NASM — The Netwide Assembler

version 2.03rc5

© 2008 The NASM Development Team

All rights reserved. This document is redistributable under the license given in the file "COPYING"
distributed in the NASM archive.

Contents

Chapter 1: Introduction. e e 11
L1Whatls NASM?. e 11
1.1.1 Why Yet Another Assembler?. 11
1.1.2 License Conditions. L 11
1.2 Contact Information. 11
L3 Installation. e 12
1.3.1 Installing NASM under MS-DOS or Windows 12
1.3.2 Installing NASM under Unix 12
Chapter 2: Running NASM 14
2.1 NASM Command-Line Syntax 14
2.1.1 The-o Option: Specifying the Output FileName 14
2.1.2 The-f Option: Specifying the Output File Format 15
2.1.3 The-l Option: Generating a ListingFile. 15
2.1.4 The-MOption: Generate Makefile Dependencies 15
2.1.5 The-MGOption: Generate Makefile Dependencies 15
2.1.6 The-MFOption: Set Makefile Dependency File. 15
2.1.7 The-MDOption: Assemble and Generate Dependencies 15
2.1.8 The-MTOption: Dependency TargetName 16
2.1.9 The-MQOption: Dependency Target Name (Quoted) 16
2.1.10 The-MPOption: Emit phony targets 16
2.1.11 The-F Option: Selecting a Debug Information Format 16
2.1.12 The-g Option: Enabling Debug Information. 16
2.1.13 The-X Option: Selecting an Error Reporting Format. 16
2.1.14 The-Z Option: Send ErrorstoaFile 17
2.1.15 The-s Option: Send Errorstetdout 17
2.1.16 The-i Option: Include File Search Directories. 17
2.1.17 The-p Option: Pre—Include aFile. 17
2.1.18 The-d Option: Pre-DefineaMacro 18
2.1.19 The-u Option: Undefinea Macro. 18
2.1.20 The-E Option: Preprocess Only., 18

2.1.21 The-a Option: Don't Preprocess AtAIl 18

2.1.22 The-On Option: Specifying Multipass Optimization. 18
2.1.23 The-t option: Enable TASM Compatibility Mode 19
2.1.24 The-w Option: Enable or Disable Assembly Warnings 19
2.1.25 The-v Option: Display VersionInfo 20
2.1.26 The-y Option: Display Available Debug Info Formats 20
2.1.27 The——prefix and--postfix Options. 20
2.1.28 ThRaNASMEN¥ENvironment Variable 20
2.2 Quick Start for MASM Users. e 20
221 NASMIs Case-Sensitive e 21
2.2.2 NASM Requires Square Brackets For Memory References 21
2.2.3 NASM Doesn't Store Variable Types. 21
2.24 NASM DoesnASSUME. e 22
2.2.5 NASM Doesn’t Support Memory Models 22
2.2.6 Floating—Point Differences 22
2.2.7 Other Differences. e e 22
Chapter 3: The NASM Language o i i i e e e e e e e e e e e e e e e 23
3.1 Layoutof aNASM Source Line e 23
3.2 Pseudo—Instructions. 24
3.2.1DBand friends: Declaring initialized Data 24
3.2.2RESBand friends: Declaring Uninitialized Data 24
3.2.3INCBIN : Including External Binary Files 24
3.24EQUDefining Constants. e 25
3.2.5TIMES: Repeating InstructionsorData. 25
3.3 Effective Addresses 25
34 CoNStaNtS. e e 26
341 Numeric Constants. e 27
3.4.2 Character Constants 27
3.4.3String Constants e e e e e 28
3.4.4 Floating—Point Constants e 28
3.5 EXPreSSIONS e e 29
3.5.1] : Bitwise OR Operator 29
3.5.27: Bitwise XOR Operator o o o i it e 29
3.5.3& Bitwise AND Operator 29

3.5.4<<and>>: Bit Shift Operators 30

3.5.5+ and-: Addition and Subtraction Operators. 30

3.5.6*,/,/l ,%and%%Multiplication and Division. 30
3.5.7 Unary Operators;, —,~,! andSEG. 30
3.6SEGAaNdWRT 30
3.7STRICT: Inhibiting Optimization i 31
3.8 Critical EXpressions e e e 31
39 LocalLabels. e 32
Chapter 4: The NASM PreproCcessor o v v v v i i i i i e e e e e e 34
4.1 Single—Line MacCros. 34
4.1.1 The Normal Wayodefine 34
4.1.2 Enhancing %defin@bxdefine L 35
4.1.3 Concatenating Single Line Macro Toke¥s:. 36
4.1.4 The Macro Name Itsef6?and%??. 36
4.1.5 Undefining macroSoundef 37
4.1.6 Preprocessor Variablésassign 37
4.2 String Handling in Macro8sstrlen and%substr oL 37
4.2.1 String Lengthestrlen L 37
4.2.2 Sub-stringSoesubstr 38
4.3 Multi—Line Macros%macro 38
4.3.1 Overloading Multi-Line Macros 39
4.3.2Macro-LocalLabels 39
4.3.3 Greedy Macro Parameters 40
4.3.4 Default Macro Parameters 41
4.3.5%0Q Macro Parameter Counter. 41
4.3.6%rotate : Rotating Macro Parameters. o 41
4.3.7 Concatenating Macro Parameters 42
4.3.8 Condition Codes as Macro Parameters i 43
4.3.9 Disabling Listing Expansion. 44
4.4 Conditional Assembly. e e 44
4.4.1%ifdef : Testing Single-Line Macro Existence. 44
4.4.2%ifmacro : Testing Multi-Line Macro Existence. 45
4.4.3%ifctx : Testingthe ContextStack 45
4.4 4%if : Testing Arbitrary Numeric Expressions 45
4.45%ifidn and%ifidni : Testing Exact Text Identity 46
4.4.6%ifid , %ifnum , %ifstr : Testing Token Types. 46

4.4.7%iftoken : TestFor ASingle Token 47

4.4.8%ifempty : Test For Empty Expansion L a7
4.4.9%error : Reporting User-Defined Errors 47
4.5 Preprocessor LOOFHIreD o o o v i e e 48
4.6 Source Files and Dependencies. e 48
4.6.1%include :Including OtherFiles 48
4.6.2%pathsearch : Searchthe Include Path. 49
4.6.3%depend: Add Dependent Files e 49
4.7 The Context Stack. e 49
4.7.1%push and%pop: Creating and Removing Contexts 49
4.7.2 Context—-Local Labels 50
4.7.3 Context-Local Single-Line Macros. 50
4.7.4%repl : Renaminga Context e 50
4.7.5 Example Use of the Context Stack: Block IFs 51
4.8 Standard Macros. 52
4.8.1__NASM_MAJOR_, NASM_MINOR_, NASM_SUBMINOR_and
___NASM_PATCHLEVEL_: NASM Version. i iiiii 52
4.8.2__NASM_VERSION_ID_:NASM VersionID. 52
4.8.3 _NASM _VER :NASMVersionstring. 53
48.4__FILE__ and__LINE__ : File Name and Line Number 53
485 BITS__:CurrentBITSMode et 53
4.8.6 Assembly Date and Time Macros i i 53
4.8.7STRUCandENDSTRUeclaring Structure Data Types 54
4.8.8ISTRUC, AT andIEND: Declaring Instances of Structures 55
4.8.9ALIGN andALIGNB: Data Alignment 55
4.9 Stack Relative Preprocessor Directives. 56
4.9.1%arg DireCtive. o 56
4.9.2%stacksize Directive. L 57
4.9.3%local Directive e 57
4.10 Other Preprocessor Directives. i e 58
4.10.1%line DireCtive e 58
4.10.2%!<env>: Read an environmentvariable. 59
Chapter 5: Assembler Directives. e 60
5.1BITS: Specifying Target ProcessorMode. 60

5.1.1USE16& USE32 Aliases for BITS 61

5.2DEFAULT Change the assemblerdefaults. 61

5.3SECTIONor SEGMENTChanging and Defining Sections 61
531 The _SECT_MaCIO o it e e e e e e e e e e 61
5.4ABSOLUTEDefining Absolute Labels 62
5.5EXTERNImporting Symbols from OtherModules 63
5.6 GLOBAL Exporting Symbols to Other Modules. 63
5.7COMMOMefining Common Data Areas i, 64
5.8CPU Defining CPU Dependencies. o o i i i i it i i e e e 64
5.9FLOAT. Handling of floating—pointconstants. 65
Chapter 6: Output Formats. e 66
6.1bin : Flat—=Form Binary Output. e 66
6.1.10RGBinary File Program Origin e 66
6.1.2bin Extensions to thEECTIONDiIrective. oo v it i it e e 66
6.1.3Multisection supportforthe BIN format. 67
6.1.4Mapfiles 67
6.20bj : Microsoft OMF ObjectFiles 67
6.2.10bj Extensions to thEEGMENDirective. 68
6.2.2GROUPDefining Groups of Segments 0. 69
6.2.3UPPERCASHDisabling Case Sensitivity inQutput 69
6.2.4IMPORT Importing DLL Symbols 70
6.2.5EXPORTExporting DLL Symbols, 70
6.2.6..start : Defining the Program Entry Point 70
6.2.70bj Extensions to thEXTERNDirective 71
6.2.80bj Extensions to thEOMMOMirective 71
6.3win32 : Microsoft Win32 Object Files., 72
6.3.1win32 Extensions to th8ECTIONDirective 72
6.3.2win32 : safe structured exception handling. 73
6.4win64 : Microsoft Win64 Object Files. 74
6.4.1win64 : writing position—-independentcode 74
6.4.2win64 : structured exceptionhandling 75
6.5coff : Common ObjectFile Format, 78
6.6macho: Mach Object File Format 78
6.7elf, elf32, and elf64 : Executable and Linkable Format Object Files. 78
6.7.1 ELF specific directivesabi 78
6.7.2elf Extensions to thBECTIONDirective. 78

6.7.3 Position—-Independent Coddf. Special Symbols and/RT. 79

6.7.4elf Extensionsto th&LOBALDirective 80
6.7.5elf Extensions to thEOMMORDIirective 80
6.7.6 16-bitcode and ELF 80
6.7.7 Debug formatsand ELF 80
6.8aout : Linuxa.out ObjectFiles 81
6.9aoutb : NetBSD/FreeBSD/OpenBS&out ObjectFiles 81
6.10as86 : Minix/Linux as86 ObjectFiles. 81
6.11rdf : Relocatable Dynamic Object File Format 81
6.11.1 Requiring a Library: THEBRARY Directive 82
6.11.2 Specifying a Module Name: TREODULBirective 82
6.11.3rdf Extensions to th&LOBALdirective 82
6.11.4rdf Extensions to thEXTERMNdirective 82
6.12dbg: Debugging Format. 82
Chapter 7: Writing 16-bit Code (DOS, Windows 3/3.1) 84
7.1 ProducingEXE Files. e 84
7.1.1 Using th@bj Format To GeneratEXE Files 84
7.1.2 Using thdin Format To Generat&EXE Files 85
7.2 ProducingCOMEFIles. e 86
7.2.1 Using thédin Format To Generat€OMFiles 36
7.2.2 Using th@bj Format To Generat€OMFiles 87
7.3 ProducingSYS Files. 87
7.4 Interfacing to 16-bit C Programs. e 87
7.4.1 External SymbolNames e 87
7.4.2Memory Models e e 88
7.4.3 Function Definitions and FunctionCalls 89
7.4.4 Accessing Data ltems 91
7.4.5cl6.mac : Helper Macros for the 16-bit C Interface 92
7.5 Interfacing to Borland Pascal Programs 93
7.5.1 The Pascal Calling Convention 93
7.5.2 Borland Pascal Segment Name Restrictions 94
7.5.3 Usingcl6.mac With Pascal Programs 95
Chapter 8: Writing 32-bit Code (Unix, Win32, DJGPP). 96
8.1 Interfacing to 32-bit C Programs. 96

8.1.1 External SymbolNames e 96

8.1.2 Function Definitions and Function Calls 96
8.1.3 Accessing Data ltems e 98
8.1.4c32.mac : Helper Macros for the 32-bitC Interface 98
8.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries. 99
8.2.1 Obtaining the Address of the GOT 99
8.2.2 Finding Your Local Dataltems 100
8.2.3 Finding External and Common Dataltems 101
8.2.4 Exporting Symbols to the Library User 101
8.2.5 Calling Procedures Outside the Library 102
8.2.6 Generating the Library File 102
Chapter 9: Mixing 16 and 32 BitCode e 103
9.1 MiXed=Size JUMPS o e e e e e e 103
9.2 Addressing Between Different—Size Segments 103
9.3 Other Mixed-Size Instructions i 104
Chapter 10: Writing 64-bit Code (Unix, Win64) i 106
10.1 Register names in 64-bitmode L 106
10.2 Immediates and displacements in 64-bitmode. 106
10.3 Interfacing to 64-bit C Programs (Unix) 107
10.4 Interfacing to 64-bit C Programs (Win64) 107
Chapter 11: Troubleshooting. 109
11.1 Common Problems. e 109
11.1.1 NASM Generates InefficientCode. 109
11.1.2 My Jumpsare Qutof Range 109
11.1.30RED0eSNTWOrK o 109
11.14TIMES Doesn't Work 110
11.2BUGS . . o o e e e 110
Appendix A: Ndisasm 112
AllIntroduction. e 112
A.2 Getting Started: Installation 112
A3 Running NDISASM 112
A.3.1 COM Files: Specifyingan Origin. 112
A.3.2 Code Following Data: Synchronisation. 112
A.3.3 Mixed Code and Data: Automatic (Intelligent) Synchronisation 113
A.3.4 Other Options e e 114
A4 Bugs and Improvements e e e e e e 114

10

Appendix B: Instruction List. 115

B.lIntroduction e 115
B.1.1 Special inStruCtions... e 115
B.1.2 Conventional instructions 115
B.1.3 Katmai Streaming SIMD instructions (SSE — a.k.a. KNI, XMM, MMX2) 140
B.1.4 Introduced in Deschutes but necessary for SSE support. 142
B.1.5 Generic memory operations. e e 142
B.1.6 New MMX instructions introduced inKatmai 142
B.1.7 AMD Enhanced 3DNow! (Athlon) instructions 143
B.1.8 Willamette SSE2 Cacheability Instructions. 143
B.1.9 Willamette MMX instructions (SSE2 SIMD Integer Instructions) 143
B.1.10 Willamette Streaming SIMD instructions (SSE2). 145
B.1.11 Prescott New Instructions (SSE3) 146
B.1.12 VMX INStructions e e 147
B.1.13 Extended Page Tables VMX instructions 147
B.1.14 Tejas New Instructions (SSSE3). oL 147
B.LLI5S AMD SSE4A e 148
B.1.16 New instructions in Barcelona. 148
B.1.17 Penryn New Instructions (SSE4.1) 148
B.1.18 Nehalem New Instructions (SSE4.2) i i 149
B.1.19 AMD SSES instructions 149
B.1.20 Intel SMX. e 155
B.1.21 Geode (Cyrix) 3DNow! additions, 155
B.1.22 Intel new inStructions in 22?2 e 155
B.1.23 Intel AES INStrUCtiONS o e e 155
B.1.24 Intel AVX instructions e 155
B.1.25 Intel Carry—Less Multiplication instructions (CLMUL) 175
B.1.26 Intel Fused Multiply—Add instructions (FMA) 175
B.1.27 VIA (Centaur) security instructions 0. 176
B.1.28 Systematic names for the hinting nop instructions 176

Chapter 1: Introduction

1.1 What Is NASM?

The Netwide Assembler, NASM, is an 80x86 and x86—64 assembler designed for portability and
modularity. It supports a range of object file formats, including Linux *#8®D a.out , ELF,

COFF Mach—-Q Microsoft 16-hitOBJ, Win32 andWin64 . It will also output plain binary files.

Its syntax is designed to be simple and easy to understand, similar to Intel's but less complex. It
supports all currently known x86 architectural extensions, and has strong support for macros.

1.1.1 Why Yet Another Assembler?

The Netwide Assembler grew out of an idea oomp.lang.asm.x86 (or possibly
alt.lang.asm — | forget which), which was essentially that there didn't seem to be afigeod
x86—series assembler around, and that maybe someone ought to write one.

e a86 is good, but not free, and in particular you don'’t get any 32-hit capability until you pay. It's
DOS only, too.

e gas is free, and ports over to DOS and Unix, but it's not very good, since it's designed to be a
back end tgycc , which always feeds it correct code. So its error checking is minimal. Also, its
syntax is horrible, from the point of view of anyone trying to actuatiye anything in it. Plus
you can'’t write 16—bit code in it (properly.)

e as86 is specific to Minix and Linux, and (my version at least) doesn’t seem to have much (or
any) documentation.

* MASMsn't very good, and it's (was) expensive, and it runs only under DOS.

« TASMis better, but still strives for MASM compatibility, which means millions of directives and
tons of red tape. And its syntax is essentially MASM'’s, with the contradictions and quirks that
entails (although it sorts out some of those by means of Ideal mode.) It's expensive too. And it's
DOS-only.

So here, for your coding pleasure, is NASM. At present it's still in prototype stage — we don’t
promise that it can outperform any of these assemblers. But pfdaasesend us bug reports,

fixes, helpful information, and anything else you can get your hands on (and thanks to the many
people who've done this already! You all know who you are), and we’ll improve it out of all
recognition. Again.

1.1.2 License Conditions

Please see the filEOPYING supplied as part of any NASM distribution archive, for the license
conditions under which you may use NASM. NASM is now under the so-called GNU Lesser
General Public License, LGPL.

1.2 Contact Information

The current version of NASM (since about 0.98.08) is maintained by a team of developers,
accessible through theasm-devel mailing list (see below for the link). If you want to report a
bug, please read section 11.2 first.

NASM has a WWW page #ttp://nasm.sourceforge.net . If it’s not there, google for us!

11

http://nasm.sourceforge.net

The original authors are e—mailable jafes@dsf.org.uk and anakin@pobox.com . The
latter is no longer involved in the development team.

New releases of NASM are uploaded to the official ditiys://nasm.sourceforge.net
and toftp.kernel.org andibiblio.org

Announcements are posted tocomp.lang.asm.x86 , altlang.asm and
comp.os.linux.announce

If you want information about NASM beta releases, and the current development status, please
subscribe to the nasm-devel email list by registering at
http://sourceforge.net/projects/nasm :

1.3 Installation
1.3.1 Installing NASM under MS-DOS or Windows

Once you've obtained the appropriate archive for NASKgsm-XXX-dos.zip or
nasm-XXX-win32.zip (where XXX denotes the version number of NASM contained in the
archive), unpack it into its own directory (for exampfgmasm).

The archive will contain a set of executable files: the NASM executablendden.exe , the
NDISASM executable filendisasm.exe , and possibly additional utilities to handle the RDOFF
file format.

The only file NASM needs to run is its own executable, so c@syn.exe to a directory on your
PATH, or alternatively ediautoexec.bat to add thenasm directory to youlPATH (to do that

under Windows XP, go to Start > Control Panel > System > Advanced > Environment Variables;
these instructions may work under other versions of Windows as well.)

That's it — NASM is installed. You don't need the nasm directory to be present to run NASM
(unless you've added it to yoRATH, so you can delete it if you need to save space; however, you
may want to keep the documentation or test programs.

If you've downloaded the DOS source archimasm—-XXX.zip , the nasm directory will also
contain the full NASM source code, and a selection of Makefiles you can (hopefully) use to rebuild
your copy of NASM from scratch. See the IMSTALL in the source archive.

Note that a number of files are generated from other files by Perl scripts. Although the NASM
source distribution includes these generated files, you will need to rebuild them (and hence, will
need a Perl interpreter) if you change insns.dat, standard.mac or the documentation. It is possible
future source distributions may not include these files at all. Ports of Perl for a variety of platforms,
including DOS and Windows, are available from www.cpan.org.

1.3.2 Installing NASM under Unix

Once you've obtained the Unix source archive for NASMsm—-XXX.tar.gz (where XXX
denotes the version number of NASM contained in the archive), unpack it into a directory such as
{usr/local/src . The archive, when unpacked, will create its own subdirectasyn—XXX

NASM is an auto—configuring package: once you've unpackeddit{o the directory it's been
unpacked into and typéconfigure . This shell script will find the best C compiler to use for
building NASM and set up Makefiles accordingly.

Once NASM has auto—-configured, you can typake to build thenasm andndisasm binaries,
and thenmake install to install them in/usr/local/bin and install the man pages
nasm.l andndisasm.l in /usr/local/man/manl . Alternatively, you can give options
such as-—prefix to the configure script (see the fINSTALL for more details), or install the
programs yourself.

mailto:jules@dsf.org.uk
mailto:anakin@pobox.com
http://nasm.sourceforge.net
ftp://ftp.kernel.org/pub/software/devel/nasm/
ftp://ibiblio.org/pub/Linux/devel/lang/assemblers/
news:comp.lang.asm.x86
news:alt.lang.asm
news:comp.os.linux.announce
http://sourceforge.net/projects/nasm
http://www.cpan.org/ports/

NASM also comes with a set of utilities for handling BRBOFFcustom object—file format, which
are in therdoff subdirectory of the NASM archive. You can build these witkke rdf and
install them withmake rdf_install , if you want them.

13

Chapter 2: Running NASM

2.1 NASM Command-Line Syntax
To assemble a file, you issue a command of the form
nasm —f <format> <filename> [-0 <output>]
For example,
nasm —f elf myfile.asm
will assemblanyfile.asm into anELF object filemyfile.o . And
nasm —f bin myfile.asm —o myfile.com
will assemblemyfile.asm into a raw binary filanyfile.com

To produce a listing file, with the hex codes output from NASM displayed on the left of the original
sources, use thd option to give a listing file name, for example:

nasm —f coff myfile.asm —I myfile.Ist

To get further usage instructions from NASM, try typing

nasm —h

As —hf , this will also list the available output file formats, and what they are.

If you use Linux but aren’t sure whether your systemasit or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like
nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1

then your system iELF, and you should use the optiehelf ~ when you want NASM to produce
Linux object files. If it says

nasm: Linux/i386 demand-paged executable (QMAGIC)

or something similar, your systemdsut , and you should usef aout instead (Linuxa.out
systems have long been obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won't see any
output at all, unless it gives error messages.

2.1.1 The-o Option: Specifying the Output File Name

NASM will normally choose the name of your output file for you; precisely how it does this is
dependent on the object file format. For Microsoft object file formaltg (andwin32), it will
remove theasm extension (or whatever extension you like to use — NASM doesn’t care) from
your source file name and substitutdj . For Unix object file formatsaput , coff , elf |,
macho andas86) it will substitute.o . Forrdf , it will use.rdf , and for thebin format it will
simply remove the extension, so thagfile.asm produces the output filayfile

If the output file already exists, NASM will overwrite it, unless it has the same name as the input
file, in which case it will give a warning and usasm.out as the output file name instead.

For situations in which this behaviour is unacceptable, NASM provides-aheommand-line
option, which allows you to specify your desired output file name. You invokby following it
with the name you wish for the output file, either with or without an intervening space. For example:

nasm —f bin program.asm —o program.com
nasm —f bin driver.asm —odriver.sys

Note that this is a small o, and is different from a capital O , which is used to specify the number of
optimisation passes required. See section 2.1.22.

2.1.2 The—f Option: Specifying the Output File Format

If you do not supply thef option to NASM, it will choose an output file format for you itself. In
the distribution versions of NASM, the default is always ; if you've compiled your own copy of
NASM, you can redefin®©F_DEFAULTat compile time and choose what you want the default to
be.

Like —o, the intervening space betweeh and the output file format is optional; sbelf and
—felf are both valid.

A complete list of the available output file formats can be given by issuing the command
nasm —hf .

2.1.3 The-l Option: Generating a Listing File

If you supply the-I option to NASM, followed (with the usual optional space) by a file name,
NASM will generate a source-listing file for you, in which addresses and generated code are listed
on the left, and the actual source code, with expansions of multi-line macros (except those which
specifically request no expansion in source listings: see section 4.3.9) on the right. For example:

nasm —f elf myfile.asm —I myfile.Ist

If a list file is selected, you may turn off listing for a section of your source [iigth-] , and
turn it back on with[list +] , (the default, obviously). There is no "user form" (without the
brackets). This can be used to list only sections of interest, avoiding excessively long listings.

2.1.4 The-MOption: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This can be redirected to a file
for further processing. For example:

nasm —M myfile.asm > myfile.dep
2.1.5 The-MGOption: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This differs fravh the
option in that if a nonexisting file is encountered, it is assumed to be a generated file and is added to
the dependency list without a prefix.

2.1.6 The-MFOption: Set Makefile Dependency File

This option can be used with théVl or —-MGoptions to send the output to a file, rather than to
stdout. For example:

nasm —M —MF myfile.dep myfile.asm
2.1.7 The-MDOption: Assemble and Generate Dependencies

The —MD option acts as the combination of thM and —MF options (i.e. a filename has to be
specified.) However, unlike theM or -MGoptions,—MDdoesnot inhibit the normal operation of

the assembler. Use this to automatically generate updated dependencies with every assembly
session. For example:

15

16

nasm —f elf —o myfile.o —-MD myfile.dep myfile.asm

2.1.8 The-MTOption: Dependency Target Name

The—-MToption can be used to override the default name of the dependency target. This is normally
the same as the output filename, specified by-theption.

2.1.9 The-MQOption: Dependency Target Name (Quoted)

The -MQoption acts as theMT option, except it tries to quote characters that have special meaning
in Makefile syntax. This is not foolproof, as not all characters with special meaning are quotable in
Make.

2.1.10 The-MPOption: Emit phony targets

When used with any of the dependency generation optionsMR®ption causes NASM to emit a
phony target without dependencies for each header file. This prevents Make from complaining if a
header file has been removed.

2.1.11 The-F Option: Selecting a Debug Information Format

This option is used to select the format of the debug information emitted into the output file, to be
used by a debugger (wiill be). Use of this switch do@et enable output of the selected debug info
format. Use-g, see section 2.1.12, to enable output.

A complete list of the available debug file formats for an output format can be seen by issuing the
commandnasm —f <format> -y . (As of 2.00, only "-f elf32", "-f elf64", "-f ieee", and "-f
obj" provide debug information.) See section 2.1.26.

This should not be confused with the "—f dbg" output format option which is not built into NASM
by default. For information on how to enable it when building from the sources, see section 6.12

2.1.12 The-g Option: Enabling Debug Information.

This option can be used to generate debugging information in the specified format. See section
2.1.11. Using—g without —F results in emitting debug info in the default format, if any, for the
selected output format. If no debug information is currently implemented in the selected output
format,—g is silently ignored

2.1.13 The-X Option: Selecting an Error Reporting Format

This option can be used to select an error reporting format for any error messages that might be
produced by NASM.

Currently, two error reporting formats may be selected. They areXte option and the-Xgnu
option. The GNU format is the default and looks like this:

filename.asm:65: error: specific error message

wherefilename.asm is the name of the source file in which the error was deteGfeds the
source file line number on which the error was deteaedy is the severity of the error (this
could bewarning), andspecific error message is a more detailed text message which
should help pinpoint the exact problem.

The other format, specified byXvc is the style used by Microsoft Visual C++ and some other
programs. It looks like this:

filename.asm(65) : error: specific error message

where the only difference is that the line number is in parentheses instead of being delimited by
colons.

See also th¥isual C++ output format, section 6.3.
2.1.14 The-Z Option: Send Errors to a File

UnderMS-DOSt can be difficult (though there are ways) to redirect the standard—error output of a
program to a file. Since NASM usually produces its warning and error messaggkeon , this
can make it hard to capture the errors if (for example) you want to load them into an editor.

NASM therefore provides theZ option, taking a filename argument which causes errors to be sent
to the specified files rather than standard error. Therefore you can redirect the errors into a file by

typing
nasm —Z myfile.err —f obj myfile.asm

In earlier versions of NASM, this option was calle, but it was changed sinedE is an option
conventionally used for preprocessing only, with disastrous results. See section 2.1.20.

2.1.15 The-s Option: Send Errors to stdout

The —s option redirects error messagesstdout rather thanstderr , so it can be redirected
underMS-DOSTo assemble the filmyfile.asm and pipe its output to thmore program, you
can type:

nasm —s —f obj myfile.asm | more
See also theZ option, section 2.1.14.
2.1.16 The-i Option: Include File Search Directories

When NASM sees th&include or %pathsearch directive in a source file (see section 4.6.1,
section 4.6.2 or section 3.2.3), it will search for the given file not only in the current directory, but
also in any directories specified on the command line by the use of tloption. Therefore you

can include files from a macro library, for example, by typing

nasm —ic:\macrolib\ —f obj myfile.asm
(As usual, a space between and the path name is allowed, and optional).

NASM, in the interests of complete source—code portability, does not understand the file naming
conventions of the OS it is running on; the string you provide as an argumentio tipéion will
be prepended exactly as written to the name of the include file. Therefore the trailing backslash in
the above example is necessary. Under Unix, a trailing forward slash is similarly necessary.

(You can use this to your advantage, if you're really perverse, by noting that the-6fdamn will

caus&include "bar.i" to search for the fileoobar.i ...)

If you want to define atandardinclude search path, similar fasr/include on Unix systems,
you should place one or moreé directives in theNASMEN\environment variable (see section
2.1.28).

For Makefile compatibility with many C compilers, this option can also be specifield.as
2.1.17 The-p Option: Pre-Include a File

NASM allows you to specify files to bere—includedinto your source file, by the use of thp
option. So running

nasm myfile.asm —p myinc.inc

is equivalent to running nasm myfile.asm and placing the directive
%include "myinc.inc" at the start of the file.

For consistency with thel , —D and-U options, this option can also be specified-Bs

17

2.1.18 The-d Option: Pre-Define a Macro

Just as the-p option gives an alternative to placifginclude directives at the start of a source
file, the—d option gives an alternative to placin@aefine directive. You could code

nasm myfile.asm —dFOO=100
as an alternative to placing the directive
%define FOO 100

at the start of the file. You can miss off the macro value, as well: the efe@Ois equivalent to
coding %define FOO . This form of the directive may be useful for selecting assembly-time
options which are then tested ustgfdef , for example-dDEBUG

For Makefile compatibility with many C compilers, this option can also be specifield.as
2.1.19 The-u Option: Undefine a Macro

The —u option undefines a macro that would otherwise have been pre—defined, either automatically
or by a—p or—d option specified earlier on the command lines.

For example, the following command line:
nasm myfile.asm —dFO0=100 -uFOO

would result inFOOnot being a predefined macro in the program. This is useful to override options
specified at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can also be specified.as
2.1.20 The-E Option: Preprocess Only

NASM allows the preprocessor to be run on its own, up to a point. UsingEtmotion (which
requires no arguments) will cause NASM to preprocess its input file, expand all the macro
references, remove all the comments and preprocessor directives, and print the resulting file on
standard output (or save it to a file, if the option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate expressions
which depend on the values of symbols: so code such as

%assign tablesize ($-tablestart)
will cause an error in preprocess—only mode.

For compatiblity with older version of NASM, this option can also be written —E in older
versions of NASM was the equivalent of the curreatoption, section 2.1.14.

2.1.21 The-a Option: Don’'t Preprocess At All

If NASM is being used as the back end to a compiler, it might be desirable to suppress
preprocessing completely and assume the compiler has already done it, to save time and increase
compilation speeds. Thea option, requiring no argument, instructs NASM to replace its powerful
preprocessor with a stub preprocessor which does nothing.

2.1.22 The-On Option: Specifying Multipass Optimization.

NASM defaults to being a two pass assembler. This means that if you have a complex source file
which needs more than 2 passes to assemble optimally, you have to enable extra passes.

Using the-O option, you can tell NASM to carry out multiple passes. The syntax is:

e —00 strict two—pass assembly, JMP and Jcc are handled more like v0.98, except that backward
JMPs are short, if possible. Immediate operands take their long forms if a short form is not
specified.

e -0l strict two—pass assembly, but forward branches are assembled with code guaranteed to
reach; may produce larger code than —OO0, but will produce successful assembly more often if
branch offset sizes are not specified. Additionally, immediate operands which will fit in a signed
byte are optimized, unless the long form is specified.

e —On multi-pass optimization, minimize branch offsets; also will minimize signed immediate
bytes, overriding size specification unless s$krict keyword has been used (see section 3.7).
The number specifies the maximum number of passes. The more passes, the better the code, bu
the slower is the assembly.

» —Oxwherex is the actual lettex, indicates to NASM to do unlimited passes.

Note that this is a capit@®, and is different from a smadl, which is used to specify the output file
name. See section 2.1.1.

2.1.23 The-t option: Enable TASM Compatibility Mode

NASM includes a limited form of compatibility with BorlandlT/ASM When NASM’s—t option is
used, the following changes are made:

 local labels may be prefixed with @hstead of

» size override is supported within brackets. In TASM compatible mode, a size override inside
square brackets changes the size of the operand, and not the address type of the operand as
does in NASM syntax. E.gnov eax,[DWORD val] is valid syntax in TASM compatibility
mode. Note that you lose the ability to override the default address type for the instruction.

« unprefixed forms of some directives supportedlg(, elif , else , endif , if , ifdef
ifdifi ,ifndef ,include ,local)

2.1.24 The-w Option: Enable or Disable Assembly Warnings

NASM can observe many conditions during the course of assembly which are worth mentioning to
the user, but not a sufficiently severe error to justify NASM refusing to generate an output file.
These conditions are reported like errors, but come up with the word ‘warning’ before the message.
Warnings do not prevent NASM from generating an output file and returning a success status to the
operating system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the
user. Therefore NASM supports the&v command-line option, which enables or disables certain
classes of assembly warning. Such warning classes are described by a name, for example
orphan-labels ; you can enable warnings of this class by the command-line option
-w+orphan-labels and disable it byw—orphan-Ilabels

The suppressible warning classes are:

e macro—params covers warnings about multi-line macros being invoked with the wrong
number of parameters. This warning class is enabled by default; see section 4.3.1 for an example
of why you might want to disable it.

« macro-selfref warns if a macro references itself. This warning class is enabled by default.

¢ orphan-labels covers warnings about source lines which contain no instruction but define a
label without a trailing colon. NASM does not warn about this somewhat obscure condition by
default; see section 3.1 for an example of why you might want it to.

19

« number—overflow covers warnings about numeric constants which don't fit in 32 bits (for

example, it's easy to type one too many Fs and pro@ueéffffff by mistake). This
warning class is enabled by default.
¢ gnu-elf-extensions warns if 8—bit or 16—bit relocations are used-frelf format. The

GNU extensions allow this. This warning class is enabled by default.

« In addition, warning classes may be enabled or disabled across sections of source code with
[warning +warning—name] or [warning -warning—name] . No ‘"user form"
(without the brackets) exists.

2.1.25 The-v Option: Display Version Info

Typing NASM -v will display the version of NASM which you are using, and the date on which it
was compiled.

You will need the version number if you report a bug.

2.1.26 The-y Option: Display Available Debug Info Formats

Typing nasm —f <option> -y will display a list of the available debug info formats for the
given output format. The default format is indicated by an asterisk. For example:

nasm —f elf -y

valid debug formats for ’elf32’ output format are
("*" denotes default):
*stabs ELF32 (i386) stabs debug format for Linux
dwarf elf32 (i386) dwarf debug format for Linux

2.1.27 The-—-prefix and--postfix Options.

The ——prefix and--postfix options prepend or append (respectively) the given argument to
all global orextern variables. E.g——prefix_ will prepend the underscore to all global and
external variables, as C sometimes (but not always) likes it.

2.1.28 TheNASMENWEnvironment Variable

If you define an environment variable callsS®ASMENVthe program will interpret it as a list of
extra command-line options, which are processed before the real command line. You can use this to
define standard search directories for include files, by putiingptions in theNASMENWariable.

The value of the variable is split up at white space, so that the wvalui:\nasmlib will be
treated as two separate options. However, that means that the-g&lAME="my name" won't

do what you might want, because it will be split at the space and the NASM command-line
processing will get confused by the two nonsensical weddsAME="myandname".

To get round this, NASM provides a feature whereby, if you begilN\h8 MEN\environment
variable with some character that isn't a minus sign, then NASM will treat this character as the
separator character for options. So setting thASMENV variable to the value
I-sl-ic:\nasmlib iS equivalent to setting it to-s -ic:\\nasmlib , but
I-dNAME="my name" will work.

This environment variable was previously calM8SMThis was changed with version 0.98.31.

2.2 Quick Start for MASM Users

If you're used to writing programs with MASM, or with TASM in MASM-compatible (non-Ideal)
mode, or witha86, this section attempts to outline the major differences between MASM'’s syntax
and NASM’s. If you're not already used to MASM, it's probably worth skipping this section.

2.2.1 NASM Is Case-Sensitive

One simple difference is that NASM is case-sensitive. It makes a difference whether you call your
label foo , Foo or FOO If you're assembling t®OSor OS/2 .0OBJ files, you can invoke the
UPPERCASHlirective (documented in section 6.2) to ensure that all symbols exported to other
code modules are forced to be upper case; but even ligm a single module, NASM wiill
distinguish between labels differing only in case.

2.2.2 NASM Requires Square Brackets For Memory References

NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that it
should be possible, as far as is practical, for the user to look at a single line of NASM code and tell
what opcode is generated by it. You can’t do this in MASM: if you declare, for example,

foo equ 1
bar dw 2

then the two lines of code

mov ax,foo
mov ax,bar

generate completely different opcodes, despite having identical-looking syntaxes.

NASM avoids this undesirable situation by having a much simpler syntax for memory references.
The rule is simply that any access to tmntentsof a memory location requires square brackets
around the address, and any access tadaeessof a variable doesn’t. So an instruction of the
form mov ax,foo will alwaysrefer to a compile-time constant, whether it's BQUor the
address of a variable; and to access tomtents of the variablebar, you must code

mov ax,[bar]

This also means that NASM has no need for MASMIBFSETkeyword, since the MASM code

mov ax,offset bar means exactly the same thing as NASE@®v ax,bar . If you're trying
to get large amounts of MASM code to assemble sensibly under NASM, you can always code
%idefine offset to make the preprocessor treat @eFSETkeyword as a no—op.

This issue is even more confusingai®6 , where declaring a label with a trailing colon defines it to
be a ‘label’ as opposed to a ‘variable’ and cawds to adopt NASM-style semantics; sod86,
mov ax,var has different behaviour depending on whetlar was declared asar: dw 0 (a
label) orvar dw 0 (a word-size variable). NASM is very simple by comparisarerythingis a

label.

NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by
MASM and its clones, such asov ax,table[bx] , Where a memory reference is denoted by

one portion outside square brackets and another portion inside. The correct syntax for the above is
mov ax,[table+bx] . Likewise, mov ax,es:[di] is wrong andmov ax,[es:di] is

right.

2.2.3 NASM Doesn’t Store Variable Types

NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM
will remember, on seeingar dw 0 , that you declaredar as a word-size variable, and will then

be able to fill in the ambiguity in the size of the instructisov var,2 , NASM will deliberately
remember nothing about the symivalr except where it begins, and so you must explicitly code
mov word [var],2

For this reason, NASM doesn’t support theDS MOVS STOS SCAS CMPSINS, or OUTS
instructions, but only supports the forms suchL&@DSB MOVSWand SCASD which explicitly
specify the size of the components of the strings being manipulated.

21

2.2.4 NASM Doesn'tASSUME

As part of NASM'’s drive for simplicity, it also does not support A&SUMHlirective. NASM will
not keep track of what values you choose to put in your segment registers, and will never
automaticallygenerate a segment override prefix.

2.2.5 NASM Doesn’'t Support Memory Models

NASM also does not have any directives to support different 16—bit memory models. The
programmer has to keep track of which functions are supposed to be called with a far call and which
with a near call, and is responsible for putting the correct forREdfinstruction RETNor RETFE

NASM acceptsRET itself as an alternate form fdRETN; in addition, the programmer is
responsible for coding CALL FAR instructions where necessary when caliggnal functions,

and must also keep track of which external variable definitions are far and which are near.

2.2.6 Floating—Point Differences

NASM uses different names to refer to floating—point registers from MASM: where MASM would
call themST(0) , ST(1) and so on, and86 would call them simply0, 1 and so on, NASM
chooses to call thestO , st1 etc.

As of version 0.96, NASM now treats the instructions with ‘nowait’ forms in the same way as
MASM-compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was
based on a misunderstanding by the authors.

2.2.7 Other Differences
For historical reasons, NASM uses the keywdWWlORRvhere MASM and compatible assemblers

useTBYTE
NASM does not declare uninitialized storage in the same way as MASM: where a MASM
programmer might usstack db 64 dup (?) , NASM requiresstack resb 64 , intended

to be read as ‘reserve 64 bytes’. For a limited amount of compatibility, since NASM2raata
valid character in symbol names, you can c@d=gu 0 and then writingdw ? will at least do
something vaguely usefuDUPis still not a supported syntax, however.

In addition to all of this, macros and directives work completely differently to MASM. See chapter
4 and chapter 5 for further details.

Chapter 3: The NASM Language

3.1 Layout of a NASM Source Line

Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor
directive or an assembler directive: see chapter 4 and chapter 5) some combination of the four fields

label: instruction operands ; comment

As usual, most of these fields are optional; the presence or absence of any combination of a label,
an instruction and a comment is allowed. Of course, the operand field is either required or forbidden
by the presence and nature of the instruction field.

NASM uses backslash (\) as the line continuation character; if a line ends with backslash, the next
line is considered to be a part of the backslash—ended line.

NASM places no restrictions on white space within a line: labels may have white space before
them, or instructions may have no space before them, or anything. The colon after a label is also
optional. (Note that this means that if you intend to dodsb alone on a line, and typedab

by accident, then that's still a valid source line which does nothing but define a label. Running

NASM with the command-line optiorw+orphan—-labels will cause it to warn you if you

define a label alone on a line without a trailing colon.)

Valid characters in labels are letters, numbers§, #, @ ~, . , and?. The only characters which

may be used as tHast character of an identifier are letters(with special meaning: see section
3.9),_and?. An identifier may also be prefixed with$ato indicate that it is intended to be read as

an identifier and not a reserved word; thus, if some other module you are linking with defines a
symbol calledeax, you can refer tdbeax in NASM code to distinguish the symbol from the
register. Maximum length of an identifier is 4095 characters.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU
instructions, MMX instructions and even undocumented instructions are all supported. The
instruction may be prefixed byOCK REP, REPEREPZ or REPNEREPNZ in the usual way.

Explicit address—size and operand-size prefiRd§, A32, 016 and O32 are provided — one
example of their use is given in chapter 9. You can also use the name of a segment register as ar
instruction prefix: codinges mov [bx],ax is equivalent to codingnov [es:bx],ax . We
recommend the latter syntax, since it is consistent with other syntactic features of the language, but
for instructions such asODSB which has no operands and yet can require a segment override,
there is no clean syntactic way to proceed apart &sthodsb

An instruction is not required to use a prefix: prefixes sucBRA32, LOCKor REPEcan appear
on a line by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM also supports a number of pseudo—-instructions,
described in section 3.2.

Instruction operands may take a number of forms: they can be registers, described simply by the
register name (e.@x, bp, ebx, crO : NASM does not use thgas —style syntax in which register
names must be prefixed byasign), or they can be effective addresses (see section 3.3), constants
(section 3.4) or expressions (section 3.5).

For x87 floating—point instructions, NASM accepts a wide range of syntaxes: you can use
two—-operand forms like MASM supports, or you can use NASM'’s native single—operand forms in
most cases. For example, you can code:

23

fadd stl : this sets stO ;= st0 + stl

fadd stO,stl : so does this
fadd stl,stO : this sets stl := stl + st0
fadd to stl : so does this

Almost any x87 floating—point instruction that references memory must use one of the prefixes
DWORMWORDr TWORID indicate what size of memory operand it refers to.

3.2 Pseudo-Instructions

Pseudo-instructions are things which, though not real x86 machine instructions, are used in the
instruction field anyway because that's the most convenient place to put them. The current
pseudo-instructions areB DW DD DQ DT, DO andDY: their uninitialized counterparRESB
RESWRESD RESQREST, RESOandRESY, the INCBIN command, th&QUcommand, and the
TIMES prefix.

3.2.1 DBand friends: Declaring initialized Data

DB DW DD DQ DT, DOandDY are used, much as in MASM, to declare initialized data in the
output file. They can be invoked in a wide range of ways:

db 0x55 ; just the byte 0x55

db 0x55,0x56,0x57 ; three bytes in succession
db ’a’,0x55 ; character constants are OK
db ‘’hello’,13,10,’$’ ; so are string constants

dw 0x1234 : 0x34 0x12

dw 'a’ ; Ox61 0x00 (it's just a number)
dw ‘ab’ ; Ox61 0x62 (character constant)
dw ’abc’ ; Ox61 0x62 0x63 0x00 (string)
dd 0x12345678 ; OX78 0x56 0x34 0x12

dd 1.234567e20 ; floating—point constant

dg 0x123456789abcdef0 ; eight byte constant
dg 1.234567e20 ; double—precision float

dt 1.234567e20 ; extended-precision float

DT, DOandDY do not accept humeric constants as operands.
3.2.2 RESBand friends: Declaring Uninitialized Data

RESB RESWRESD RESQREST, RESOandRESYare designed to be used in the BSS section of

a module: they declaminitializedstorage space. Each takes a single operand, which is the number
of bytes, words, doublewords or whatever to reserve. As stated in section 2.2.7, NASM does not
support the MASM/TASM syntax of reserving uninitialized space by wribMy ? or similar

things: this is what it does instead. The operand RE&B-type pseudo-instruction is @itical
expressionsee section 3.8.

For example:

buffer: resb 64 ; reserve 64 bytes
wordvar: resw 1 : reserve a word
realarray resq 10 ; array of ten reals
ymmval: resy 1 ; one YMM register

3.2.3 INCBIN : Including External Binary Files

INCBIN is borrowed from the old Amiga assembler DevPac: it includes a binary file verbatim into
the output file. This can be handy for (for example) including graphics and sound data directly into
a game executable file. It can be called in one of these three ways:

incbin "file.dat" ; include the whole file

incbin "file.dat",1024 ; skip the first 1024 bytes

inchbin “file.dat",1024,512 ; skip the first 1024, and
; actually include at most 512

INCBIN is both a directive and a standard macro; the standard macro version searches for the file
in the include file search path and adds the file to the dependency lists. This macro can be
overridden if desired.

3.2.4 EQU Defining Constants

EQUdefines a symbol to a given constant value: WB&uis used, the source line must contain a
label. The action oEQUIs to define the given label name to the value of its (only) operand. This
definition is absolute, and cannot change later. So, for example,

message db 'hello, world’
msglen equ $-message

definesmsglen to be the constant 1Zasglen may not then be redefined later. This is not a
preprocessor definition either: the valuene$glen is evaluatedonce using the value o$ (see
section 3.5 for an explanation $§ at the point of definition, rather than being evaluated wherever
it is referenced and using the valuebadt the point of reference. Note that the operand BQidis

also a critical expression (section 3.8).

3.2.5 TIMES: Repeating Instructions or Data

The TIMES prefix causes the instruction to be assembled multiple times. This is partly present as
NASM'’s equivalent of theDUP syntax supported by MASM-compatible assemblers, in that you
can code

zerobuf: times 64 db 0

or similar things; bufTIMES is more versatile than that. The argumenfTtMES is not just a
numeric constant, but a numeegpressionso you can do things like

buffer: db 'hello, world’
times 64-$+buffer db *’

which will store exactly enough spaces to make the total lengthufér up to 64. Finally,
TIMES can be applied to ordinary instructions, so you can code trivial unrolled loops in it:

times 100 movsb

Note that there is no effective difference betwgemes 100 resb 1 andresb 100 , except
that the latter will be assembled about 100 times faster due to the internal structure of the assembler.

The operand tdIMES, like that of EQUand those oRESBand friends, is a critical expression
(section 3.8).

Note also thalfIMES can't be applied to macros: the reason for this is THeES is processed

after the macro phase, which allows the argumenTIMES to contain expressions such as
64-%+buffer as above. To repeat more than one line of code, or a complex macro, use the
preprocessdiorep directive.

3.3 Effective Addresses

An effective address is any operand to an instruction which references memory. Effective addresses,
in NASM, have a very simple syntax: they consist of an expression evaluating to the desired
address, enclosed in square brackets. For example:

25

wordvar dw 123
mov ax,[wordvar]
mov ax,[wordvar+1]
mov ax,[es:wordvar+bx]

Anything not conforming to this simple system is not a valid memory reference in NASM, for
examplees:wordvar[bx]

More complicated effective addresses, such as those involving more than one register, work in
exactly the same way:

mov eax,[ebx*2+ecx+offset]
mov ax,[bp+di+8]

NASM is capable of doing algebra on these effective addresses, so that things which don't
necessarilyook legal are perfectly all right:

mov eax,[ebx*5] ; assembles as [ebx*4+ebx]
mov eax,[labell*2-label2] ;ie [labell+(labell-label2)]

Some forms of effective address have more than one assembled form; in most such cases NASM
will generate the smallest form it can. For example, there are distinct assembled forms for the
32-hit effective addressg¢sax*2+0] and[eax+eax] , and NASM will generally generate the

latter on the grounds that the former requires four bytes to store a zero offset.

NASM has a hinting mechanism which will cau@ax+ebx] and[ebx+eax] to generate
different opcodes; this is occasionally useful becdesieebp] and[ebp+esi] have different
default segment registers.

However, you can force NASM to generate an effective address in a particular form by the use of
the keywordBYTE WORDWORRNANOSPLIT. If you needeax+3] to be assembled using a
double-word offset field instead of the one byte NASM will normally generate, you can code
[dword eax+3] . Similarly, you can force NASM to use a byte offset for a small value which it
hasn't seen on the first pass (see section 3.8 for an example of such a code fragment) by using
[byte eax+offset] . As special casefhyte eax] will code [eax+0] with a byte offset

of zero, anddword eax] will code it with a double—word offset of zero. The normal form,

[eax] , will be coded with no offset field.

The form described in the previous paragraph is also useful if you are trying to access data in a
32-bit segment from within 16 bit code. For more information on this see the section on
mixed-size addressing (section 9.2). In particular, if you need to access data with a known offset
that is larger than will fit in a 16—bit value, if you don't specify that it is a dword offset, nasm will
cause the high word of the offset to be lost.

Similarly, NASM will split [eax*2] into [eax+eax] because that allows the offset field to be

absent and space to be saved; in fact, it will also spdax*2+offset] into
[eax+eax+offset] . You can combat this behaviour by the use of M@SPLIT keyword:
[nosplit eax*2] will force [eax*2+0] to be generated literally.

In 64-bit mode, NASM will by default generate absolute addressesREhekeyword makes it
produceRIP —relative addresses. Since this is frequently the normally desired behaviour, see the
DEFAULTdirective (section 5.2). The keywoABS overridesREL

3.4 Constants
NASM understands four different types of constant: numeric, character, string and floating—point.

3.4.1 Numeric Constants

A numeric constant is simply a number. NASM allows you to specify numbers in a variety of
number bases, in a variety of ways: you can sifiQ or O, andB for hex, octal and binary, or you

can prefixOx for hex in the style of C, or you can prefixfor hex in the style of Borland Pascal.
Note, though, that th® prefix does double duty as a prefix on identifiers (see section 3.1), so a hex
number prefixed with & sign must have a digit after tBerather than a letter.

Numeric constants can have underscorédnterspersed to break up long strings.
Some examples:

mov ax,100 ; decimal

mov ax,0azh ; hex

mov ax,$0a2 ; hex again: the 0 is required
mov ax,0xa2 ; hex yet again

mov ax,777q : octal

mov ax,7770 ; octal again

mov ax,10010011b ; binary
mov ax,1001_0011b ; same binary constant

3.4.2 Character Constants

A character constant consists of up to four characters enclosed in either single ‘quotes),(

double quotes"(..") or backquotes'.(."). Single or double quotes are equivalent to NASM
(except of course that surrounding the constant with single quotes allows double quotes to appear
within it and vice versa); the contents of those are represented verbatim. Strings enclosed in
backquotes support C—style-escapes for special characters.

A character constant with more than one character will be arranged with little—endian order in mind:
if you code

mov eax,’'abcd’

then the constant generated is G861626364 , but 0x64636261 , so that if you were then to
store the value into memory, it would reaticd rather thandcba. This is also the sense of
character constants understood by the Penti@RWID instruction.

The following escape sequences are recognized by backquoted strings:

\ single quote ()

\" double quote ()

\' backquote (')

\\ backslash (\)

\? question mark (?)
\a BEL (ASCII 7)

\b BS (ASCII 8)

\n LF (ASCII 10)

\v VT (ASCII 11)

\f FF (ASCII 12)

\r CR (ASCII 13)

\e ESC (ASCII 27)

\377 Up to 3 octal digits — literal byte

\XFF Up to 2 hexadecimal digits - literal byte
\ul234 4 hexadecimal digits — Unicode character
\U12345678 8 hexadecimal digits — Unicode character

All other escape sequences are reserved. Notédthameaning aNUL character (ASCII 0), is a
special case of the octal escape sequence.

27

Unicode characters specified witlh or\U are converted to UTF-8. For example, the following
lines are all equivalent:

db \u263a’ ; UTF-8 smiley face
db ‘\xe2\x98\xba' ; UTF-8 smiley face
db OE2h, 098h, OBAh ; UTF-8 smiley face

3.4.3 String Constants

String constants are only acceptable to some pseudo-instructions, namdéhg flamily and
INCBIN .

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum-size character constants for the conditions. So the following are equivalent:

db ’hello’ ; string constant

db ’'h';e’I'VI'’o’ ; equivalent character constants
And the following are also equivalent:

dd ’ninechars’ ; doubleword string constant

dd ‘’nine’,char’,’s’ ; becomes three doublewords
db ’ninechars’,0,0,0 ; and really looks like this

Note that when used as operands toDBdamily pseudo—-instructions, quoted strings are treated as

a string constants even if they are short enough to be a character constant, because otherwise
db’ab’ would have the same effectds’a’ , which would be silly. Similarly, three—character

or four—character constants are treated as strings when they are ope2Wtnb so forth.

3.4.4 Floating—Point Constants
Floating—point constants are acceptable only as argumeilB, tbVW DD DQ DT, andDQ or as

arguments to the special operators float8 ~ , _ floatl6_ , _ float32__
_ float64 __float80m__ __float80e _ float128l , and
_ floatl28h__

Floating—point constants are expressed in the traditional form: digits, then a period, then optionally
more digits, then optionally a& followed by an exponent. The period is mandatory, so that NASM
can distinguish betweesid 1 , which declares an integer constant, dddl.0 which declares a
floating—point constant. NASM also support C99-style hexadecimal floating—p@ixi:
hexadecimal digits, period, optionally more hexadeximal digits, then option&ljolowed by a

binary (not hexadecimal) exponent in decimal notation.

Underscores to break up groups of digits are permitted in floating—point constants as well.
Some examples:

db -0.2 ; "Quarter precision”

dw -0.5 ; IEEE 754r/SSES5 half precision
dd 1.2 ; an easy one

dd Ox1lp+2 ; 1.0x27"2 =4.0

dg 1.e10 ; 10,000,000,000

dg 1.e+10 ; synonymous with 1.e10

dg 1l.e-10 ; 0.000 000 000 1

dt 3.141592653589793238462 ; pi

do 1.e+4000 ; IEEE 754r quad precision

The 8-bit "quarter—precision” floating—point format is sign:exponent:mantissa = 1:4:3 with an
exponent bias of 7. This appears to be the most frequently used 8-bit floating—point format,
although it is not covered by any formal standard. This is sometimes called a "minifloat."

The special operators are used to produce floating—point numbers in other contexts. They produce
the binary representation of a specific floating—point number as an integer, and can use anywhere
integer constants are used in an expressiofioat80m__ and__ float80e___ produce the

64-bit mantissa and 16-bit exponent of an 80-bit floating—point number, dht128]

and _ floatl28h__ produce the lower and upper 64-bit halves of a 128-bit floating—point
number, respectively.

For example:
mov rax, float64_ (3.141592653589793238462)

... would assign the binary representation of pi as a 64-bit floating point numb&AXtd his is
exactly equivalent to:

mov rax,0x400921fb54442d18

NASM cannot do compile—time arithmetic on floating—point constants. This is because NASM is
designed to be portable — although it always generates code to run on x86 processors, the assemble
itself can run on any system with an ANSI C compiler. Therefore, the assembler cannot guarantee
the presence of a floating—point unit capable of handling the Intel number formats, and so for
NASM to be able to do floating arithmetic it would have to include its own complete set of
floating—point routines, which would significantly increase the size of the assembler for very little

benefit.

The special tokens_Infinity ,__ONaN__(or __NaN_) and__SNaN__ can be used to
generate infinities, quiet NaNs, and signalling NaNs, respectively. These are normally used as
macros:

%define Inf __Infinity
%define NaN __ QNaN___

dg +1.5, -Inf, NaN ; Double—precision constants

3.5 Expressions

Expressions in NASM are similar in syntax to those in C. Expressions are evaluated as 64-bit
integers which are then adjusted to the appropriate size.

NASM supports two special tokens in expressions, allowing calculations to involve the current
assembly position: th® and$$ tokens.$ evaluates to the assembly position at the beginning of the
line containing the expression; so you can code an infinite loop 0MRg$. $$ evaluates to the
beginning of the current section; so you can tell how far into the section you are bi$usify .

The arithmetic operators provided by NASM are listed here, in increasing order of precedence.
3.5.1 | : Bitwise OR Operator

The | operator gives a bitwise OR, exactly as performed byOiRenachine instruction. Bitwise
OR is the lowest-priority arithmetic operator supported by NASM.

3.5.2 ~: Bitwise XOR Operator

A provides the bitwise XOR operation.
3.5.3 &: Bitwise AND Operator

& provides the bitwise AND operation.

29

30

3.5.4 << and >>: Bit Shift Operators

<< gives a bit-shift to the left, just as it does in C.58&3 evaluates to 5 times 8, or 48> gives
a bit=shift to the right; in NASM, such a shiftagvaysunsigned, so that the bits shifted in from the
left—-hand end are filled with zero rather than a sign—extension of the previous highest bit.

3.5.5 + and -: Addition and Subtraction Operators
The+ and- operators do perfectly ordinary addition and subtraction.
3.5.6*,/,/l ,%and%%Multiplication and Division

* is the multiplication operatof. and// are both division operators:is unsigned division and
is signed division. Similarlyeand%%provide unsigned and signed modulo operators respectively.

NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo
operator.

Since thécharacter is used extensively by the macro preprocessor, you should ensure that both the
signed and unsigned modulo operators are followed by white space wherever they appear.

3.5.7 Unary Operators:+, —, ~,! and SEG

The highest—priority operators in NASM’s expression grammar are those which only apply to one
argument— negates its operand, does nothing (it's provided for symmetry witf), ~ computes

the one’s complement of its operarid,is the logical negation operator, aB&G provides the
segment address of its operand (explained in more detail in section 3.6).

3.6 SEGand WRT

When writing large 16-bit programs, which must be split into multiple segments, it is often
necessary to be able to refer to the segment part of the address of a symbol. NASM supports the
SEGoperator to perform this function.

The SEG operator returns thpreferred segment base of a symbol, defined as the segment base
relative to which the offset of the symbol makes sense. So the code

mov ax,seg symbol
mov es,ax
mov bx,symbol

will load ES:BX with a valid pointer to the symbs{mbol .

Things can be more complex than this: since 16-bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one.
NASM lets you do this, by the use of t¥RT(With Reference To) keyword. So you can do things

like

mov ax,weird_seg ; weird_seg is a segment base
mov es,ax _
mov bx,symbol wrt weird_seg

to loadES:BX with a different, but functionally equivalent, pointer to the synsiyatbol .

NASM supports far (inter-segment) calls and jumps by means of the syntax
call segment:offset , Wheresegment andoffset both represent immediate values. So to
call a far procedure, you could code either of

call (seg procedure):procedure
call weird_seg:(procedure wrt weird_seq)

(The parentheses are included for clarity, to show the intended parsing of the above instructions.
They are not necessary in practice.)

NASM supports the syntagall far procedure as a synonym for the first of the above
usagesJMPworks identically taCALL in these examples.

To declare a far pointer to a data item in a data segment, you must code
dw symbol, seg symbol

NASM supports no convenient synonym for this, though you can always invent one using the
macro processor.

3.7 STRICT: Inhibiting Optimization

When assembling with the optimizer set to level 2 or higher (see section 2.1.22), NASM will use
size specifiersRYTE WORPDWORBWORD WORPOWORDBr YWORD but will give them the
smallest possible size. The keywdBIRICT can be used to inhibit optimization and force a
particular operand to be emitted in the specified size. For example, with the optimizer on, and in
BITS 16 mode,

push dword 33
is encoded in three byté6é 6A 21 , whereas
push strict dword 33
is encoded in six bytes, with a full dword immediate opef@8 21 00 00 00

With the optimizer off, the same code (six bytes) is generated wheth&TRKET keyword was
used or not.

3.8 Critical Expressions

Although NASM has an optional multi-pass optimizer, there are some expressions which must be
resolvable on the first pass. These are callgtical Expressions

The first pass is used to determine the size of all the assembled code and data, so that the secon
pass, when generating all the code, knows all the symbol addresses the code refers to. So one thing
NASM can’t handle is code whose size depends on the value of a symbol declared after the code in
guestion. For example,

times (label-$) db 0
label: db 'Where am 1?’

The argument td@IMES in this case could equally legally evaluate to anything at all; NASM wiill
reject this example because it cannot tell the size of tM&S line when it first sees it. It will just
as firmly reject the slightly paradoxical code

times (label-$+1) db O
label: db 'NOW where am 1?7’

in whichanyvalue for theTIMES argument is by definition wrong!

NASM rejects these examples by means of a concept calidtical expressionwhich is defined

to be an expression whose value is required to be computable in the first pass, and which must
therefore depend only on symbols defined before it. The argument ToMIES prefix is a critical
expression; for the same reason, the arguments RESBfamily of pseudo—-instructions are also
critical expressions.

Critical expressions can crop up in other contexts as well: consider the following code.

31

mov ax,symboll
symboll equ symbol2
symbol?2:

On the first pass, NASM cannot determine the valugyofboll , becausesymboll is defined to

be equal tosymbol2 which NASM hasn’t seen yet. On the second pass, therefore, when it
encounters the linenov ax,symboll , it is unable to generate the code for it because it still
doesn’'t know the value afymboll . On the next line, it would see tE€Uagain and be able to
determine the value agfymboll , but by then it would be too late.

NASM avoids this problem by defining the right-hand side oEUstatement to be a critical
expression, so the definition sgmboll would be rejected in the first pass.

There is a related issue involving forward references: consider this code fragment.

mov eax,[ebx+offset]
offset equ 10

NASM, on pass one, must calculate the size of the instructiom eax,[ebx+offset]

without knowing the value afffset . It has no way of knowing thafffset is small enough to

fit into a one—byte offset field and that it could therefore get away with generating a shorter form of
the effective—address encoding; for all it knows, in pass offiget could be a symbol in the

code segment, and it might need the full four-byte form. So it is forced to compute the size of the
instruction to accommodate a four—byte address part. In pass two, having made this decision, it is
now forced to honour it and keep the instruction large, so the code generated in this case is not as
small as it could have been. This problem can be solved by defifisey before using it, or by

forcing byte size in the effective address by codloyge ebx+offset]

Note that use of theOn switch (with n>=2) makes some of the above no longer true (see section
2.1.22).

3.9 Local Labels

NASM gives special treatment to symbols beginning with a period. A label beginning with a single
period is treated aslacal label, which means that it is associated with the previous non-local label.
So, for example:

labell ; some code

Jloop
: some more code
jne .loop
ret

label2 ; some code

loop
: some more code
jne .loop
ret

In the above code fragment, ealiiE instruction jumps to the line immediately before it, because
the two definitions ofloop are kept separate by virtue of each being associated with the previous
non-local label.

This form of local label handling is borrowed from the old Amiga assembler DevPac; however,
NASM goes one step further, in allowing access to local labels from other parts of the code. This is
achieved by means afefining a local label in terms of the previous non-local label: the first
definition of .loop above is really defining a symbol calléabell.loop , and the second
defines a symbol callddbel2.loop . So, if you really needed to, you could write

label3 ; some more code
: and some more

jmp labell.loop

Sometimes it is useful — in a macro, for instance — to be able to define a label which can be
referenced from anywhere but which doesn’t interfere with the normal local-label mechanism. Such
a label can't be non-local because it would interfere with subsequent definitions of, and references
to, local labels; and it can’t be local because the macro that defined it wouldn’t know the label’s full
name. NASM therefore introduces a third type of label, which is probably only useful in macro
definitions: if a label begins with the special prefi@ , then it does nothing to the local label
mechanism. So you could code

labell: : a non-local label
Jlocal: ; this is really labell.local
..@@foo: ; this is a special symbol
label2: ; another non—-local label
Jocal: ; this is really label2.local

mp .@@foo ; this will jump three lines up

NASM has the capacity to define other special symbols beginning with a double period: for
example,.start is used to specify the entry point in thig output format (see section 6.2.6).

33

Chapter 4: The NASM Preprocessor

NASM contains a powerful macro processor, which supports conditional assembly, multi-level file
inclusion, two forms of macro (single-line and multi-line), and a ‘context stack’ mechanism for
extra macro power. Preprocessor directives all begin viitisign.

The preprocessor collapses all lines which end with a backslash (\) character into a single line. Thus:

%define THIS_VERY_LONG_MACRO_NAME_IS_DEFINED_TO \
THIS_VALUE

will work like a single—line macro without the backslash—newline sequence.

4.1 Single—-Line Macros
4.1.1 The Normal Way:%define

Single-line macros are defined using #define preprocessor directive. The definitions work in
a similar way to C; so you can do things like

%define ctrl Ox1F &
%define param(a,b) ((a)+(a)*(b))
mov byte [param(2,ebx)], ctrl 'D’
which will expand to
mov byte [(2)+(2)*(ebx)], OX1F & 'D’
When the expansion of a single-line macro contains tokens which invoke another macro, the
expansion is performed at invocation time, not at definition time. Thus the code
%define a(x) 1+b(x)
%define b(x) 2*x

mov ax,a(8)

will evaluate in the expected way moov ax,1+2*8 , even though the mactowasn’t defined at
the time of definition of.

Macros defined withPodefine are case sensitive: aftétdefine foo bar , only foo will
expand tdbar : Foo or FOOwill not. By using%idefine instead oRedefine (the ‘i’ stands for
‘insensitive’) you can define all the case variants of a macro at once, Séitledine foo bar
would causdoo , Foo, FOQfOO and so on all to expand bar .

There is a mechanism which detects when a macro call has occurred as a result of a previous
expansion of the same macro, to guard against circular references and infinite loops. If this happens,
the preprocessor will only expand the first occurrence of the macro. Hence, if you code

%define a(x) 1+a(x)

mov ax,a(3)

the macroa(3) will expand once, becoming+a(3) , and will then expand no further. This
behaviour can be useful: see section 8.1 for an example of its use.

You can overload single-line macros: if you write

%define foo(x) 1+x
%define foo(x,y) 1+x*y

the preprocessor will be able to handle both types of macro call, by counting the parameters you
pass; sdoo(3) will becomel+3 whereasoo(ebx,2) will becomel+ebx*2 . However, if
you define

%define foo bar

then no other definition ofoo will be accepted: a macro with no parameters prohibits the
definition of the same name as a maeith parameters, and vice versa.

This doesn’t prevent single—line macros beiedefined you can perfectly well define a macro with
%define foo bar

and then re—define it later in the same source file with

%define foo baz

Then everywhere the macfoo is invoked, it will be expanded according to the most recent
definition. This is particularly useful when defining single—line macros ##ssign (see section
4.1.6).

You can pre—define single-line macros using the ‘—d’ option on the NASM command line: see
section 2.1.18.

4.1.2 Enhancing %define%xdefine

To have a reference to an embedded single—-line macro resolved at the time that it is embedded, as
opposed to when the calling macro is expanded, you need a different mechanism to the one offered
by %define . The solution is to us¥xdefine , or it's case—insensitive counterpésixdefine

Suppose you have the following code:

%define isTrue 1
%define isFalse isTrue
%define isTrue 0

vall: db isFalse
%define isTrue 1

val2: db isFalse

In this caseyall is equal to 0, andal2 is equal to 1. This is because, when a single-line macro
is defined using%define , it is expanded only when it is called. AsFalse expands to
isTrue , the expansion will be the current valuasdfrue . The first time it is called that is 0, and
the second time it is 1.

If you wantedisFalse to expand to the value assigned to the embedded n&doe at the
time thatisFalse was defined, you need to change the above code &hxoefine .

%xdefine isTrue 1
%xdefine isFalse isTrue
%xdefine isTrue 0

vall: db isFalse

35

%xdefine isTrue 1

val2: db isFalse

Now, each time thaisFalse s called, it expands to 1, as that is what the embedded macro
isTrue expanded to at the time thaFalse was defined.

4.1.3 Concatenating Single Line Macro Token$po+

Individual tokens in single line macros can be concatenated, to produce longer tokens for later
processing. This can be useful if there are several similar macros that perform similar functions.

Please note that a space is required &fterin order to disambiguate it from the syn€ax1used
in multiline macros.

As an example, consider the following:
%define BDASTART 400h : Start of BIOS data area

struc tBIOSDA : its structure
.COM1laddr RESW 1
.COM2addr RESW 1
;..and so on

endstruc

Now, if we need to access the elements of tBIOSDA in different places, we can end up with:

mov ax,BDASTART + tBIOSDA.COM1addr
mov bx,BDASTART + tBIOSDA.COM2addr

This will become pretty ugly (and tedious) if used in many places, and can be reduced in size
significantly by using the following macro:

; Macro to access BIOS variables by their names (from tBDA):
%define BDA(x) BDASTART + tBIOSDA. %+ X
Now the above code can be written as:

mov ax,BDA(COMZladdr)
mov bx,BDA(COM2addr)

Using this feature, we can simplify references to a lot of macros (and, in turn, reduce typing errors).
4.1.4 The Macro Name ltself%?and %??

The special symbol%6? and%?? can be used to reference the macro name itself inside a macro
expansion, this is supported for both single—and multi-line ma%®@sefers to the macro name as
invoked whereas%?? refers to the macro name dsclared The two are always the same for
case—sensitive macros, but for case—insensitive macros, they can differ.

For example:

%idefine Foo mov %7?,%7??
foo
FOO

will expand to:

mov foo,Foo
mov FOO,Foo

The sequence:
%idefine keyword $%7?

can be used to make a keyword "disappear”, for example in case a new instruction has been used a:
a label in older code. For example:

%idefine pause $%? : Hide the PAUSE instruction
4.1.5 Undefining macros%undef

Single-line macros can be removed with #teindef command. For example, the following
sequence:

%define foo bar
%undef foo
mov eax, foo

will expand to the instructiomov eax, foo , since afte®oundef the macrdoo is no longer
defined.

Macros that would otherwise be pre—defined can be undefined on the command-line using the ‘-u’
option on the NASM command line: see section 2.1.19.

4.1.6 Preprocessor Variables¥assign

An alternative way to define single—line macros is by means o¥thssign command (and its
case-insensitive counterp&fiassign , which differs from%assign in exactly the same way
that%idefine differs from%define).

%assign is used to define single-line macros which take no parameters and have a numeric value.
This value can be specified in the form of an expression, and it will be evaluated once, when the
%assign directive is processed.

Like %define , macros defined usirfpassign can be re—defined later, so you can do things like
%assign i i+1
to increment the numeric value of a macro.

%assign is useful for controlling the termination &frep preprocessor loops: see section 4.5 for
an example of this. Another use féiassign is given in section 7.4 and section 8.1.

The expression passed%gassign is a critical expression (see section 3.8), and must also evaluate
to a pure number (rather than a relocatable reference such as a code or data address, or anythin
involving a register).

4.2 String Handling in Macros: %strlen and %substr

It's often useful to be able to handle strings in macros. NASM supports two simple string handling
macro operators from which more complex operations can be constructed.

4.2.1 String Length:%strlen

The %strlen macro is liked%assign macro in that it creates (or redefines) a numeric value to a
macro. The difference is that witbstrlen , the numeric value is the length of a string. An
example of the use of this would be:

%strlen charcnt ‘'my string’

37

In this examplecharcnt would receive the value 9, just as if @assign had been used. In this
example,’my string’ was a literal string but it could also have been a single-line macro that
expands to a string, as in the following example:

%define sometext 'my string’
%strlen charcnt sometext

As in the first case, this would resultdharcnt being assigned the value of 9.
4.2.2 Sub-strings%substr

Individual letters in strings can be extracted uglgubstr . An example of its use is probably
more useful than the description:

%substr mychar 'xyzw’ 1 ; equivalent to %define mychar 'x’
%substr mychar 'xyzw’ 2 ; equivalent to %define mychar 'y’
%substr mychar 'xyzw’ 3 ; equivalent to %define mychar 'z’

%substr mychar 'xyzw’ 2,2 ; equivalent to %define mychar 'yz’
%substr mychar 'xyzw’ 2,-1 ; equivalent to %define mychar 'yzw’
%substr mychar 'xyzw’ 2,-2 ; equivalent to %define mychar 'yz’

As with %strlen (see section 4.2.1), the first parameter is the single—line macro to be created and
the second is the string. The third parameter specifies the first character to be selected, and the
optional fourth parameter preceeded by comma) is the length. Note that the first index is 1, not O
and the last index is equal to the value %istrlen would assign given the same string. Index
values out of range result in an empty string. A negative length means "until N-1 characters before
the end of string", i.ez1 means until end of string2 until one character before, etc.

4.3 Multi-Line Macros: %macro

Multi-line macros are much more like the type of macro seen in MASM and TASM: a multi-line
macro definition in NASM looks something like this.

%macro prologue 1
push ebp
mov ebp,esp
sub esp, %l

%endmacro

This defines a C-like function prologue as a macro: so you would invoke the macro with a call such
as

myfunc: prologue 12
which would expand to the three lines of code

myfunc: push ebp
mov ebp,esp
sub esp,12

The numberl after the macro name in tRémacro line defines the number of parameters the
macroprologue expects to receive. The use%di inside the macro definition refers to the first
parameter to the macro call. With a macro taking more than one parameter, subsequent parameters
would be referred to &2 %3and so on.

Multi-line macros, like single-line macros, are case—sensitive, unless you define them using the
alternative directivésimacro .

If you need to pass a comma @art of a parameter to a multi-line macro, you can do that by
enclosing the entire parameter in braces. So you could code things like

%macro silly 2

%2:db %1

%endmacro
silly 'a’, letter_a ; letter_a: db’a’
silly "ab’, string_ab ; string_ab: db 'ab’
silly @{13,10@}, crlf ;erif: db 13,10

4.3.1 Overloading Multi-Line Macros

As with single-line macros, multi-line macros can be overloaded by defining the same macro name
several times with different numbers of parameters. This time, no exception is made for macros
with no parameters at all. So you could define

%macro prologue 0

push ebp
mov ebp,esp

%endmacro
to define an alternative form of the function prologue which allocates no local stack space.

Sometimes, however, you might want to ‘overload’ a machine instruction; for example, you might
want to define

%macro push 2

push %1
push %2
%endmacro

so that you could code

push ebx ; this line is not a macro call
push eax,ecx ; but this one is

Ordinarily, NASM will give a warning for the first of the above two lines, siposh is now
defined to be a macro, and is being invoked with a number of parameters for which no definition
has been given. The correct code will still be generated, but the assembler will give a warning. This
warning can be disabled by the use of the-macro—params command-line option (see section
2.1.24).

4.3.2 Macro—Local Labels

NASM allows you to define labels within a multi-line macro definition in such a way as to make
them local to the macro call: so calling the same macro multiple times will use a different label each
time. You do this by prefixingo%to the label name. So you can invent an instruction which
executes KETIif the Z flag is set by doing this:

%macro retz 0

jnz %%skip

39

40

ret
%%skip:

%endmacro

You can call this macro as many times as you want, and every time you call it NASM will make up
a different ‘real’ name to substitute for the laP&boskip. The names NASM invents are of the
form ..@2345.skip , where the number 2345 changes with every macro call...@eprefix
prevents macro-local labels from interfering with the local label mechanism, as described in section
3.9. You should avoid defining your own labels in this form (tl@ prefix, then a number, then
another period) in case they interfere with macro—local labels.

4.3.3 Greedy Macro Parameters

Occasionally it is useful to define a macro which lumps its entire command line into one parameter
definition, possibly after extracting one or two smaller parameters from the front. An example

might be a macro to write a text string to a file in MS-DOS, where you might want to be able to

write

writefile [filehandle],"hello, world",13,10

NASM allows you to define the last parameter of a macro wgréedy meaning that if you invoke
the macro with more parameters than it expects, all the spare parameters get lumped into the last
defined one along with the separating commas. So if you code:

%macro writefile 2+

jmp %%endstr
%%ostr: db %2
%%endstr:
mov dx,%%str
mov cX,%%endstr—%%str
mov bx,%1
mov ah,0x40

int 0x21
%endmacro
then the example call toritefile above will work as expected: the text before the first comma,
[filehandle] , is used as the first macro parameter and expanded%vhisreferred to, and all

the subsequent text is lumped ift@and placed after thib.

The greedy nature of the macro is indicated to NASM by the use ef $ign after the parameter
count on thé&omacro line.

If you define a greedy macro, you are effectively telling NASM how it should expand the macro
given any number of parameters from the actual number specified up to infinity; in this case, for

example, NASM now knows what to do when it sees a callritefile with 2, 3, 4 or more
parameters. NASM will take this into account when overloading macros, and will not allow you to
define another form ofritefile taking 4 parameters (for example).

Of course, the above macro could have been implemented as a non—greedy macro, in which case
the call to it would have had to look like

writefile [filehandle], @{"hello, world",13,10@}

NASM provides both mechanisms for putting commas in macro parameters, and you choose which
one you prefer for each macro definition.

See section 5.3.1 for a better way to write the above macro.
4.3.4 Default Macro Parameters

NASM also allows you to define a multi-line macro withaage of allowable parameter counts. If
you do this, you can specify defaults for omitted parameters. So, for example:

%macro die 0—-1 "Painful program death has occurred."

writefile 2,%1
mov ax,0x4c01
int 0x21

%endmacro

This macro (which makes use of theitefile macro defined in section 4.3.3) can be called

with an explicit error message, which it will display on the error output stream before exiting, or it
can be called with no parameters, in which case it will use the default error message supplied in the
macro definition.

In general, you supply a minimum and maximum number of parameters for a macro of this type; the
minimum number of parameters are then required in the macro call, and then you provide defaults
for the optional ones. So if a macro definition began with the line

%macro foobar 1-3 eax,[ebx+2]

then it could be called with between one and three parameter¥landuld always be taken from
the macro call%?2 if not specified by the macro call, would defauletx , and%3if not specified
would default tgebx+2]

You may omit parameter defaults from the macro definition, in which case the parameter default is
taken to be blank. This can be useful for macros which can take a variable number of parameters,
since the%o0token (see section 4.3.5) allows you to determine how many parameters were really
passed to the macro call.

This defaulting mechanism can be combined with the greedy—parameter mechanismgiso the
macro above could be made more powerful, and more useful, by changing the first line of the
definition to

%macro die 0—1+ "Painful program death has occurred.”,13,10

The maximum parameter count can be infinite, denotet ly this case, of course, it is impossible
to provide dull set of default parameters. Examples of this usage are shown in section 4.3.6.

4.3.5 %0Q Macro Parameter Counter

For a macro which can take a variable number of parameters, the parameter rét®wilicesturn

a numeric constant giving the number of parameters passed to the macro. This can be used as ar
argument to%rep (see section 4.5) in order to iterate through all the parameters of a macro.
Examples are given in section 4.3.6.

4.3.6 %rotate : Rotating Macro Parameters

Unix shell programmers will be familiar with thehift shell command, which allows the
arguments passed to a shell script (referenceil a$2 and so on) to be moved left by one place,
so that the argument previously referenced$asbecomes available &l, and the argument
previously referenced & is no longer available at all.

41

NASM provides a similar mechanism, in the form%fotate . As its name suggests, it differs
from the Unixshift in that no parameters are lost: parameters rotated off the left end of the
argument list reappear on the right, and vice versa.

%rotate is invoked with a single numeric argument (which may be an expression). The macro
parameters are rotated to the left by that many places. If the arguniérdtiéde is negative, the
macro parameters are rotated to the right.

So a pair of macros to save and restore a set of registers might work as follows:
%macro multipush 1-*

%rep %0
push %1

%rotate 1

%endrep

%endmacro

This macro invokes th®USHinstruction on each of its arguments in turn, from left to right. It
begins by pushing its first argumeftl, then invokeslrotate to move all the arguments one
place to the left, so that the original second argument is now availal$fel aRepeating this
procedure as many times as there were arguments (achieved by supfdasgthe argument to
%rep) causes each argument in turn to be pushed.

Note also the use df as the maximum parameter count, indicating that there is no upper limit on
the number of parameters you may supply tatthéipush macro.

It would be convenient, when using this macro, to haP®©®&equivalent, whichldidn’t require the
arguments to be given in reverse order. ldeally, you would writenthgpoush macro call, then
cut—and-paste the line to where the pop needed to be done, and change the name of the callec
macro tomultipop , and the macro would take care of popping the registers in the opposite order
from the one in which they were pushed.

This can be done by the following definition:
%macro multipop 1-*
%rep %0
Y%rotate —1
pop %1
%endrep
%endmacro

This macro begins by rotating its arguments one place tagiie so that the origindhst argument
appears a%l This is then popped, and the arguments are rotated right again, so the second-to-last
argument becomé1 Thus the arguments are iterated through in reverse order.

4.3.7 Concatenating Macro Parameters

NASM can concatenate macro parameters on to other text surrounding them. This allows you to
declare a family of symbols, for example, in a macro definition. If, for example, you wanted to
generate a table of key codes along with offsets into the table, you could code something like

%macro keytab_entry 2

keypos%l equ $-keytab
db %2

%endmacro

keytab:
keytab_entry F1,128+1
keytab_entry F2,128+2
keytab_entry Return,13

which would expand to

keytab:

keyposF1 equ $-keytab
db 128+1

keyposF2 equ $—keytab
db 128+2

keyposReturn equ $-keytab
do 13

You can just as easily concatenate text on to the other end of a macro parameter, byodfiting

If you need to append @igit to a macro parameter, for example defining labmtd andfoo2
when passed the parameteo , you can't codéoll because that would be taken as the eleventh
macro parameter. Instead, you must c&dé}1l , which will separate the firgt (giving the number

of the macro parameter) from the second (literal text to be concatenated to the parameter).

This concatenation can also be applied to other preprocessor in—-line objects, such as macro-local
labels (section 4.3.2) and context—local labels (section 4.7.2). In all cases, ambiguities in syntax can
be resolved by enclosing everything after #esign and before the literal text in braces: so
%{%foo}bar concatenates the teklir to the end of the real name of the macro—local label
%%foo. (This is unnecessary, since the form NASM uses for the real names of macro-local labels
means that the two usag#g%foolbar and%%foobar would both expand to the same thing
anyway; nevertheless, the capability is there.)

4.3.8 Condition Codes as Macro Parameters

NASM can give special treatment to a macro parameter which contains a condition code. For a
start, you can refer to the macro paramétdrby means of the alternative syntéb¢+1, which

informs NASM that this macro parameter is supposed to contain a condition code, and will cause
the preprocessor to report an error message if the macro is called with a parameter mdtieh is
valid condition code.

Far more usefully, though, you can refer to the macro parameter by me#nrd, affhich NASM
will expand as thenversecondition code. So theetz macro defined in section 4.3.2 can be
replaced by a general conditional-return macro like this:

%macro retc 1
%-1 %%skip
ret

%%skip:

%endmacro

This macro can now be invoked using calls liktc ne , which will cause the conditional-jump
instruction in the macro expansion to come oufjBsor retc po which will make the jump a
JPE.

43

The %+1 macro—parameter reference is quite happy to interpret the argu@Xatand ECXZas
valid condition codes; howeve®—1 will report an error if passed either of these, because no
inverse condition code exists.

4.3.9 Disabling Listing Expansion

When NASM is generating a listing file from your program, it will generally expand multi-line
macros by means of writing the macro call and then listing each line of the expansion. This allows
you to see which instructions in the macro expansion are generating what code; however, for some
macros this clutters the listing up unnecessarily.

NASM therefore provides thaolist qualifier, which you can include in a macro definition to
inhibit the expansion of the macro in the listing file. Thelist qualifier comes directly after
the number of parameters, like this:

%macro foo 1.nolist
Or like this:
%macro bar 1-5+.nolist a,b,c,d,e,f,g,h

4.4 Conditional Assembly

Similarly to the C preprocessor, NASM allows sections of a source file to be assembled only if
certain conditions are met. The general syntax of this feature looks like this:

%if<condition>

; some code which only appears if <condition> is met
%elif<condition2>

; only appears if <condition> is not met but <condition2> is
%else

; this appears if neither <condition> nor <condition2> was met
%endif

The inverse form&oifn and%elifn are also supported.

The %else clause is optional, as is tBeelif clause. You can have more than éfelif clause
as well.

4.4.1 %ifdef : Testing Single-Line Macro Existence

Beginning a conditional-assembly block with the lifGifdef MACRO will assemble the
subsequent code if, and only if, a single-line macro calddCROs defined. If not, then the
%elif and%else blocks (if any) will be processed instead.

For example, when debugging a program, you might want to write code such as

; perform some function
%ifdef DEBUG

writefile 2,"Function performed successfully”,13,10
%endif

; go and do something else

Then you could use the command-line opt@DEBUG0 create a version of the program which
produced debugging messages, and remove the option to generate the final release version of the
program.

You can test for a macnoot being defined by usingpifndef instead ofsifdef . You can also
test for macro definitions i#elif blocks by usingeelifdef — and%elifndef

4.4.2 %ifmacro : Testing Multi-Line Macro Existence

The %ifmacro directive operates in the same way as%ifelef directive, except that it checks
for the existence of a multi-line macro.

For example, you may be working with a large project and not have control over the macros in a
library. You may want to create a macro with one name if it doesn't already exist, and another name
if one with that name does exist.

The %ifmacro is considered true if defining a macro with the given name and number of
arguments would cause a definitions conflict. For example:

%ifmacro MyMacro 1-3
%error "MyMacro 1-3" causes a conflict with an existing macro.
%else
%macro MyMacro 1-3
: insert code to define the macro
%endmacro

%endif

This will create the macro "MyMacro 1-3" if no macro already exists which would conflict with it,
and emits a warning if there would be a definition conflict.

You can test for the macro not existing by using #h#nmacro instead of%ifmacro .
Additional tests can be performeddeelif blocks by usingoelifmacro and%elifnmacro

4.4.3 %ifctx : Testing the Context Stack

The conditional-assembly construifctx ctxname will cause the subsequent code to be
assembled if and only if the top context on the preprocessor’s context stack has the name
ctxname . As with %ifdef , the inverse and%elif forms %ifnctx , %elifctx and
%elifnctx are also supported.

For more details of the context stack, see section 4.7. For a sample %#fetof , see section
4.7.5.

4.4.4 %if : Testing Arbitrary Numeric Expressions

The conditional-assembly constr@if expr will cause the subsequent code to be assembled if
and only if the value of the numeric expressexpr is non-zero. An example of the use of this
feature is in deciding when to break out c¥oeep preprocessor loop: see section 4.5 for a detailed
example.

The expression given &if , and its counterpafbelif , is a critical expression (see section 3.8).

%if extends the normal NASM expression syntax, by providing a set of relational operators which
are not normally available in expressions. The operators, >, <=, >= and <> test equality,
less—than, greater—than, less—or—equal, greater—or—equal and not-equal respectively. The C-like
forms== and!= are supported as alternative forms=oAnd<>. In addition, low—priority logical
operatork&, ™M and|| are provided, supplying logical AND, logical XOR and logical OR. These
work like the C logical operators (although C has no logical XOR), in that they always return either
0 or 1, and treat any non-zero input as 1 (so/thatfor example, returns 1 if exactly one of its
inputs is zero, and 0 otherwise). The relational operators also return 1 for true and O for false.

45

Like most other%if constructs%if has a counterpafelif , and negative form&ifn and

%elifn
4.4.5 %ifidn and %ifidni : Testing Exact Text Identity
The construc®oifidn textl,text2 will cause the subsequent code to be assembled if and

only if textl andtext2 , after expanding single-line macros, are identical pieces of text.
Differences in white space are not counted.

%ifidni is similar to%ifidn , but is case—insensitive.

For example, the following macro pushes a register or number on the stack, and allows you to treat
IP as areal register:

%macro pushparam 1

%ifidni %1,ip

call %%label
%%label;
%else

push %1
%endif

%endmacro

Like most other%if constructs,%ifidn has a counterpadoeelifidn , and negative forms
%ifnidn and%elifnidn . Similarly, %ifidni has counterparelifidni , %ifnidni and
%elifnidni

4.4.6 %ifid , %ifnum , %ifstr : Testing Token Types

Some macros will want to perform different tasks depending on whether they are passed a number,
a string, or an identifier. For example, a string output macro might want to be able to cope with
being passed either a string constant or a pointer to an existing string.

The conditional assembly constr@étfid , taking one parameter (which may be blank), assembles
the subsequent code if and only if the first token in the parameter exists and is an identifier.
%ifnum works similarly, but tests for the token being a numeric constaifistr tests for it

being a string.

For example, thevritefile macro defined in section 4.3.3 can be extended to take advantage of
%ifstr in the following fashion:

%macro writefile 2—-3+

%ifstr %2
jmp %%endstr
%if %0 = 3
%%str: db %2,%3
%else
%%str: db %2
%endif
%%endstr: mov dx,%%str
mov cx,%%endstr—%%str
%else
mov dx,%?2
mov ¢X,%3
%endif

mov bx,%1
mov ah,0x40

int 0x21
%endmacro
Then thewritefile macro can cope with being called in either of the following two ways:

writefile [file], strpointer, length
writefile [file], "hello”, 13, 10

In the first, strpointer is used as the address of an already—declared strindemgtth is
used as its length; in the second, a string is given to the macro, which therefore declares it itself and
works out the address and length for itself.

Note the use ofsif inside the%ifstr : this is to detect whether the macro was passed two
arguments (so the string would be a single string constantaf6R would be adequate) or more
(in which case, all but the first two would be lumped together d®anddb %2,%3 would be
required).

The usuaboelif XXX , %ifnXXX and%elifnXXX versions exist for each ébifid , %ifnum
and%ifstr

4.4.7 %iftoken : Test For A Single Token

Some macros will want to do different things depending on if it is passed a single token (e.g. paste it
to something else usir¥g+) versus a multi-token sequence.

The conditional assembly constritiftoken assembles the subsequent code if and only if the
expanded parameters consist of exactly one token, possibly surrounded by whitespace.

For examplel will assemble the subsequent code,+uwill not (- being an operator.)
The usuaboeliftoken , %ifntoken , and%elifntoken variants are also provided.
4.4.8 %ifempty : Test For Empty Expansion

The conditional assembly constri#difempty assembles the subsequent code if and only if the
expanded parameters do not contain any tokens at all, whitespace excepted.

The usuaboelifempty , %ifnempty , and%elifnempty variants are also provided.
4.4.9 %error : Reporting User—Defined Errors

The preprocessor directivierror will cause NASM to report an error if it occurs in assembled
code. So if other users are going to try to assemble your source files, you can ensure that they define
the right macros by means of code like this:

%ifdef SOME_MACRO
; do some setup
%elifdef SOME_OTHER_MACRO
; do some different setup
%else
%error Neither SOME_MACRO nor SOME_OTHER_MACRO was defined.
%endif

Then any user who fails to understand the way your code is supposed to be assembled will be
quickly warned of their mistake, rather than having to wait until the program crashes on being run
and then not knowing what went wrong.

47

4.5 Preprocessor Loops%orep

NASM'’s TIMES prefix, though useful, cannot be used to invoke a multi-line macro multiple times,
because it is processed by NASM after macros have already been expanded. Therefore NASM
provides another form of loop, this time at the preprocessor Bvep.

The directiveorep and%endrep (%orep takes a numeric argument, which can be an expression;
%endrep takes no arguments) can be used to enclose a chunk of code, which is then replicated as
many times as specified by the preprocessor:

%assigni 0
Yorep 64
inc word [table+2*i]
%assign i i+1
%endrep

This will generate a sequence of BMC instructions, incrementing every word of memory from
[table] to [table+126]

For more complex termination conditions, or to break out of a repeat loop part way along, you can
use théoexitrep directive to terminate the loop, like this:

fibonacci:
%assigni 0
%assign j 1
%rep 100
%if j > 65535

%exitrep
%endif

dw j

%assign k j+i
%assign i j
%assign j k
%endrep

fib_number equ ($-fibonacci)/2

This produces a list of all the Fibonacci numbers that will fit in 16 bits. Note that a maximum repeat
count must still be given téorep. This is to prevent the possibility of NASM getting into an
infinite loop in the preprocessor, which (on multitasking or multi—user systems) would typically
cause all the system memory to be gradually used up and other applications to start crashing.

4.6 Source Files and Dependencies
These commands allow you to split your sources into multiple files.
4.6.1 %include : Including Other Files

Using, once again, a very similar syntax to the C preprocessor, NASM'’s preprocessor lets you
include other source files into your code. This is done by the use %fitictude directive:

%include "macros.mac"

will include the contents of the filmacros.mac into the source file containing tBéinclude
directive.

Include files are searched for in the current directory (the directory you're in when you run NASM,
as opposed to the location of the NASM executable or the location of the source file), plus any
directories specified on the NASM command line using-ith@ption.

The standard C idiom for preventing a file being included more than once is just as applicable in
NASM: if the file macros.mac has the form

%ifndef MACROS_ MAC
%define MACROS_ MAC
: now define some macros
%endif

then including the file more than once will not cause errors, because the second time the file is
included nothing will happen because the mMACROS_MAIIl already be defined.

You can force a file to be included even if there i€6inoclude directive that explicitly includes
it, by using the-p option on the NASM command line (see section 2.1.17).

4.6.2 %pathsearch : Search the Include Path

The %pathsearch directive takes a single-line macro name and a filename, and declare or
redefines the specified single-line macro to be the include—path-resolved verson of the filename, if
the file exists (otherwise, it is passed unchanged.)

For example,
%pathsearch MyFoo "foo.bin"

... with —lbins/ in the include path may end up defining the madigFoo to be
"bins/foo.bin"

4.6.3 %depend: Add Dependent Files

The %depend directive takes a filename and adds it to the list of files to be emitted as dependency
generation when theMoptions and its relatives (see section 2.1.4) are used. It produces no output.

This is generally used in conjunction wibpathsearch . For example, a simplified version of the
standard macro wrapper for ti¢CBIN directive looks like:

%imacro incbin 1-2+ 0
%pathsearch dep %1
%depend dep

incbin dep,%?2
%endmacro

This first resolves the location of the file into the madep, then adds it to the dependency lists,
and finally issues the assembler-IeNNCBIN directive.

4.7 The Context Stack

Having labels that are local to a macro definition is sometimes not quite powerful enough:
sometimes you want to be able to share labels between several macro calls. An example might be a
REPEAT... UNTIL loop, in which the expansion of tiREPEATmacro would need to be able to

refer to a label which theJNTIL macro had defined. However, for such a macro you would also
want to be able to nest these loops.

NASM provides this level of power by means afantext stackThe preprocessor maintains a stack

of contexts each of which is characterized by a name. You add a new context to the stack using the
%push directive, and remove one usifgpop. You can define labels that are local to a particular
context on the stack.

4.7.1 %push and %pop Creating and Removing Contexts

The %push directive is used to create a new context and place it on the top of the context stack.
%push requires one argument, which is the name of the context. For example:

49

%push foobar

This pushes a new context callledbar on the stack. You can have several contexts on the stack
with the same name: they can still be distinguished.

The directive%pop, requiring no arguments, removes the top context from the context stack and
destroys it, along with any labels associated with it.

4.7.2 Context—Local Labels

Just as the usa@é%foo defines a label which is local to the particular macro call in which it is
used, the usag®$foo is used to define a label which is local to the context on the top of the
context stack. So tiREPEATandUNTIL example given above could be implemented by means of:

%macro repeat O

%push repeat
%$begin:

%endmacro
%macro until 1

j%-1 %3$begin
%pop
%endmacro
and invoked by means of, for example,

mov cx,string
repeat

add c¢x,3
scasb

until e

which would scan every fourth byte of a string in search of the by&k.in

If you need to define, or access, labels local to the cobh&mtvthe top one on the stack, you can
use%$$foo , or %$$$foo for the context below that, and so on.

4.7.3 Context-Local Single-Line Macros

NASM also allows you to define single—line macros which are local to a particular context, in just
the same way:

%define %$localmac 3

will define the single—line macré&$localmac to be local to the top context on the stack. Of
course, after a subsequéfipush, it can then still be accessed by the nda$$localmac .

4.7.4 %repl : Renaming a Context

If you need to change the name of the top context on the stack (in order, for example, to have it
respond differently t@sifctx), you can execute #pop followed by a%push; but this will have

the side effect of destroying all context—local labels and macros associated with the context that was
just popped.

NASM provides the directivéorepl , which replacesa context with a different name, without
touching the associated macros and labels. So you could replace the destructive code

%pop
%push newname

with the non—destructive versiéfrepl newname .
4.7.5 Example Use of the Context Stack: Block IFs

This example makes use of almost all the context-stack features, including the
conditional-assembly construifctx , to implement a block IF statement as a set of macros.

%macro if 1

%push if
j%-1 %$ifnot

%endmacro
%macro else 0

%ifctx if

%repl else

jmp %$%ifend

%3%$ifnot:
Y%else

%error "expected ‘if’ before ‘else
%endif

%endmacro
%macro endif O

%ifctx if
%3ifnot:
%pop
%elifctx else
%Sifend:
%pop
%else
%error "expected ‘if’ or ‘else’ before ‘endif™
%endif

%endmacro

This code is more robust than tREPEATandUNTIL macros given in section 4.7.2, because it
uses conditional assembly to check that the macros are issued in the right order (for example, not
callingendif beforeif) and issues %berror if they’re not.

In addition, theendif macro has to be able to cope with the two distinct cases of either directly
following anif , or following anelse . It achieves this, again, by using conditional assembly to do
different things depending on whether the context on top of the stiickaselse .

Theelse macro has to preserve the context on the stack, in order to haX$ifhet referred to
by theif macro be the same as the one defined byetidif macro, but has to change the
context’'s name so thandif will know there was an intervenirgjse . It does this by the use of
%repl .

A sample usage of these macros might look like:

51

cmp ax,bx

if ae
cmp bx,cx
if ae
mov ax,cx
else
mov ax,bx
endif
else
cmp ax,cx
if ae
mov ax,cx
endif
endif

The block+F macros handle nesting quite happily, by means of pushing another context,
describing the inneif , on top of the one describing the oufer, thuselse andendif always
refer to the last unmatché&d orelse .

4.8 Standard Macros

NASM defines a set of standard macros, which are already defined when it starts to process any
source file. If you really need a program to be assembled with no pre—defined macros, you can use
the %clear directive to empty the preprocessor of everything but context—local preprocessor
variables and single—line macros.

Most user—level assembler directives (see chapter 5) are implemented as macros which invoke
primitive directives; these are described in chapter 5. The rest of the standard macro set is described
here.

4.8.1 __NASM_MAJOR_, NASM_MINOR_, _ NASM_SUBMINOR__ and
___NASM PATCHLEVEL - NASM Version

The single-line macros NASM_MAJOR_, — NASM_MINOR_, _ NASM_SUBMINOR_and

___NASM_PATCHLEVEL__expand to the me major, minor, subminor and patch level parts of the
version number of NASM being used. So, under NASM 0.98. 32pl1 for example,
NASM_MAJOR__would be defined to be 0, NASM MINOR__would be defined as 98,
NASM_SUBMINOR__ would be defined to 32 and _NASM_PATCHLEVEL_ would be
defined as 1.

4.8.2 __NASM_VERSION_ID_: NASM Version ID

The single-line macro NASM_VERSION_ID__expands to a dword integer representing the full
version number of the version of nasm being used. The value is the equivalent to
NASM_MAJOR, NASM_MINOR_,_ NASM_SUBMINOR___ and

NASM_PATCHLEVEL_ concatenated to produce a single doubleword. Hence, for 0.98.32p1,
the returned number would be equivalent to:

dd 0x00622001

or
db 1,32,98,0

Note that the above lines are generate exactly the same code, the second line is used just to give al
indication of the order that the separate values will be present in memory.

4.8.3 __NASM_VER_: NASM Version string

The single-line macro NASM_VER__expands to a string which defines the version number of
nasm being used. So, under NASM 0.98.32 for example,

db _ NASM_VER__
would expand to
db "0.98.32"

484 FILE__ and__LINE__ : File Name and Line Number

Like the C preprocessor, NASM allows the user to find out the file name and line number
containing the current instruction. The macrdFILE__ expands to a string constant giving the
name of the current input file (which may change through the course of assehclifide
directives are used), and LINE___ expands to a numeric constant giving the current line number
in the input file.

These macros could be used, for example, to communicate debugging information to a macro, since
invoking__LINE__ inside a macro definition (either single—line or multi-line) will return the line
number of the macroeall, rather thardefinition So to determine where in a piece of code a crash is
occurring, for example, one could write a routsti#ihere , which is passed a line number in
EAXand outputs something like ‘line 155: still here’. You could then write a macro

%macro notdeadyet 0
push eax
mov eax,_ LINE__
call stillhere
pop eax
%endmacro
and then pepper your code with callsideadyet until you find the crash point.
4.8.5 BITS__ : Current BITS Mode

The _ BITS standard macro is updated every time that the BITS mode is set using the
BITS XX or [BITS XX] directive, where XX is a valid mode number of 16, 32 or 64.

BITS receives the specified mode number and makes it globally available. This can be very
useful for those who utilize mode-dependent macros.

4.8.6 Assembly Date and Time Macros
NASM provides a variety of macros that represent the timestamp of the assembly session.

e The__ DATE__and__TIME__ macros give the assembly date and time as strings, in ISO 8601
format ('YYYY-MM-DD'and"HH:MM:SS" , respectively.)

e The__ DATE_NUM__and__TIME_NUM__ macros give the assembly date and time in numeric
form; in the formaty YYYMMDBNndHHMMS &spectively.

e The UTC DATE__and _ UTC TIME__ macros give the assembly date and time in
universal time (UTC) as strings, in 1ISO 8601 formatY(YY-MM-DD"and "HH:MM:SS" ,
respectively.) If the host platform doesn’t provide UTC time, these macros are undefined.

53

54

e The UTC DATE_NUM_and __UTC_TIME_NUM__macros give the assembly date and
time universal time (UTC) in numeric form; in the fornYatYYMMDBNndHHMMS&spectively.
If the host platform doesn’t provide UTC time, these macros are undefined.

e The___POSIX_TIME__ macro is defined as a number containing the number of seconds since
the POSIX epoch, 1 January 1970 00:00:00 UTC; excluding any leap seconds. This is computed
using UTC time if available on the host platform, otherwise it is computed using the local time as
if it was UTC.

All instances of time and date macros in the same assembly session produce consistent output. For
example, in an assembly session started at 42 seconds after midnight on January 1, 2010 in Moscow
(timezone UTC+3) these macros would have the following values, assuming, of course, a properly
configured environment with a correct clock:

__DATE__ "2010-01-01"
__TIME__ "00:00:42"

" DATE_NUM__ 20100101
—_TIME_NUM_ 000042
—_UTC_DATE__ "2009-12-31"
—_UTC_TIME__ "21:00:42"

—_UTC_DATE_NUM__ 20091231
__UTC_TIME_NUM_ _ 210042
~_POSIX_TIME__ 1262293242

4.8.7 STRUCand ENDSTRUDeclaring Structure Data Types

The core of NASM contains no intrinsic means of defining data structures; instead, the preprocessor
is sufficiently powerful that data structures can be implemented as a set of macros. The macros
STRUCandENDSTRUGre used to define a structure data type.

STRUCtakes one parameter, which is the name of the data type. This nhame is defined as a symbol
with the value zero, and also has the suffize appended to it and is then defined asEqQU

giving the size of the structure. On8&RUChas been issued, you are defining the structure, and
should define fields using tHRESBfamily of pseudo—instructions, and then invdkdDSTRUGo

finish the definition.

For example, to define a structure callegtype containing a longword, a word, a byte and a
string of bytes, you might code

struc mytype

mt_long: resd 1
mt word: resw 1
mt_byte: resb 1
mt_str: resb 32

endstruc

The above code defines six symbats: long as 0 (the offset from the beginning ofrgitype
structure to the longword fieldmpt_word as 4,mt_byte as 6,mt_str as 7,mytype_size as
39, andmytype itself as zero.

The reason why the structure type name is defined at zero is a side effect of allowing structures to
work with the local label mechanism: if your structure members tend to have the same names in
more than one structure, you can define the above structure like this:

struc mytype

long: resd 1

.word: resw 1

.byte: resb 1

.Str: resb 32
endstruc

This defines the offsets to the structure fieldengtype.long , mytype.word , mytype.byte
andmytype.str

NASM, since it has nantrinsic structure support, does not support any form of period notation to
refer to the elements of a structure once you have one (except the above local-label notation), so
code such amov ax,[mystruc.mt_word] is not valid.mt_word is a constant just like any

other constant, so the correct syntax imov ax,[mystruc+mt_word] or

mov ax,[mystruc+mytype.word]

4.8.8 ISTRUC, AT and IEND: Declaring Instances of Structures

Having defined a structure type, the next thing you typically want to do is to declare instances of
that structure in your data segment. NASM provides an easy way to do this ISTIR&IC
mechanism. To declare a structure of typgype in a program, you code something like this:

mystruc:
istruc mytype

atmt_long,dd 123456

atmt_word, dw 1024

at mt_byte, db X’

at mt_str, db 'hello, world’, 13, 10, 0

iend

The function of theAT macro is to make use of tHéMES prefix to advance the assembly position

to the correct point for the specified structure field, and then to declare the specified data. Therefore
the structure fields must be declared in the same order as they were specified in the structure
definition.

If the data to go in a structure field requires more than one source line to specify, the remaining
source lines can easily come after A¥eline. For example:

atmt_str, db 123,134,145,156,167,178,189
db 190,100,0

Depending on personal taste, you can also omit the code partAf time completely, and start the
structure field on the next line:

at mt_str
db 'hello, world’
db 13,10,0

4.8.9 ALIGN and ALIGNB: Data Alignment

The ALIGN and ALIGNB macros provides a convenient way to align code or data on a word,
longword, paragraph or other boundary. (Some assemblers call this diE&¢BN) The syntax of
the ALIGN andALIGNB macros is

align 4 ; align on 4-byte boundary
align 16 ; align on 16-byte boundary
align 8,db 0 ; pad with Os rather than NOPs

55

align 4,resb 1 ; align to 4 in the BSS
alignb 4 ; equivalent to previous line

Both macros require their first argument to be a power of two; they both compute the number of
additional bytes required to bring the length of the current section up to a multiple of that power of
two, and then apply thEIMES prefix to their second argument to perform the alignment.

If the second argument is not specified, the defaulAfdGN is NOP and the default foALIGNB

is RESB 1. So if the second argument is specified, the two macros are equivalent. Normally, you
can just uséALIGN in code and data sections aAHIGNB in BSS sections, and never need the
second argument except for special purposes.

ALIGN and ALIGNB, being simple macros, perform no error checking: they cannot warn you if
their first argument fails to be a power of two, or if their second argument generates more than one
byte of code. In each of these cases they will silently do the wrong thing.

ALIGNB (or ALIGN with a second argument RESB 1) can be used within structure definitions:
struc mytype2

mt_byte:
resb 1
alignb 2
mt_word:
resw 1
alignb 4
mt_long:
resd 1
mt_str:
resb 32

endstruc

This will ensure that the structure members are sensibly aligned relative to the base of the structure.

A final caveat ALIGN andALIGNB work relative to the beginning of tlsection not the beginning

of the address space in the final executable. Aligning to a 16-byte boundary when the section
you're in is only guaranteed to be aligned to a 4-byte boundary, for example, is a waste of effort.

Again, NASM does not check that the section’s alignment characteristics are sensible for the use of
ALIGN or ALIGNB.

4.9 Stack Relative Preprocessor Directives

The following preprocessor directives provide a way to use labels to refer to local variables
allocated on the stack.

* Y%arg (see section 4.9.1)

* Opstacksize (see section 4.9.2)

* %local (see section 4.9.3)
4.9.1 %arg Directive

The %arg directive is used to simplify the handling of parameters passed on the stack. Stack based
parameter passing is used by many high level languages, including C, C++ and Pascal.

While NASM has macros which attempt to duplicate this functionality (see section 7.4.5), the
syntax is not particularly convenient to use. and is not TASM compatible. Here is an example which
shows the use @harg without any external macros:

some_function:

%push mycontext ; save the current context
%stacksize large ; tell NASM to use bp
%arg i:word, j_ptr:word

mov ax,][i]

mov bx,[j_ptr]

add ax,[bx]

ret
%pop ; restore original context

This is similar to the procedure defined in section 7.4.5 and adds the value in i to the value pointed
to by j_ptr and returns the sum in the ax register. See section 4.7.1 for an explanatisin aihd
pop and the use of context stacks.

4.9.2 Y%stacksize Directive

The %stacksize directive is used in conjunction with tléarg (see section 4.9.1) and the
%local (see section 4.9.3) directives. It tells NASM the default size to use for subséeprgnt
and%local directives. Thébstacksize directive takes one required argument which is one of
flat ,flate4 ,large orsmall .

%stacksize flat

This form causes NASM to use stack—-based parameter addressing relabpe aod it assumes
that a near form of call was used to get to this label (i.eethats on the stack).

%stacksize flat64

This form causes NASM to use stack—based parameter addressing relakipe and it assumes
that a near form of call was used to get to this label (i.erifhats on the stack).

%stacksize large

This form usedp to do stack—based parameter addressing and assumes that a far form of call was
used to get to this address (i.e. tipatandcs are on the stack).

%stacksize small

This form also usebp to address stack parameters, but it is different fiainge because it also
assumes that the old value of bp is pushed onto the stack (i.e. it exp&®NJ BRinstruction). In
other words, it expects thap, ip andcs are on the top of the stack, underneath any local space
which may have been allocated BNTER This form is probably most useful when used in
combination with théslocal directive (see section 4.9.3).

4.9.3 %local Directive

The %local directive is used to simplify the use of local temporary stack variables allocated in a
stack frame. Automatic local variables in C are an example of this kind of variablésldbal
directive is most useful when used with #thetacksize (see section 4.9.2 and is also compatible
with the %arg directive (see section 4.9.1). It allows simplified reference to variables on the stack
which have been allocated typically by using BETERInstruction. An example of its use is the

following:

silly _swap:
%push mycontext ; save the current context
%stacksize small ; tell NASM to use bp

57

%assign %$localsize 0 ; see text for explanation
%local old_ax:word, old_dx:word

enter %@$localsize,0 ; see text for explanation
mov [old_ax],ax ;swap ax & bx

mov [old _dx],dx ;and swap dx & cx

mov ax,bx

mov dx,cx

mov bx,[old_ax]

mov cx,[old_dx]

leave ; restore old bp
ret ;
%pop ; restore original context

The %$localsize variable is used internally by thlocal directive andmustbe defined
within the current context before tB6local directive may be used. Failure to do so will result in
one expression syntax error for eaifocal variable declared. It then may be used in the
construction of an appropriately sized ENTER instruction as shown in the example.

4.10 Other Preprocessor Directives

NASM also has preprocessor directives which allow access to information from external sources.
Currently they include:

The following preprocessor directive is supported to allow NASM to correctly handle output of the
cpp C language preprocessor.

¢ %line enables NAsM to correctly handle the output of the cpp C language preprocessor (see
section 4.10.1).

* %! enables NASM to read in the value of an environment variable, which can then be used in
your program (see section 4.10.2).

4.10.1 %line Directive

The %line directive is used to notify NASM that the input line corresponds to a specific line
number in another file. Typically this other file would be an original source file, with the current
NASM input being the output of a pre—processor. Thine directive allows NASM to output
messages which indicate the line number of the original source file, instead of the file that is being
read by NASM.

This preprocessor directive is not generally of use to programmers, by may be of interest to
preprocessor authors. The usage obtiee preprocessor directive is as follows:

%line nnn[+mmm] [filename]

In this directive,nnn identifies the line of the original source file which this line corresponds to.
mmnis an optional parameter which specifies a line increment value; each line of the input file read
in is considered to correspond rammines of the original source file. Finallfilename is an
optional parameter which specifies the file name of the original source file.

After reading a%line preprocessor directive, NASM will report all file name and line numbers
relative to the values specified therein.

4.10.2 %!<env> : Read an environment variable.

The %!<env> directive makes it possible to read the value of an environment variable at assembly
time. This could, for example, be used to store the contents of an environment variable into a string,
which could be used at some other point in your code.

For example, suppose that you have an environment vaf&®and you want the contents of
FOOto be embedded in your program. You could do that as follows:

%define FOO %!FOO
%define quote ’

tmpstr db quote FOO quote

At the time of writing, this will generate an "unterminated string" warning at the time of defining
"quote”, and it will add a space before and after the string that is read in. | was unable to find a
simple workaround (although a workaround can be created using a multi-line macro), so | believe
that you will need to either learn how to create more complex macros, or allow for the extra spaces
if you make use of this feature in that way.

59

60

Chapter 5: Assembler Directives

NASM, though it attempts to avoid the bureaucracy of assemblers like MASM and TASM, is
nevertheless forced to suppoffesvdirectives. These are described in this chapter.

NASM’s directives come in two typesiser—leveldirectives andorimitive directives. Typically,

each directive has a user—level form and a primitive form. In almost all cases, we recommend that
users use the user—level forms of the directives, which are implemented as macros which call the
primitive forms.

Primitive directives are enclosed in square brackets; user—level directives are not.

In addition to the universal directives described in this chapter, each object file format can
optionally supply extra directives in order to control particular features of that file format. These
format-specificdirectives are documented along with the formats that implement them, in chapter 6.

5.1 BITS: Specifying Target Processor Mode

The BITS directive specifies whether NASM should generate code designed to run on a processor
operating in 16—bit mode, 32-bit mode or 64-bit mode. The syntBKIS XX , where XX is 16,
32 or 64.

In most cases, you should not need toRIFE&S explicitly. Theaout , coff |, elf , macho, win32
andwin64 object formats, which are designed for use in 32-bit or 64-bit operating systems, all
cause NASM to select 32-bit or 64-bit mode, respectively, by default.obheobject format
allows you to specify each segment you define as €ulls&r16 or USE32 and NASM will set its
operating mode accordingly, so the use ofBHES directive is once again unnecessary.

The most likely reason for using tB&TS directive is to write 32-bit or 64—bit code in a flat binary
file; this is because thigin output format defaults to 16—bit mode in anticipation of it being used
most frequently to write DOSCOMprograms, DOSSYS device drivers and boot loader software.

You donot need to specifBITS 32 merely in order to use 32-bit instructions in a 16-bit DOS
program; if you do, the assembler will generate incorrect code because it will be writing code
targeted at a 32-bit platform, to be run on a 16-bit one.

When NASM is inBITS 16 mode, instructions which use 32-bit data are prefixed with an 0x66
byte, and those referring to 32-bit addresses have an 0x67 préBibk. 332 mode, the reverse is

true: 32-bit instructions require no prefixes, whereas instructions using 16-bit data need an 0x66
and those working on 16—bit addresses need an 0x67.

When NASM is inBITS 64 mode, most instructions operate the same as they dIT& 32
mode. However, there are 8 more general and SSE registers, and 16-bit addressing is no longer
supported.

The default address size is 64 bits; 32-bit addressing can be selected with the 0x67 prefix. The
default operand size is still 32 bits, however, and the 0x66 prefix selects 16—bit operand size. The
REX prefix is used both to select 64-bit operand size, and to access the new registers. NASM
automatically inserts REX prefixes when necessary.

When theREXprefix is used, the processor does not know how to address the AH, BH, CH or DH
(high 8-hit legacy) registers. Instead, it is possible to access the the low 8-bits of the SP, BP Sl and
Dl registers as SPL, BPL, SIL and DIL, respectively; but only when the REX prefix is used.

The BITS directive has an exactly equivalent primitive forfBJTS 16] , [BITS 32] and
[BITS 64] . The user—level form is a macro which has no function other than to call the primitive
form.

Note that the space is neccessary,B.§S32 will notwork!
5.1.1 USE16& USE32 Aliases for BITS

The USE16 and ‘USE3Z directives can be used in place &ITS 16 ' and ‘BITS 32 ’, for
compatibility with other assemblers.

5.2 DEFAULT Change the assembler defaults

The DEFAULT directive changes the assembler defaults. Normally, NASM defaults to a mode
where the programmer is expected to explicitly specify most features directly. However, this is
occationally obnoxious, as the explicit form is pretty much the only one one wishes to use.

Currently, the onlyDEFAULTthat is settable is whether or not registerless instructions in 64-bit
mode areRIP-relative or not. By default, they are absolute unless overridden wittiREhe
specifier (see section 3.3). However, DEFAULT REL is specified,REL is default, unless
overridden with theABS specifier,except when used with an FS or GS segment override

The special handling dfS andGS overrides are due to the fact that these registers are generally
used as thread pointers or other special functions in 64-bit mode, and genRiRtirrglative
addresses would be extremely confusing.

DEFAULT RELis disabled wittDEFAULT ABS

5.3 SECTIONor SEGMENTChanging and Defining Sections

The SECTION directive SEGMENTs an exactly equivalent synonym) changes which section of

the output file the code you write will be assembled into. In some object file formats, the number
and names of sections are fixed; in others, the user may make up as many as they wish. Hence
SECTIONmay sometimes give an error message, or may define a new section, if you try to switch
to a section that does not (yet) exist.

The Unix object formats, and thiein object format (but see section 6.1.3, all support the
standardized section namdext , .data and.bss for the code, data and uninitialized-data
sections. Thebj format, by contrast, does not recognize these section names as being special, and
indeed will strip off the leading period of any section name that has one.

5.3.1 The SECT__ Macro

The SECTION directive is unusual in that its user—level form functions differently from its
primitive form. The primitive form[SECTION xyz] , simply switches the current target section
to the one given. The user-level forRECTION xyz , however, first defines the single-line
macro__ SECT__ to be the primitivdSECTION] directive which it is about to issue, and then
issues it. So the user—level directive

SECTION .text
expands to the two lines

%define SECT__ [SECTION .text]
[SECTION .text]

Users may find it useful to make use of this in their own macros. For exampleritiide
macro defined in section 4.3.3 can be usefully rewritten in the following more sophisticated form:

%macro writefile 2+

61

62

[section .data]

%%str: db %2
%%endstr:

__SECT__

mov dx,%%str

mov c¢Xx,%%endstr—%%str
mov bx,%1

mov ah,0x40

int 0x21

%endmacro

This form of the macro, once passed a string to output, first switches temporarily to the data section
of the file, using the primitive form of th @ ECTION directive so as not to modify SECT__. It

then declares its string in the data section, and then invokB&CT to switch back to
whicheversection the user was previously working in. It thus avoids the need, in the previous
version of the macro, to includeJ&P instruction to jump over the data, and also does not falil if, in

a complicatedOBJ format module, the user could potentially be assembling the code in any of

several separate code sections.

5.4 ABSOLUTEDefining Absolute Labels

The ABSOLUTEdirective can be thought of as an alternative forrSBCTION it causes the
subsequent code to be directed at no physical section, but at the hypothetical section starting at the
given absolute address. The only instructions you can use in this mode RESBimily.

ABSOLUTHS used as follows:
absolute Ox1A
kbuf chr resw 1

kbuf free resw 1
kbuf resw 16

This example describes a section of the PC BIOS data area, at segment address 0x40: the abov
code definegbuf chr to be Ox1Akbuf free to be 0x1C, an#buf to be Ox1E.

The user—level form cABSOLUTE like that of SECTION redefines the SECT __ macro when
it is invoked.

STRUCandENDSTRU@Gre defined as macros which us8SOLUTHand also _ SECT_).

ABSOLUTEdoesn't have to take an absolute constant as an argument: it can take an expression
(actually, a critical expression: see section 3.8) and it can be a value in a segment. For example, a
TSR can re—use its setup code as run-time BSS like this:

org 100h ; it's a .COM program

jmp setup ; setup code comes last

; the resident part of the TSR goes here
setup:

; now write the code that installs the TSR here

absolute setup

runtimevarl resw 1
runtimevar2 resd 20

tsr_end:

This defines some variables ‘on top of' the setup code, so that after the setup has finished running,
the space it took up can be re—used as data storage for the running TSR. The symbol ‘tsr_end’ can
be used to calculate the total size of the part of the TSR that needs to be made resident.

5.5 EXTERNImporting Symbols from Other Modules

EXTERNIs similar to the MASM directiveEXTRNand the C keyworaxtern : it is used to

declare a symbol which is not defined anywhere in the module being assembled, but is assumed to
be defined in some other module and needs to be referred to by this one. Not every object-file
format can support external variables: bive format cannot.

The EXTERNdirective takes as many arguments as you like. Each argument is the name of a
symbol:

extern _printf
extern _sscanf,_fscanf

Some object-file formats provide extra features to EXG ERNdirective. In all cases, the extra
features are used by suffixing a colon to the symbol name followed by object—format specific text.
For example, th@bj format allows you to declare that the default segment base of an external
should be the grougigroup by means of the directive

extern _variable:wrt dgroup

The primitive form ofEXTERNdiffers from the user-level form only in that it can take only one
argument at a time: the support for multiple arguments is implemented at the preprocessor level.

You can declare the same variableEB§TERNmore than once: NASM will quietly ignore the
second and later redeclarations. You can't declare a variaBBEHSRNas well as something else,
though.

5.6 GLOBAL Exporting Symbols to Other Modules

GLOBALIs the other end dEXTERN if one module declares a symbolEBXTERNand refers to it,
then in order to prevent linker errors, some other module must acteflhe the symbol and
declare it a&SLOBAL Some assemblers use the nd&tdBLIC for this purpose.

The GLOBALdirective applying to a symbol must appbeforethe definition of the symbol.

GLOBALuses the same syntax BXTERN except that it must refer to symbols wharte defined
in the same module as tftd¢ OBALdirective. For example:

global _main
_main:
: some code

GLOBAL like EXTERN allows object formats to define private extensions by means of a colon. The
elf object format, for example, lets you specify whether global data items are functions or data:

global hashlookup:function, hashtable:data

Like EXTERN the primitive form ofGLOBALdiffers from the user—level form only in that it can
take only one argument at a time.

63

5.7 COMMQIDefining Common Data Areas

The COMMONHNirective is used to declaedmmon variablesA common variable is much like a
global variable declared in the uninitialized data section, so that

common intvar 4

is similar in function to
global intvar

section .bss

intvar resd 1

The difference is that if more than one module defines the same common variable, then at link time
those variables will benerged and references tmtvar in all modules will point at the same
piece of memory.

Like GLOBALandEXTERN COMMOS8Upports object-format specific extensions. For example, the
obj format allows common variables to be NEAR or FAR, andetie format allows you to
specify the alignment requirements of a common variable:

common commvar 4:near ; works in OBJ
common intarray 100:4 ; works in ELF: 4 byte aligned

Once again, likeEXTERNand GLOBAL. the primitive form ofCOMMOWiffers from the user—level
form only in that it can take only one argument at a time.

5.8 CPU Defining CPU Dependencies
The CPUdirective restricts assembly to those instructions which are available on the specified CPU.
Options are:
e« CPU 8086 Assemble only 8086 instruction set
» CPU 186 Assemble instructions up to the 80186 instruction set
e CPU 286 Assemble instructions up to the 286 instruction set
¢ CPU 386 Assemble instructions up to the 386 instruction set
» CPU 486 486 instruction set
¢ CPU 586 Pentium instruction set
* CPU PENTIUMSame as 586
* CPU 686 P6 instruction set
« CPU PPROSame as 686
¢ CPU P2 Same as 686
¢ CPU P3 Pentium Ill (Katmai) instruction sets
e CPU KATMAI Same as P3
e CPU P4 Pentium 4 (Willamette) instruction set
* CPU WILLAMETTESame as P4
* CPU PRESCOTPrescott instruction set
¢ CPU X64 x86-64 (x64/AMDG64/Intel 64) instruction set

CPU IA64 1A64 CPU (in x86 mode) instruction set

All options are case insensitive. All instructions will be selected only if they apply to the selected
CPU or lower. By default, all instructions are available.

5.9 FLOAT. Handling of floating—point constants

By default, floating—point constants are rounded to nearest, and IEEE denormals are supported. The
following options can be set to alter this behaviour:

FLOAT DAZ Flush denormals to zero

FLOAT NODAZDo not flush denormals to zero (default)
FLOAT NEARRound to nearest (default)

FLOAT UP Round up (toward +Infinity)

FLOAT DOWNRound down (toward —Infinity)

FLOAT ZERORound toward zero

FLOAT DEFAULTRestore default settings

The standard macros FLOAT DAZ , FLOAT ROUND_, and _FLOAT__ contain the
current state, as long as the programmer has avoided the use of the brackeded primitive form,
([FLOAT]).

FLOAT__ contains the full set of floating—point settings; this value can be saved away and

invoked later to restore the setting.

65

Chapter 6: Output Formats

NASM is a portable assembler, designed to be able to compile on any ANSI C-supporting platform
and produce output to run on a variety of Intel x86 operating systems. For this reason, it has a large
number of available output formats, selected using—theoption on the NASM command line.

Each of these formats, along with its extensions to the base NASM syntax, is detailed in this chapter.

As stated in section 2.1.1, NASM chooses a default name for your output file based on the input file
name and the chosen output format. This will be generated by removing the extexssion.§ ,

or whatever you like to use) from the input file name, and substituting an extension defined by the
output format. The extensions are given with each format below.

6.1 bin : Flat—Form Binary Output

Thebin format does not produce object files: it generates nothing in the output file except the code
you wrote. Such ‘pure binary’ files are used by MS-DQ30M executables andSYS device

drivers are pure binary files. Pure binary output is also useful for operating system and boot loader
development.

Thebin format supports multiple section names. For details of how nasm handles sections in the
bin format, see section 6.1.3.

Using thebin format puts NASM by default into 16—bit mode (see section 5.1). In order to use
bin to write 32-bit or 64-bit code, such as an OS kernel, you need to explicitly issue the
BITS 32 orBITS 64 directive.

bin has no default output file name extension: instead, it leaves your file name as it is once the
original extension has been removed. Thus, the default is for NASM to asdanleg.asm
into a binary file calledbinprog

6.1.1 ORGBinary File Program Origin

Thebin format provides an additional directive to the list given in chapt®R85 The function of
the ORGdirective is to specify the origin address which NASM will assume the program begins at
when it is loaded into memory.

For example, the following code will generate the longwix@000104 :

org 0x100
dd label
label:

Unlike the ORGdirective provided by MASM-compatible assemblers, which allows you to jump
around in the object file and overwrite code you have already generated, NOR@3oes exactly

what the directive saysrigin. Its sole function is to specify one offset which is added to all internal
address references within the section; it does not permit any of the trickery that MASM'’s version
does. See section 11.1.3 for further comments.

6.1.2 bin Extensions to theSECTIONDirective

The bin output format extends tHeECTION (or SEGMEN)Tdirective to allow you to specify the
alignment requirements of segments. This is done by appending.t&& qualifier to the end of
the section—definition line. For example,

section .data align=16

switches to the sectiadata and also specifies that it must be aligned on a 16—byte boundary.

The parameter tALIGN specifies how many low bits of the section start address must be forced to
zero. The alignment value given may be any power of two.

6.1.3 Multisection support for the BIN format.

The bin format allows the use of multiple sections, of arbitrary names, besides the "known"
text ,.data , and.bss names.

» Sections may be designat@dogbits or nobits . Default is progbits (except.bss ,
which defaults taobits , of course).

e Sections can be aligned at a specified boundary following the previous sectia@ligvith , or
at an arbitrary byte—granular position witart= .

¢ Sections can be given a virtual start address, which will be used for the calculation of all memory
references within that section wiitart=

. Section_s can be _or_dered usilﬁ_gj!ows=<section> or vfollows=<section> as an
alternative to specifying an explicit start address.

« Arguments toorg , start , vstart , andalign= are critical expressions. See section 3.8. E.g.
align=(1 << ALIGN_SHIFT) —ALIGN_SHIFT must be defined before it is used here.

* Any code which comes before an expliGECTION directive is directed by default into the
text section.

» If an ORGstatement is not give@QRG 0is used by default.

e The.bss section will be placed after the lgsogbits section, unlesstart= , vstart=
follows= , orvfollows= has been specified.

« All sections are aligned on dword boundaries, unless a different alignment has been specified.
¢ Sections may not overlap.

¢ Nasm creates thgection.<secname>.start for each section, which may be used in your
code.

6.1.4 Map files

Map files can be generated+f bin format by means of thgnap] option. Map types odll
(default), brief , sections , segments , or symbols may be specified. Output may be
directed to stdout (default), stderr or a specified file. E.g.
[map symbols myfile.map] . No "user form" exists, the square brackets must be used.

obj : Microsoft OMF Object Files

Theobj file format (NASM calls itobj rather tharomf for historical reasons) is the one produced
by MASM and TASM, which is typically fed to 16-bit DOS linkers to prodUeXE files. It is
also the format used by OS/2.

obj provides a default output file—name extensiorobf .

obj is not exclusively a 16-bit format, though: NASM has full support for the 32-bit extensions to
the format. In particular, 32—batbj format files are used by Borland’s Win32 compilers, instead of
using Microsoft's newewin32 obiject file format.

The obj format does not define any special segment names: you can call your segments anything
you like. Typical names for segmentsoioj format files areCODEDATAandBSS

67

68

If your source file contains code before specifying an ex@EiGMENWirective, then NASM will
invent its own segment called NASMDEFSE®r you.

When you define a segment in abj file, NASM defines the segment name as a symbol as well,
so that you can access the segment address of the segment. So, for example:

segment data
dvar: dw 1234

segment code

function:
mov ax,data ; get segment address of data
mov ds,ax ; and move it into DS
inc word [dvar] ; now this reference will work
ret

The obj format also enables the use of BEGand WRToperators, so that you can write code
which does things like

extern foo
mov ax,seg foo ; get preferred segment of foo
mov ds,ax
mov ax,data ; a different segment
mov es,ax
mov ax,[ds:foo] : this accesses ‘foo’

mov [es:foo wrt data],bx ; so does this

6.2.1 obj Extensions to theSEGMENTDirective

The obj output format extends thEEGMENTor SECTION directive to allow you to specify
various properties of the segment you are defining. This is done by appending extra qualifiers to the
end of the segment-definition line. For example,

segment code private align=16

defines the segmenbde , but also declares it to be a private segment, and requires that the portion
of it described in this code module must be aligned on a 16—-byte boundary.

The available qualifiers are:

¢ PRIVATE, PUBLIC, COMMOMNd STACK specify the combination characteristics of the
segmentPRIVATE segments do not get combined with any others by the lifk&BLIC and
STACKsegments get concatenated together at link timeCadMOBEgments all get overlaid
on top of each other rather than stuck end-to—end.

e ALIGN is used, as shown above, to specify how many low bits of the segment start address must
be forced to zero. The alignment value given may be any power of two from 1 to 4096; in reality,
the only values supported are 1, 2, 4, 16, 256 and 4096, so if 8 is specified it will be rounded up
to 16, and 32, 64 and 128 will all be rounded up to 256, and so on. Note that alignment to
4096-byte boundaries is a PharLap extension to the format and may not be supported by all
linkers.

e CLASScan be used to specify the segment class; this feature indicates to the linker that segments
of the same class should be placed near each other in the output file. The class name can be any
word, e.gCLASS=CODE

« OVERLAY like CLASS is specified with an arbitrary word as an argument, and provides overlay
information to an overlay—capable linker.

» Segments can be declaredUsSE16 or USE32 which has the effect of recording the choice in
the object file and also ensuring that NASM’s default assembly mode when assembling in that
segment is 16—bit or 32-bit respectively.

* When writing OS/2 obiject files, you should declare 32-bit segmerEAE, which causes the
default segment base for anything in the segment to be the speciaFyWiipand also defines
the group if it is not already defined.

« The obj file format also allows segments to be declared as having a pre—defined absolute
segment address, although no linkers are currently known to make sensible use of this feature;
nevertheless, NASM allows you to declare a segment such as
SEGMENT SCREEN ABSOLUTE=0xB800f you need to. TheABSOLUTEand ALIGN
keywords are mutually exclusive.

NASM’s default segment attributes &&/BLIC, ALIGN=1, no class, no overlay, aliSE16.
6.2.2 GROUPDefining Groups of Segments

The obj format also allows segments to be grouped, so that a single segment register can be used
to refer to all the segments in a group. NASM therefore suppligSR@URIirective, whereby you
can code

segment data
; some data
segment bss
: some uninitialized data

group dgroup data bss

which will define a group calledgroup to contain the segmendsta andbss . Like SEGMENT
GROURauses the group name to be defined as a symbol, so that you can refer to aveari@ile
the data segment asar wrt data or asvar wrt dgroup , depending on which segment
value is currently in your segment register.

If you just refer tovar , however, andiar is declared in a segment which is part of a group, then
NASM will default to giving you the offset ofar from the beginning of thgroup not the
segmentThereforeSEG var , also, will return the group base rather than the segment base.

NASM will allow a segment to be part of more than one group, but will generate a warning if you
do this. Variables declared in a segment which is part of more than one group will default to being
relative to the first group that was defined to contain the segment.

A group does not have to contain any segments; you can still WiRHeeferences to a group which
does not contain the variable you are referring to. OS/2, for example, defines the special group
FLAT with no segments in it.

6.2.3 UPPERCASHDisabling Case Sensitivity in Output

Although NASM itself is case sensitive, some OMF linkers are not; therefore it can be useful for
NASM to output single—case object files. TWEPPERCASHormat-specific directive causes all
segment, group and symbol names that are written to the object file to be forced to upper case just
before being written. Within a source file, NASM is still case—sensitive; but the object file can be
written entirely in upper case if desired.

69

UPPERCASES used alone on a line; it requires no parameters.
6.2.4 IMPORT Importing DLL Symbols

The IMPORTformat-specific directive defines a symbol to be imported from a DLL, for use if you
are writing a DLL’s import library in NASM. You still need to declare the symbdEXdSERNas
well as using th&MPORTdirective.

The IMPORT directive takes two required parameters, separated by white space, which are
(respectively) the name of the symbol you wish to import and the name of the library you wish to
import it from. For example:

import WSAStartup wsock32.dll

A third optional parameter gives the name by which the symbol is known in the library you are
importing it from, in case this is not the same as the name you wish the symbol to be known by to
your code once you have imported it. For example:

import asyncsel wsock32.dll WSAAsyncSelect
6.2.5 EXPORTExporting DLL Symbols

The EXPORTformat—specific directive defines a global symbol to be exported as a DLL symbol,
for use if you are writing a DLL in NASM. You still need to declare the symb@ILla8BALas well
as using th&XPORTdirective.

EXPORTtakes one required parameter, which is the name of the symbol you wish to export, as it
was defined in your source file. An optional second parameter (separated by white space from the
first) gives theexternalname of the symbol: the name by which you wish the symbol to be known

to programs using the DLL. If this name is the same as the internal name, you may leave the second
parameter off.

Further parameters can be given to define attributes of the exported symbol. These parameters, like
the second, are separated by white space. If further parameters are given, the external name mus
also be specified, even if it is the same as the internal name. The available attributes are:

» resident indicates that the exported name is to be kept resident by the system loader. This is
an optimisation for frequently used symbols imported by nhame.

e nodata indicates that the exported symbol is a function which does not make use of any
initialized data.

« parm=NNN whereNNNis an integer, sets the number of parameter words for the case in which
the symbol is a call gate between 32-bit and 16-bit segments.

e An attribute which is just a number indicates that the symbol should be exported with an
identifying number (ordinal), and gives the desired number.

For example:

export myfunc

export myfunc TheRealMoreFormalLookingFunctionName
export myfunc myfunc 1234 ; export by ordinal

export myfunc myfunc resident parm=23 nodata

6.2.6 ..start : Defining the Program Entry Point

OMFlinkers require exactly one of the object files being linked to define the program entry point,
where execution will begin when the program is run. If the object file that defines the entry point is
assembled using NASM, you specify the entry point by declaring the special systdadl at

the point where you wish execution to begin.

6.2.7 obj Extensions to theEXTERNDiIrective
If you declare an external symbol with the directive
extern foo

then references such awv ax,foo will give you the offset ofoo from its preferred segment
base (as specified in whichever modtde is actually defined in). So to access the contents of
foo you will usually need to do something like

mov ax,seg foo ; get preferred segment base
mov es,ax ; move it into ES
mov ax,[es:foo] ; and use offset ‘foo’ from it

This is a little unwieldy, particularly if you know that an external is going to be accessible from a
given segment or group, sdgroup . So ifDSalready containedgroup , you could simply code

mov ax,[foo wrt dgroup]

However, having to type this every time you want to act@sscan be a pain; so NASM allows
you to declardoo in the alternative form

extern foo:wrt dgroup

This form causes NASM to pretend that the preferred segment bése @ in factdgroup ; so
the expressiorseg foo will now return dgroup , and the expressiofoo is equivalent to
foo wrt dgroup

This defaultWWRTmechanism can be used to make externals appear to be relative to any group or
segment in your program. It can also be applied to common variables: see section 6.2.8.

6.2.8 obj Extensions to theCOMMORDirective

The obj format allows common variables to be either near or far; NASM allows you to specify
wh