simplify references to a lot of macros (and, in turn, reduce typing errors).

4.1.5 The Macro Name Itself: ¥? and %22

The special symbols %? and %?? can be used to reference the macro name itself inside a macro
expansion, this is supported for both single-and multi-line macros. %? refers to the macro name as
invoked, whereas %22 refers to the macro name as declared. The two are always the same for
case-sensitive macros, but for case-insensitive macros, they can differ.

For example:

%imacro Foo 0
mov %?,%?7?
%endmacro

foo
FOO

will expand to:

mov foo,Foo
mov FOO,Foo

These tokens can be used for single-line macros if defined outside any multi-line macros. See below.

4.1.6 The Single-Line Macro Name: %x? and %x??

If the tokens %2 and %22 are used inside a multi-line macro, they are expanded before any directives are
processed. As a result,
%imacro Foo 0
%idefine Bar _%?
mov BAR,bAr
%endmacro

foo
mov eax,bar

will expand to:

mov _foo,_foo
mov eax,_foo

which may or may not be what you expected. The tokens %*? and %x2? behave like %? and %22 but are
only expanded inside single-line macros. Thus:
%imacro Foo 0
%idefine Bar _%x*?
mov BAR,bAr
%endmacro

foo
mov eax,bar

50

4.1.7

4.1.8

4.1.9

will expand to:

mov _BAR,_bAr
mov eax,_bar

The %x? can be used to make a keyword "disappear", for example in case a new instruction has been
used as a label in older code. For example:

%idefine pause $%x? ; Hide the PAUSE -[instruction

%x? and %x?? were introduced in NASM 2.15.04.

Undefining Single-Line Macros: %undef

Single-line macros can be removed with the %undef directive. For example, the following sequence:

%define foo bar
%undef foo

mov eax, foo
will expand to the instruction mov eax, foo, since after sundef the macro foo is no longer defined.

Macros that would otherwise be pre-defined can be undefined on the command-line using the ‘-u’
option on the NASM command line: see section 2.1.21.

Preprocessor Variables: %ass-ign

An alternative way to define single-line macros is by means of the %assign command (and its
case-insensitive counterpart %iassign, which differs from %assign in exactly the same way that
%idefine differs from %define).

%assign is used to define single-line macros which take no parameters and have a numeric value. This
value can be specified in the form of an expression, and it will be evaluated once, when the %assign
directive is processed.

Like %define, macros defined using %assign can be re-defined later, so you can do things like
%assign i i+l
to increment the numeric value of a macro.

%assign is useful for controlling the termination of %rep preprocessor loops: see section 4.5 for an
example of this. Another use for %assign is given in section 9.4 and section 10.1.

The expression passed to %assign is a critical expression (see section 3.8), and must also evaluate to a
pure number (rather than a relocatable reference such as a code or data address, or anything involving
aregister).

Defining Strings: %defstr

%defstr, and its case-insensitive counterpart %idefstr, define or redefine a single-line macro without
parameters but converts the entire right-hand side, after macro expansion, to a quoted string before
definition.

For example:
%defstr test TEST

is equivalent to
%define test ’TEST’

This can be used, for example, with the %! construct (see section 4.11.2):
%defstr PATH %!PATH ; The operating system PATH variable

51

4.1.10 Defining Tokens: %deftok

4.1.11

4.1.12

4.2

52

%deftok, and its case-insensitive counterpart %ideftok, define or redefine a single-line macro without
parameters but converts the second parameter, after string conversion, to a sequence of tokens.

For example:

%deftok test ’TEST’

is equivalent to
%define test TEST

Defining Aliases: %defalias

%defalias, and its case-insensitive counterpart %idefalias, define an alias to a macro, i.e. equivalent
of a symbolic link.

When used with various macro defining and undefining directives, it affects the aliased macro. This
functionality is intended for being able to rename macros while retaining the legacy names.

When an alias is defined, but the aliased macro is then undefined, the aliases can legitimately point to
nonexistent macros.

The alias can be undefined using the %undefalias directive. All aliases can be undefined using the
%clear defalias directive. Thisincludes backwards compatibility aliases defined by NASM itself.

To disable aliases without undefining them, use the %aliases off directive.
To check whether an alias is defined, regardless of the existence of the aliased macro, use %ifdefalias.

For example:

%defalias OLD NEW

; OLD and NEW both undefined
%define NEW 123

; OLD and NEW both 123
%undef OLD

;3 OLD and NEW both undefined
%define OLD 456

; OLD and NEW both 456
%undefalias OLD

; OLD undefined, NEW defined to 456

Conditional Comma Operator: %,

As of version 2.15, NASM has a conditional comma operator %, that expands to a comma unless
followed by a null expansion, which allows suppressing the comma before an empty argument. This is
especially useful with greedy single-line macros.

For example, all the expressions below are valid:

%define greedy(a,b,c+) a + 66 %, b x 3 %, c

db greedy(1,2) ; db 1 + 66, 2 x 3

db greedy(1,2,3) ; db 1 + 66, 2 * 3, 3

db greedy(1,2,3,4) ; db 1 + 66, 2 * 3, 3, 4

db greedy(1,2,3,4,5) ; db 1 + 66, 2 * 3, 3, 4, 5

String Manipulation in Macros

It’s often useful to be able to handle strings in macros. NASM supports a few simple string handling
macro operators from which more complex operations can be constructed.

All the string operators define or redefine a value (either a string or a numeric value) to a single-line
macro. When producing a string value, it may change the style of quoting of the input string or strings,
and possibly use \-escapes inside ¢<-quoted strings.

4.2.1

4.2.2

4.2.3

4.3

Concatenating Strings: %strcat

The %strcat operator concatenates quoted strings and assign them to a single-line macro.
For example:

%strcat alpha "Alpha: ", 12" screen’

... would assign the value *Alpha: 12" screen’ to alpha. Similarly:

%strcat beta ’"foo"\’, "’bar’"

...would assign the value <" foo"\\’bar’ ¢ t0 beta.

The use of commas to separate strings is permitted but optional.

String Length: %strlen

The %strlen operator assigns the length of a string to a macro. For example:
%strlen charcnt ’my string’

In this example, charcnt would receive the value 9, just as if an %assign had been used. In this example,
'my string’ was a literal string but it could also have been a single-line macro that expands to a string,
as in the following example:

%define sometext ’my string’
%strlen charcnt sometext

As in the first case, this would result in charcnt being assigned the value of 9.

Extracting Substrings: %substr

Individual letters or substrings in strings can be extracted using the %substr operator. An example of its
use is probably more useful than the description:

%substr mychar ’xyzw’ 1 equivalent to %define mychar ’x’

)
%substr mychar ’xyzw’ 2 ; equivalent to %define mychar ’y’
%substr mychar ’xyzw’ 3 ; equivalent to %define mychar ’z’
%substr mychar ’xyzw’ 2,2 ; equivalent to %define mychar ’yz’
%substr mychar ’xyzw’ 2,-1 ; equivalent to %define mychar ’yzw’
%substr mychar ’xyzw’ 2,-2 ; equivalent to %define mychar ’yz’

As with %strlen (see section 4.2.2), the first parameter is the single-line macro to be created and the
second is the string. The third parameter specifies the first character to be selected, and the optional
fourth parameter preceeded by comma) is the length. Note that the first index is 1, not 0 and the last
index is equal to the value that %strlen would assign given the same string. Index values out of range
result in an empty string. A negative length means "until N-1 characters before the end of string", i.e. -1
means until end of string, -2 until one character before, etc.

Multi-Line Macros: %macro

Multi-line macros are much more like the type of macro seen in MASM and TASM: a multi-line macro
definition in NASM looks something like this.

%macro prologue 1

push ebp

mov ebp,esp

sub esp,%l
%endmacro

This defines a C-like function prologue as a macro: so you would invoke the macro with a call such as:

myfunc: prologue 12

which would expand to the three lines of code

53

4.3.1

54

myfunc: push ebp
mov ebp,esp
sub esp,12

The number 1 after the macro name in the %macro line defines the number of parameters the macro
prologue expects to receive. The use of %1 inside the macro definition refers to the first parameter to
the macro call. With a macro taking more than one parameter, subsequent parameters would be
referred to as %2, %3 and so on.

Multi-line macros, like single-line macros, are case-sensitive, unless you define them using the
alternative directive %imacro.

If you need to pass a comma as part of a parameter to a multi-line macro, you can do that by enclosing
the entire parameter in braces. So you could code things like:

%macro silly 2

%2: db %1
%endmacro
silly ’a’, letter_a ; letter_a: db ’a’
silly ’ab’, string_ab ; string_ab: db ’ab’
silly {13,10}, crlf ; crlf: db 13,10

The behavior with regards to empty arguments at the end of multi-line macros before NASM 2.15 was
often very strange. For backwards compatibility, NASM attempts to recognize cases where the legacy
behavior would give unexpected results, and issues a warning, but largely tries to match the legacy
behavior. This can be disabled with the %pragma (see section 4.10.1):

%pragma preproc sane_empty_expansion
Overloading Multi-Line Macros

As with single-line macros, multi-line macros can be overloaded by defining the same macro name
several times with different numbers of parameters. This time, no exception is made for macros with no
parameters at all. So you could define

%macro prologue 0

push ebp
mov ebp,esp
%endmacro

to define an alternative form of the function prologue which allocates no local stack space.

Sometimes, however, you might want to ‘overload’ a machine instruction; for example, you might want
to define

%macro push 2

push %1
push %2
%endmacro

so that you could code

push ebx
push eax,ecx

; this line 1is not a macro call
; but this one is

Ordinarily, NASM will give a warning for the first of the above two lines, since push is now defined to be
a macro, and is being invoked with a number of parameters for which no definition has been given. The
correct code will still be generated, but the assembler will give a warning. This warning can be disabled
by the use of the -w-macro-params command-line option (see section 2.1.26).

4.3.2

4.3.3

Macro-Local Labels

NASM allows you to define labels within a multi-line macro definition in such a way as to make them
local to the macro call: so calling the same macro multiple times will use a different label each time.
You do this by prefixing %% to the label name. So you can invent an instruction which executes a ReT if
the z flag is set by doing this:

%macro retz 0

jnz %%skip
ret
%%skip:

%endmacro

You can call this macro as many times as you want, and every time you call it NASM will make up a
different ‘real’ name to substitute for the label %%sskip. The names NASM invents are of the form
..@2345.skip, where the number 2345 changes with every macro call. The ..@ prefix prevents
macro-local labels from interfering with the local label mechanism, as described in section 3.9. You
should avoid defining your own labels in this form (the . .e prefix, then a number, then another period)
in case they interfere with macro-local labels.

These labels are really macro-local tokens, and can be used for other purposes where a token unique to
each macro invocation is desired, e.g. to name single-line macros without using the context feature
(section 4.7.2).

Greedy Macro Parameters

Occasionally it is useful to define a macro which lumps its entire command line into one parameter
definition, possibly after extracting one or two smaller parameters from the front. An example might be
a macro to write a text string to a file in MS-DOS, where you might want to be able to write

writefile [filehandle],"hello, world",13,10
NASM allows you to define the last parameter of a macro to be greedy, meaning that if you invoke the

macro with more parameters than it expects, all the spare parameters get lumped into the last defined
one along with the separating commas. So if you code:

%macro writefile 2+

jmp %%endstr
%%str: db %2
%%endstr:
mov dx,%%str
mov cx,%%endstr-%%str
mov bx,%1
mov ah,0x40
int 0x21
%endmacro

then the example call to writefile above will work as expected: the text before the first comma,
[filehandle], is used as the first macro parameter and expanded when %1 is referred to, and all the
subsequent text is lumped into %2 and placed after the db.

The greedy nature of the macro is indicated to NASM by the use of the + sign after the parameter count
on the %¥macro line.

If you define a greedy macro, you are effectively telling NASM how it should expand the macro given
any number of parameters from the actual number specified up to infinity; in this case, for example,
NASM now knows what to do when it sees a call to writefile with 2, 3, 4 or more parameters. NASM
will take this into account when overloading macros, and will not allow you to define another form of
writefile taking 4 parameters (for example).

55

4.3.4

4.3.5

56

Of course, the above macro could have been implemented as a non-greedy macro, in which case the
call to it would have had to look like

writefile [filehandle], {"hello, world",13,10}

NASM provides both mechanisms for putting commas in macro parameters, and you choose which one
you prefer for each macro definition.

See section 7.3.1 for a better way to write the above macro.

Macro Parameters Range

NASM allows you to expand parameters via special construction %{x:y} where x is the first parameter
index and y is the last. Any index can be either negative or positive but must never be zero.

For example

%macro mpar 1-x
db %{3:5}
%endmacro

mpar 1,2,3,4,5,6
expands to 3,4,5 range.

Even more, the parameters can be reversed so that

%macro mpar 1-x
db %{5:3}
%endmacro

mpar 1,2,3,4,5,6
expands to 5,4,3 range.

But even this is not the last. The parameters can be addressed via negative indices so NASM will count
them reversed. The ones who know Python may see the analogue here.

%macro mpar 1-x
db %{-1:-3}
%endmacro

mpar 1,2,3,4,5,6
expandsto 6,5,4 range.
Note that NASM uses comma to separate parameters being expanded.

By the way, here is a trick - you might use the index %{-1:-1} which gives you the last argument passed
to a macro.

Default Macro Parameters

NASM also allows you to define a multi-line macro with a range of allowable parameter counts. If you
do this, you can specify defaults for omitted parameters. So, for example:

%macro die 0-1 "Painful program death has occurred."

writefile 2,%1

mov ax,0x4col
int 0x21
%endmacro

This macro (which makes use of the writefile macro defined in section 4.3.3) can be called with an
explicit error message, which it will display on the error output stream before exiting, or it can be called
with no parameters, in which case it will use the default error message supplied in the macro definition.

4.3.6

4.3.7

4.3.8

In general, you supply a minimum and maximum number of parameters for a macro of this type; the
minimum number of parameters are then required in the macro call, and then you provide defaults for
the optional ones. So if a macro definition began with the line

%macro foobar 1-3 eax,[ebx+2]

then it could be called with between one and three parameters, and %1 would always be taken from the
macro call. %2, if not specified by the macro call, would default to eax, and %3 if not specified would
default to [ebx+2].

You can provide extra information to a macro by providing too many default parameters:

%macro quux 1 something

This will trigger a warning by default; see section 2.1.26 for more information. When quux is invoked, it
receives not one but two parameters. something can be referred to as %2. The difference between
passing something this way and writing something in the macro body is that with this way something is
evaluated when the macro is defined, not when it is expanded.

You may omit parameter defaults from the macro definition, in which case the parameter default is
taken to be blank. This can be useful for macros which can take a variable number of parameters, since
the %o token (see section 4.3.6) allows you to determine how many parameters were really passed to
the macro call.

This defaulting mechanism can be combined with the greedy-parameter mechanism; so the die macro
above could be made more powerful, and more useful, by changing the first line of the definition to

%macro die 0-1+ "Painful program death has occurred.",13,10

The maximum parameter count can be infinite, denoted by *. In this case, of course, it is impossible to
provide a full set of default parameters. Examples of this usage are shown in section 4.3.8.

%0: Macro Parameter Counter

The parameter reference %o will return a numeric constant giving the number of parameters received,
that is, if %0 is n then %n is the last parameter. %0 is mostly useful for macros that can take a variable
number of parameters. It can be used as an argument to %rep (see section 4.5) in order to iterate
through all the parameters of a macro. Examples are given in section 4.3.8.

%00: Label Preceeding Macro

%00 will return the label preceeding the macro invocation, if any. The label must be on the same line as
the macro invocation, may be a local label (see section 3.9), and need not end in a colon.

If %00 is present anywhere in the macro body, the label itself will not be emitted by NASM. You can, of
course, put %00: explicitly at the beginning of your macro.

%rotate: Rotating Macro Parameters

Unix shell programmers will be familiar with the shift shell command, which allows the arguments
passed to a shell script (referenced as $1, $2 and so on) to be moved left by one place, so that the
argument previously referenced as $2 becomes available as $1, and the argument previously
referenced as $1 is no longer available at all.

NASM provides a similar mechanism, in the form of %rotate. As its name suggests, it differs from the
Unix shift in that no parameters are lost: parameters rotated off the left end of the argument list
reappear on the right, and vice versa.

%rotate is invoked with a single numeric argument (which may be an expression). The macro
parameters are rotated to the left by that many places. If the argument to %rotate is negative, the
macro parameters are rotated to the right.

So a pair of macros to save and restore a set of registers might work as follows:

57

4.3.9

58

%macro multipush 1-x*

%rep %0

push %1
%rotate 1
%endrep

%endmacro

This macro invokes the pusH instruction on each of its arguments in turn, from left to right. It begins by
pushing its first argument, %1, then invokes %rotate to move all the arguments one place to the left, so
that the original second argument is now available as %1. Repeating this procedure as many times as
there were arguments (achieved by supplying %0 as the argument to %rep) causes each argument in
turn to be pushed.

Note also the use of x as the maximum parameter count, indicating that there is no upper limit on the
number of parameters you may supply to the multipush macro.

It would be convenient, when using this macro, to have a pop equivalent, which didn’t require the
arguments to be given in reverse order. Ideally, you would write the multipush macro call, then
cut-and-paste the line to where the pop needed to be done, and change the name of the called macro
to multipop, and the macro would take care of popping the registers in the opposite order from the one
in which they were pushed.

This can be done by the following definition:
%macro multipop 1-*

%rep %0

%rotate -1

pop %1
%endrep

%endmacro

This macro begins by rotating its arguments one place to the right, so that the original last argument
appears as %1. This is then popped, and the arguments are rotated right again, so the second-to-last
argument becomes %1. Thus the arguments are iterated through in reverse order.

Concatenating Macro Parameters

NASM can concatenate macro parameters and macro indirection constructs on to other text
surrounding them. This allows you to declare a family of symbols, for example, in a macro definition. If,
for example, you wanted to generate a table of key codes along with offsets into the table, you could
code something like

%macro keytab_entry 2

keypos%1 equ $-keytab
db %2
%endmacro
keytab:

keytab_entry F1,128+1
keytab_entry F2,128+2
keytab_entry Return,13

which would expand to

keytab:

keyposF1 equ $-keytab
db 128+1

keyposF2 equ $-keytab
db 128+2

4.3.10

4.3.11

keyposReturn equ $-keytab
db 13

You can just as easily concatenate text on to the other end of a macro parameter, by writing %1foo.

If you need to append a digit to a macro parameter, for example defining labels foo1 and foo2 when
passed the parameter foo, you can’t code %11 because that would be taken as the eleventh macro
parameter. Instead, you must code %{1}1, which will separate the first 1 (giving the number of the
macro parameter) from the second (literal text to be concatenated to the parameter).

This concatenation can also be applied to other preprocessor in-line objects, such as macro-local labels
(section 4.3.2) and context-local labels (section 4.7.2). In all cases, ambiguities in syntax can be resolved
by enclosing everything after the % sign and before the literal text in braces: so %{%foo}bar
concatenates the text bar to the end of the real name of the macro-local label %%foo. (This is
unnecessary, since the form NASM uses for the real names of macro-local labels means that the two
usages %{%foo}bar and %%foobar would both expand to the same thing anyway; nevertheless, the
capability is there.)

The single-line macro indirection construct, %[...] (section 4.1.3), behaves the same way as macro
parameters for the purpose of concatenation.

See also the %+ operator, section 4.1.4.

Condition Codes as Macro Parameters

NASM can give special treatment to a macro parameter which contains a condition code. For a start,
you can refer to the macro parameter %1 by means of the alternative syntax %+1, which informs NASM
that this macro parameter is supposed to contain a condition code, and will cause the preprocessor to
report an error message if the macro is called with a parameter which is not a valid condition code.

Far more usefully, though, you can refer to the macro parameter by means of %-1, which NASM will
expand as the inverse condition code. So the retz macro defined in section 4.3.2 can be replaced by a
general conditional-return macro like this:

%macro retc 1
j%-1 %%skip
ret
%%skip:
%endmacro

This macro can now be invoked using calls like retc ne, which will cause the conditional-jump
instruction in the macro expansion to come out as JE, or retc po which will make the jump a JPE.

The %+1 macro-parameter reference is quite happy to interpret the arguments cxz and Ecxz as valid
condition codes; however, %-1 will report an error if passed either of these, because no inverse
condition code exists.

Disabling Listing Expansion

When NASM is generating a listing file from your program, it will generally expand multi-line macros by
means of writing the macro call and then listing each line of the expansion. This allows you to see
which instructions in the macro expansion are generating what code; however, for some macros this
clutters the listing up unnecessarily.

NASM therefore provides the .nolist qualifier, which you can include in a macro definition to inhibit
the expansion of the macro in the listing file. The .nolist qualifier comes directly after the number of
parameters, like this:

%macro foo 1.nolist

Or like this:

59

4.3.12

4.4

44.1

60

%macro bar 1-5+.nolist a,b,c,d,e,f,g,h
Undefining Multi-Line Macros: %unmacro

Multi-line macros can be removed with the %unmacro directive. Unlike the %undef directive, however,
%unmacro takes an argument specification, and will only remove exact matches with that argument
specification.

For example:

%macro foo 1-3

; Do something
%endmacro
%unmacro foo 1-3

removes the previously defined macro foo, but

%macro bar 1-3

; Do something
%endmacro
%unmacro bar 1

does not remove the macro bar, since the argument specification does not match exactly.

Conditional Assembly

Similarly to the C preprocessor, NASM allows sections of a source file to be assembled only if certain
conditions are met. The general syntax of this feature looks like this:
%if<condition>
; some code which only appears if <condition> is met
%elif<condition2>
; only appears if <condition> 1is not met but <condition2> 1is
%else
; this appears if neither <condition> nor <condition2> was met
%endif
The inverse forms %i fn and %el4 fn are also supported.
The %else clause is optional, as is the %el4 f clause. You can have more than one %eli f clause as well.

There are a number of variants of the %1 f directive. Each has its corresponding %elif, %ifn, and %elifn
directives; for example, the equivalents to the %1 fdef directive are %eli fdef, %ifndef, and %elifndef.

%ifdef: Testing Single-Line Macro Existence

Beginning a conditional-assembly block with the line %ifdef MACRO will assemble the subsequent code
if, and only if, a single-line macro called MACRO is defined. If not, then the %el1 f and %else blocks (if any)
will be processed instead.

For example, when debugging a program, you might want to write code such as

; perform some function
%ifdef DEBUG

writefile 2,"Function performed successfully",13,10
%endif

; go and do something else

Then you could use the command-line option -dDEBUG to create a version of the program which
produced debugging messages, and remove the option to generate the final release version of the
program.

You can test for a macro not being defined by using %ifndef instead of %ifdef. You can also test for
macro definitions in %el4 f blocks by using %elifdef and %eli fndef.

4.4.2

4.4.3

4.4.4

4.4.5

%ifmacro: Testing Multi-Line Macro Existence

The %ifmacro directive operates in the same way as the %ifdef directive, except that it checks for the
existence of a multi-line macro.

For example, you may be working with a large project and not have control over the macros in a library.
You may want to create a macro with one name if it doesn’t already exist, and another name if one with
that name does exist.

The %ifmacro is considered true if defining a macro with the given name and number of arguments
would cause a definitions conflict. For example:

%ifmacro MyMacro 1-3
%error "MyMacro 1-3" causes a conflict with an existing macro.
%else
%macro MyMacro 1-3
; insert code to define the macro
%endmacro
%endif

This will create the macro "MyMacro 1-3" if no macro already exists which would conflict with it, and
emits a warning if there would be a definition conflict.

You can test for the macro not existing by using the %ifnmacro instead of %ifmacro. Additional tests can
be performed in %eli f blocks by using %eli fmacro and %el1fnmacro.

%ifctx: Testing the Context Stack

The conditional-assembly construct %ifctx will cause the subsequent code to be assembled if and only
if the top context on the preprocessor’s context stack has the same name as one of the arguments. As
with %1 fdef, the inverse and %el4 f forms %1 fnctx, %elifctx and %elifnctx are also supported.

For more details of the context stack, see section 4.7. For a sample use of %1 fctx, see section 4.7.6.

%1 f: Testing Arbitrary Numeric Expressions

The conditional-assembly construct %if expr will cause the subsequent code to be assembled if and
only if the value of the numeric expression expr is non-zero. An example of the use of this feature is in
deciding when to break out of a %rep preprocessor loop: see section 4.5 for a detailed example.

The expression given to %1 f, and its counterpart el f, is a critical expression (see section 3.8).
Like other %1 f constructs, %if has a counterpart el f, and negative forms %i fn and %eli fn.
%ifidn and %ifidni: Testing Exact Text Identity

The construct %ifidn textl,text2 will cause the subsequent code to be assembled if and only if text1
and text2, after expanding single-line macros, are identical pieces of text. Differences in white space
are not counted.

%ifidni is similar to %ifidn, but is case-insensitive.

For example, the following macro pushes a register or number on the stack, and allows you to treat 1P
as areal register:

%macro pushparam 1

%ifidni %1,1p
call %%Llabel

61

4.4.6

4.4.7

62

%%label:
%else

push %1
%endif

%endmacro

Like other %if constructs, %ifidn has a counterpart %elifidn, and negative forms %ifnidn and
%elifnidn. Similarly, %ifidni has counterparts %elifidni, %ifnidni and %elifnidni.

%ifid, %ifnum, %ifstr: Testing Token Types

Some macros will want to perform different tasks depending on whether they are passed a number, a
string, or an identifier. For example, a string output macro might want to be able to cope with being
passed either a string constant or a pointer to an existing string.

The conditional assembly construct %1 fid, taking one parameter (which may be blank), assembles the
subsequent code if and only if the first token in the parameter exists and is an identifier. $ and $$ are not
considered identifiers by %1ifid.

% fnum works similarly, but tests for the token being an integer numeric constant (not an expression!)
possibly preceeded by + or -; %1 fstr tests for it being a quoted string.

For example, the writefile macro defined in section 4.3.3 can be extended to take advantage of
%ifstrin the following fashion:

%macro writefile 2-3+

%ifstr %2

jmp %%endstr
%if %0 = 3
%%str: db %2 ,%3
%else
%%str: db %2
%endif
%%endstr: mov dx,%%str
mov cx,%%endstr-%%str
%else
mov dx, %2
mov CcX,%3
%endif
mov bx,%1
mov ah,0x40
int 0x21
%endmacro

Then the writefile macro can cope with being called in either of the following two ways:

writefile [file], strpointer, length
writefile [file], "hello", 13, 10

In the first, strpointer is used as the address of an already-declared string, and length is used as its
length; in the second, a string is given to the macro, which therefore declares it itself and works out the
address and length for itself.

Note the use of %if inside the %ifstr: this is to detect whether the macro was passed two arguments
(so the string would be a single string constant, and db %2 would be adequate) or more (in which case,
all but the first two would be lumped together into %3, and db %2,%3 would be required).

The usual %el4f..., %ifn..., and %eli fn... versions exist for each of %ifid, %ifnumand %ifstr.
%iftoken: Test for a Single Token

Some macros will want to do different things depending on if it is passed a single token (e.g. paste it to
something else using %+) versus a multi-token sequence.

4.4.8

4.4.9

4.5

The conditional assembly construct %iftoken assembles the subsequent code if and only if the
expanded parameters consist of exactly one token, possibly surrounded by whitespace.

For example:

%iftoken 1

will assemble the subsequent code, but

%iftoken -1

will not, since -1 contains two tokens: the unary minus operator -, and the number 1.

The usual %el1 ftoken, %ifntoken, and %eli fntoken variants are also provided.
%ifempty: Test for Empty Expansion

The conditional assembly construct %ifempty assembles the subsequent code if and only if the
expanded parameters do not contain any tokens at all, whitespace excepted.

The usual %el4 fempty, %ifnempty, and %eli fnempty variants are also provided.

%ifenv: Test If Environment Variable Exists

The conditional assembly construct %ifenv assembles the subsequent code if and only if the
environment variable referenced by the %! variable directive exists.

The usual %eli fenv, %ifnenv, and %el4 fnenv variants are also provided.

Just as for %! variable the argument should be written as a string if it contains characters that would not
be legal in an identifier. See section 4.11.2.

Preprocessor Loops: %rep

NASM’s TIMES prefix, though useful, cannot be used to invoke a multi-line macro multiple times,
because it is processed by NASM after macros have already been expanded. Therefore NASM provides
another form of loop, this time at the preprocessor level: %rep.

The directives %rep and %endrep (%rep takes a numeric argument, which can be an expression; %endrep
takes no arguments) can be used to enclose a chunk of code, which is then replicated as many times as
specified by the preprocessor:

%assign 1 0
%rep 64
inc word [table+2x*1]
%assign i i+l
%endrep

This will generate a sequence of 64 INC instructions, incrementing every word of memory from [table]
to [table+126].

For more complex termination conditions, or to break out of a repeat loop part way along, you can use
the %exitrep directive to terminate the loop, like this:

fibonacci:
%assign 1 0
%assign j 1
%rep 100
%if j > 65535
%exitrep
%endif
j .
%assign
%assign
%endrep

dw

%assign k j+i
i]
j k

63

4.6

4.6.1

4.6.2

4.6.3

64

fib_number equ ($-fibonacci)/2

This produces a list of all the Fibonacci numbers that will fit in 16 bits. Note that a maximum repeat
count must still be given to %rep. This is to prevent the possibility of NASM getting into an infinite loop
in the preprocessor, which (on multitasking or multi-user systems) would typically cause all the system
memory to be gradually used up and other applications to start crashing.

Note the maximum repeat count is limited to the value specified by the --1imit-rep option or
%pragma limit rep, see section 2.1.31.

Source Files and Dependencies

These commands allow you to split your sources into multiple files.

%include: Including Other Files
Using, once again, a very similar syntax to the C preprocessor, NASM’s preprocessor lets you include
other source files into your code. This is done by the use of the %include directive:

%include "macros.mac"
will include the contents of the file macros.mac into the source file containing the %include directive.

Include files are searched for in the current directory (the directory you’re in when you run NASM, as
opposed to the location of the NASM executable or the location of the source file), plus any directories
specified on the NASM command line using the -1 option.

The standard C idiom for preventing a file being included more than once is just as applicable in NASM:
if the file macros.mac has the form

%ifndef MACROS_MAC

%define MACROS_MAC

; now define some macros
%endif

then including the file more than once will not cause errors, because the second time the file is
included nothing will happen because the macro MACROS_MAC will already be defined.

You can force a file to be included even if there is no %include directive that explicitly includes it, by
using the -p option on the NASM command line (see section 2.1.19).

%pathsearch: Search the Include Path

The %pathsearch directive takes a single-line macro name and a filename, and declare or redefines the
specified single-line macro to be the include-path-resolved version of the filename, if the file exists
(otherwise, it is passed unchanged.)

For example,

%pathsearch MyFoo "foo.bin"

... with -Ibins/ in the include path may end up defining the macro MyFoo to be "bins/foo.bin".

%depend: Add Dependent Files

The %depend directive takes a filename and adds it to the list of files to be emitted as dependency
generation when the -M options and its relatives (see section 2.1.5) are used. It produces no output.

This is generally used in conjunction with %pathsearch. For example, a simplified version of the
standard macro wrapper for the INCBIN directive looks like:

%imacro incbin 1-2+ 0

%pathsearch dep %1

%depend dep

4.6.4

4.7

4.7.1

4.7.2

incbin dep,%2
%endmacro

This first resolves the location of the file into the macro dep, then adds it to the dependency lists, and
finally issues the assembler-level INCBIN directive.

%use: Include Standard Macro Package

The %use directive is similar to %include, but rather than including the contents of a file, it includes a
named standard macro package. The standard macro packages are part of NASM, and are described in
chapter 6.

Unlike the %include directive, package names for the %use directive do not require quotes, but quotes
are permitted. In NASM 2.04 and 2.05 the unquoted form would be macro-expanded; this is no longer
true. Thus, the following lines are equivalent:

%use altreg
%use ’altreg’

Standard macro packages are protected from multiple inclusion. When a standard macro package is
used, a testable single-line macro of the form __?USE_package?__is also defined, see section 5.7.

The Context Stack

Having labels that are local to a macro definition is sometimes not quite powerful enough: sometimes
you want to be able to share labels between several macro calls. An example might be a REPEAT ... UNTIL
loop, in which the expansion of the REPEAT macro would need to be able to refer to a label which the
UNTIL macro had defined. However, for such a macro you would also want to be able to nest these
loops.

NASM provides this level of power by means of a context stack. The preprocessor maintains a stack of
contexts, each of which is characterized by a name. You add a new context to the stack using the %push
directive, and remove one using %pop. You can define labels that are local to a particular context on the
stack.

%push and %pop: Creating and Removing Contexts

The %push directive is used to create a new context and place it on the top of the context stack. %push
takes an optional argument, which is the name of the context. For example:

%push foobar

This pushes a new context called foobar on the stack. You can have several contexts on the stack with
the same name: they can still be distinguished. If no name is given, the context is unnamed (this is
normally used when both the %push and the %pop are inside a single macro definition.)

The directive %pop, taking one optional argument, removes the top context from the context stack and
destroys it, along with any labels associated with it. If an argument is given, it must match the name of
the current context, otherwise it will issue an error.

Context-Local Labels

Just as the usage %%foo defines a label which is local to the particular macro call in which it is used, the
usage %$foo is used to define a label which is local to the context on the top of the context stack. So the
REPEAT and UNTIL example given above could be implemented by means of:

%macro repeat 0

%push repeat
%Sbegin:

%endmacro

%macro until 1

65

4.7.3

4.7.4

66

j%-1 %Sbegin
%pop

%endmacro

and invoked by means of, for example,

mov cx,string
repeat

add cx,3
scasb

until e

which would scan every fourth byte of a string in search of the byte in AL.

If you need to define, or access, labels local to the context below the top one on the stack, you can use
%$$foo, or %$$3foo for the context below that, and so on.

Context-Local Single-Line Macros

NASM also allows you to define single-line macros which are local to a particular context, in just the
same way:

%define %Slocalmac 3

will define the single-line macro %$1localmac to be local to the top context on the stack. Of course, after
a subsequent %push, it can then still be accessed by the name %$$1ocalmac.

Context Fall-Through Lookup (deprecated)

Context fall-through lookup (automatic searching of outer contexts) is a feature that was added in
NASM version 0.98.03. Unfortunately, this feature is unintuitive and can result in buggy code that would
have otherwise been prevented by NASM’s error reporting. As a result, this feature has been deprecated.
NASM version 2.09 will issue a warning when usage of this deprecated feature is detected. Starting with
NASM version 2.10, usage of this deprecated feature will simply result in an expression syntax error.

An example usage of this deprecated feature follows:

%macro ctxthru 0
%push ctxl
%assign %Sexternal 1
%push ctx2
%assign %Sinternal 1
mov eax, %Sexternal
mov eax, %S$internal
%pop
%pop
%endmacro

As demonstrated, %$external is being defined in the ctx1 context and referenced within the ctx2
context. With context fall-through lookup, referencing an undefined context-local macro like this
implicitly searches through all outer contexts until a match is made or isn’t found in any context. As a
result, ssexternal referenced within the ctx2 context would implicitly use %$external as defined in
ctx1. Most people would expect NASM to issue an error in this situation because %$external was never
defined within ctx2 and also isn’t qualified with the proper context depth, %$$external.

Here is a revision of the above example with proper context depth:

%macro ctxthru 0
%push ctxl
%assign %Sexternal 1
%push ctx2
%assign %Sinternal 1
mov eax, %$Sexternal
mov eax, %S$internal

4.7.5

4.7.6

%pop
%pop
%endmacro

As demonstrated, %$externatl is still being defined in the ctx1 context and referenced within the ctx2
context. However, the reference to %$external within ctx2 has been fully qualified with the proper
context depth, %$sexternatl, and thus is no longer ambiguous, unintuitive or erroneous.

%repl: Renaming a Context

If you need to change the name of the top context on the stack (in order, for example, to have it
respond differently to %ifctx), you can execute a %pop followed by a %push; but this will have the side
effect of destroying all context-local labels and macros associated with the context that was just
popped.

NASM provides the directive %repl, which replaces a context with a different name, without touching
the associated macros and labels. So you could replace the destructive code

%pop
%push newname

with the non-destructive version %repl newname.
Example Use of the Context Stack: Block IFs

This example makes use of almost all the context-stack features, including the conditional-assembly
construct %ifctx, to implement a block IF statement as a set of macros.

%macro if 1

%push if
j%-1 %S$ifnot

%endmacro
%macro else 0

%ifctx if
%repl else

jmp %$1fend
%$ifnot:
%else
%error "expected ‘if’ before ‘else’"
%endif
%endmacro

%macro endif 0

%ifctx if
%$ifnot:
%pop
%elifctx else
%$ifend:
%pop
%else
%error "expected ‘if’ or ‘else’ before ‘endif’"
%endif

%endmacro

This code is more robust than the REPEAT and UNTIL macros given in section 4.7.2, because it uses
conditional assembly to check that the macros are issued in the right order (for example, not calling
endif before if) and issues a %error if they’re not.

67

4.8

4.8.1

68

In addition, the endif macro has to be able to cope with the two distinct cases of either directly
following an +if, or following an else. It achieves this, again, by using conditional assembly to do
different things depending on whether the context on top of the stack is i f or else.

The else macro has to preserve the context on the stack, in order to have the %$1 fnot referred to by the
if macro be the same as the one defined by the endif macro, but has to change the context’s name so
that endif will know there was an intervening else. It does this by the use of %rept.

A sample usage of these macros might look like:

cmp ax,bx
if ae
cmp bx , cx
if ae
mov ax,cx
else
mov ax,bx
endif
else
cmp ax,cx
if ae
mov ax,cx
endif
endif

The block-IF macros handle nesting quite happily, by means of pushing another context, describing
the inner i, on top of the one describing the outer if; thus else and endif always refer to the last
unmatched i f or else.

Stack Relative Preprocessor Directives

The following preprocessor directives provide a way to use labels to refer to local variables allocated on
the stack.

+ %arg (see section 4.8.1)

+ %stacksize (see section 4.8.2)
+ %local (see section 4.8.3)
%arg Directive

The %arg directive is used to simplify the handling of parameters passed on the stack. Stack based
parameter passing is used by many high level languages, including C, C++ and Pascal.

While NASM has macros which attempt to duplicate this functionality (see section 9.4.5), the syntax is
not particularly convenient to use and is not TASM compatible. Here is an example which shows the use
of %arg without any external macros:

some_function:

%push mycontext ; save the current context
%stacksize large ; tell NASM to use bp
%arg i:word, j_ptr:word
mov ax, [i]
mov bx, [j_ptr]
add ax, [bx]
ret
%pop ; restore original context

4.8.2

4.8.3

This is similar to the procedure defined in section 9.4.5 and adds the value in i to the value pointed to
by j_ptr and returns the sum in the ax register. See section 4.7.1 for an explanation of push and pop and
the use of context stacks.

%stacksize Directive

The %stacksize directive is used in conjunction with the %arg (see section 4.8.1) and the %local (see
section 4.8.3) directives. It tells NASM the default size to use for subsequent %arg and %local directives.
The %stacksize directive takes one required argument which is one of flat, flaté4, large or small.

%stacksize flat

This form causes NASM to use stack-based parameter addressing relative to ebp and it assumes that a
near form of call was used to get to this label (i.e. that eip is on the stack).

%stacksize flat64

This form causes NASM to use stack-based parameter addressing relative to rbp and it assumes that a
near form of call was used to get to this label (i.e. that rip is on the stack).

%stacksize large

This form uses bp to do stack-based parameter addressing and assumes that a far form of call was used
to get to this address (i.e. that ip and cs are on the stack).

%stacksize small

This form also uses bp to address stack parameters, but it is different from large because it also
assumes that the old value of bp is pushed onto the stack (i.e. it expects an ENTER instruction). In other
words, it expects that bp, ip and cs are on the top of the stack, underneath any local space which may
have been allocated by ENTER. This form is probably most useful when used in combination with the
%local directive (see section 4.8.3).

%local Directive

The %local directive is used to simplify the use of local temporary stack variables allocated in a stack
frame. Automatic local variables in C are an example of this kind of variable. The %local directive is
most useful when used with the %stacksize (see section 4.8.2 and is also compatible with the %arg
directive (see section 4.8.1). It allows simplified reference to variables on the stack which have been
allocated typically by using the ENTER instruction. An example of its use is the following:

silly_swap:
%push mycontext ; save the current context
%stacksize small ; tell NASM to use bp
%assign %Slocalsize 0 ; see text for explanation

%local old_ax:word, old_dx:word

enter %$localsize,0 ; see text for explanation
mov [old_ax],ax ; swap ax & bx
mov [old_dx],dx ; and swap dx & cx
mov ax,bx
mov dx,cx
mov bx, [old_ax]
mov cx, [old_dx]
leave ; restore old bp
ret H
%pop ; restore original context

The %$localsize variable is used internally by the %local directive and must be defined within the
current context before the %local directive may be used. Failure to do so will result in one expression
syntax error for each %local variable declared. It then may be used in the construction of an
appropriately sized ENTER instruction as shown in the example.

69

4.9 Reporting User-Defined Errors: %error, %warning, %fatal

4.10

70

The preprocessor directive %error will cause NASM to report an error if it occurs in assembled code. So
if other users are going to try to assemble your source files, you can ensure that they define the right
macros by means of code like this:
%ifdef F1
; do some setup
%elifdef F2
; do some different setup
%else
%error "Neither F1 nor F2 was defined."
%endif

Then any user who fails to understand the way your code is supposed to be assembled will be quickly
warned of their mistake, rather than having to wait until the program crashes on being run and then
not knowing what went wrong.

Similarly, ¥warning issues a warning, but allows assembly to continue:

%ifdef F1
; do some setup
%elifdef F2
; do some different setup
%else
%warning "Neither F1 nor F2 was defined, assuming F1."
%define F1
%endif

%error and %warning are issued only on the final assembly pass. This makes them safe to use in
conjunction with tests that depend on symbol values.

%fatal terminates assembly immediately, regardless of pass. This is useful when there is no point in
continuing the assembly further, and doing so is likely just going to cause a spew of confusing error
messages.

It is optional for the message string after %error, %warning or %fatal to be quoted. If it is not, then
single-line macros are expanded in it, which can be used to display more information to the user. For
example:

%if foo > 64

%assign foo_over foo-64

%error foo is foo_over bytes too large
%endif

%pragma: Setting Options

The %pragma directive controls a number of options in NASM. Pragmas are intended to remain
backwards compatible, and therefore an unknown %pragma directive is not an error.

The various pragmas are documented with the options they affect.

The general structure of a NASM pragma is:

%pragma namespace directive [arguments...]

Currently defined namespaces are:

+ dgnore: this %pragma is unconditionally ignored.

* preproc: preprocessor, see section 4.10.1.

« limit: resource limits, see section 2.1.31.

+ asm: the parser and assembler proper. Currently no such pragmas are defined.

+ list: listing options, see section 2.1.4.

4.10.1

4.11
4.11.1

+ file: general file handling options. Currently no such pragmas are defined.
+ input: input file handling options. Currently no such pragmas are defined.
+ output: output format options.

+ debug: debug format options.

In addition, the name of any output or debug format, and sometimes groups thereof, also constitue
%pragma namespaces. The namespaces output and debug simply refer to any output or debug format,
respectively.

For example, to prepend an underscore to global symbols regardless of the output format (see section
7.10):

%pragma output gprefix _
... whereas to prepend an underscore to global symbols only when the output is either win32 or wine4:

%pragma win gprefix _
Preprocessor Pragmas
The only preprocessor %pragma defined in NASM 2.15 is:

+ %pragma preproc sane_empty_expansion: disables legacy compatibility handling of braceless empty
arguments to multi-line macros. See section 4.3 and section 2.1.26.

Other Preprocessor Directives
%Lline Directive

The %line directive is used to notify NASM that the input line corresponds to a specific line number in
another file. Typically this other file would be an original source file, with the current NASM input being
the output of a pre-processor. The %line directive allows NASM to output messages which indicate the
line number of the original source file, instead of the file that is being read by NASM.

This preprocessor directive is not generally used directly by programmers, but may be of interest to
preprocessor authors. The usage of the %1ine preprocessor directive is as follows:

%Lline nnn[+mmm] [filename]

In this directive, nnn identifies the line of the original source file which this line corresponds to. mmm is an
optional parameter which specifies a line increment value; each line of the input file read in is
considered to correspond to mmm lines of the original source file. Finally, filename is an optional
parameter which specifies the file name of the original source file. It may be a quoted string, in which
case any additional argument after the quoted string will be ignored.

After reading a %1ine preprocessor directive, NASM will report all file name and line numbers relative to
the values specified therein.

If the command line option --no-1l1ne is given, all %1ine directives are ignored. This may be useful for
debugging preprocessed code. See section 2.1.33.

Starting in NASM 2.15, %l1ine directives are processed before any other processing takes place.

For compatibility with the output from some other preprocessors, including many C preprocessors, a #
character followed by whitespace at the very beginning of a line is also treated as a %line directive,
except that double quotes surrounding the filename are treated like NASM backquotes, with \-escaped
sequences decoded.

71

4.11.2 %!variable: Read an Environment Variable.

4.11.3

72

The %tvariable directive makes it possible to read the value of an environment variable at assembly
time. This could, for example, be used to store the contents of an environment variable into a string,
which could be used at some other point in your code.

For example, suppose that you have an environment variable Foo, and you want the contents of Foo to
be embedded in your program as a quoted string. You could do that as follows:

%defstr FOO %! FOO
See section 4.1.9 for notes on the %defstr directive.

If the name of the environment variable contains non-identifier characters, you can use string quotes to
surround the name of the variable, for example:

%defstr C_colon %1°C:?
%clear: Clear All Macro Definitions

The directive %clear clears all definitions of a certain type, including the ones defined by NASM itself.
This can be useful when preprocessing non-NASM code, or to drop backwards compatibility aliases.

The syntax is:

%clear [global]|context] type...
... where context indicates that this applies to context-local macros only; the default is global.
type can be one or more of:
+ define single-line macros
+ defalias single-line macro aliases (useful to remove backwards compatibility aliases)
¢ alldefine Same as define defalias
+ macro multi-line macros
« allsame asalldefine macro (default)

In NASM 2.14 and earlier, only the single syntax %clear was supported, which is equivalent to
%clear global all.

5.1

5.1.1

5.1.2

5.2

Chapter 5: Standard Macros

NASM defines a set of standard macros, which are already defined when it starts to process any source
file. If you really need a program to be assembled with no pre-defined macros, you can use the %clear
directive to empty the preprocessor of everything but context-local preprocessor variables and
single-line macros, see section 4.11.3.

Most user-level directives (see chapter 7) are implemented as macros which invoke primitive directives;
these are described in chapter 7. The rest of the standard macro set is described here.

For compability with NASM versions before NASM 2.15, most standard macros of the form __?foo?__
have aliases of form __foo__ (see section 4.1.11). These can be removed with the directive
%clear defalias.

NASM Version Macros

The single-line macros __?NASM_MAJOR?__, __?NASM_MINOR?__, __?NASM_SUBMINOR?__ and
__?NASM_PATCHLEVEL?__ expand to the major, minor, subminor and patch level parts of the version
number of NASM being used. So, under NASM 0.98.32p1 for example, __?NASM_MAJOR?__ would be
defined to be 0, __?NASM_MINOR?__ would be defined as 98, __?NASM_SUBMINOR?__ would be defined to
32,and __?NASM_PATCHLEVEL?__ would be defined as 1.

) ——

Additionally, the macro __?NASM_SNAPSHOT?__ is defined for automatically generated snapshot releases
only.

__?NASM_VERSION_ID?__: NASM Version ID

The single-line macro __?NASM_VERSION_ID?__ expands to a dword integer representing the full version
number of the version of nasm being used. The value is the equivalent to __?NASM_MAJOR?__,
__?NASM_MINOR?__, __?NASM_SUBMINOR?__ and __?NASM_PATCHLEVEL?__ concatenated to produce a
single doubleword. Hence, for 0.98.32p1, the returned number would be equivalent to:

dd 0x00622001
or
db 1,32,98,0
Note that the above lines are generate exactly the same code, the second line is used just to give an
indication of the order that the separate values will be present in memory.
__?NASM_VER?__: NASM Version String

The single-line macro __?NASM_VER?__ expands to a string which defines the version number of nasm
being used. So, under NASM 0.98.32 for example,

db __?NASM_VER?__

would expand to
db "9.98.32"

__?FILE?__and __?LINE?__:File Name and Line Number

Like the C preprocessor, NASM allows the user to find out the file name and line number containing the
current instruction. The macro __?FILE?__ expands to a string constant giving the name of the current
input file (which may change through the course of assembly if %include directives are used), and
__?LINE?__expands to a numeric constant giving the current line number in the input file.

These macros could be used, for example, to communicate debugging information to a macro, since
invoking __?LINE?__ inside a macro definition (either single-line or multi-line) will return the line

73

5.3

54

5.5

5.6

74

number of the macro call, rather than definition. So to determine where in a piece of code a crash is
occurring, for example, one could write a routine stillhere, which is passed a line number in EAX and
outputs something like 1ine 155: still here. You could then write a macro:

%macro notdeadyet 0

push eax
mov eax,__?LINE?__
call stillhere
pop eax
%endmacro

and then pepper your code with calls to notdeadyet until you find the crash point.

__?BITS?__: Current Code Generation Mode

The __?BI7S?__ standard macro is updated every time that the BITS mode is set using the BITS xx or
[BITS xX] directive, where XX is a valid mode number of 16, 32 or 64. __?BITS?__ receives the specified
mode number and makes it globally available. This can be very useful for those who utilize
mode-dependent macros.

__?0UTPUT_FORMAT?__: Current Output Format

The __?0uTPUT_FORMAT?__ standard macro holds the current output format name, as given by the -f
option or NASM’s default. Type nasm -h for a list.

%ifidn __?0UTPUT_FORMAT?__, win32

%define NEWLINE 13, 10

%elifidn __?0UTPUT_FORMAT?__, elf32

%define NEWLINE 10
%endif

__?DEBUG_FORMAT?__: Current Debug Format

If debugging information generation is enabled, The __?DEBUG_FORMAT?__ standard macro holds the
current debug format name as specified by the -F or -g option or the out