NASM — The Netwide Assembler
version 0.99.05-20071023

© 2007 The NASM Development Team

All rights reserved. This document is redistributable under the license given in the file "COPYING"
distributed in the NASM archive.

Contents

Chapter 1: Introduction. e e 10
L1Whatls NASM?. e 10
1.1.1 Why Yet Another Assembler?. 10
1.1.2 License Conditions. L 10
1.2 Contact Information. e 10
L3 Installation. 11
1.3.1 Installing NASM under MS-DOS or Windows 11
1.3.2 Installing NASM under Unix e 11
Chapter 2: Running NASM 13
2.1 NASM Command-Line Syntax e 13
2.1.1 The-o Option: Specifying the Output FileName 13
2.1.2 The-f Option: Specifying the Output File Format 14
2.1.3 The-l Option: Generatinga Listing File. 14
2.1.4 The-MOption: Generate Makefile Dependencies 14
2.1.5 The-MGOption: Generate Makefile Dependencies 14
2.1.6 The-F Option: Selecting a Debug Information Format 14
2.1.7 The-g Option: Enabling Debug Information. 15
2.1.8 The-X Option: Selecting an Error Reporting Format 15
2.1.9 The-Z Option: Send Errorstoa File 15
2.1.10 The-s Option: Send Errors tstdout 15
2.1.11 The-i Option: Include File Search Directories. 15
2.1.12 The-p Option: Pre—Include aFile. 16
2.1.13 The-d Option: Pre-DefineaMacro 16
2.1.14 The-u Option: UndefineaMacro. 16
2.1.15 The-E Option: Preprocess Only. 17
2.1.16 The-a Option: Don’'t Preprocess AtAll 17
2.1.17 The-On Option: Specifying Multipass Optimization. 17
2.1.18 The-t option: Enable TASM Compatibility Mode. 17
2.1.19 The-w Option: Enable or Disable Assembly Warnings 18
2.1.20 The-v Option: Display VersionInfo 18

2.1.21 The-y Option: Display Available Debug Info Formats 19

2.1.22 The-—prefix —and—-—postfix Options. 19
2.1.23 ThReNASMEN¥ENvironment Variable 19
2.2 Quick Startfor MASM USers. e 19
2.21NASMIs Case-Sensitive e 19
2.2.2 NASM Requires Square Brackets For Memory References 19
2.2.3 NASM Doesn't Store Variable Types. 20
224 NASM DoesnASSUME. e 20
2.2.5 NASM Doesn’'t Support Memory Models 20
2.2.6 Floating—Point Differences 20
2.2.7 Other Differences e 21
Chapter 3: The NASM Language o i i e e e e e e e e 22
3.1 Layoutof a NASM Source Line e 22
3.2 Pseudo-InStructions. e e e 23
3.2.1DBand friends: Declaring initialized Data 23
3.2.2RESBand friends: Declaring Uninitialized Data 23
3.2.3INCBIN : Including External Binary Files 23
3.24EQUDefining Constants. e 24
3.2.5TIMES: Repeating InstructionsorData. 24
3.3 Effective Addresses e e 24
B4CoNStants. e e 25
341 NumericConstants. e 25
3.4.2Character Constants 26
3.4.3StringConstants e e 26
3.4.4 Floating—Paoint Constants e 26
S5 EXPressions 27
3.5.1] : Bitwise OR Operator 27
3.5.270: Bitwise XOR Operator e 27
3.5.3& Bitwise AND Operator e e 27
3.5.4<< and>>: Bit Shift Operators e 28
3.5.5+ and-: Addition and Subtraction Operators. 28
3.5.6*,/,/l ,%and%%Multiplication and Division 28
3.5.7 Unary Operators;, —,~,! andSEG. 28
3.6SEGaNdWRT 28

3.7STRICT: Inhibiting Optimization it 29

3.8 Critical EXpressions e e e e 29

39 LocalLabels. e 30
Chapter 4: The NASM PreproCcessor i e e 32
4.1 Single—Line Macros. 32
4.1.1 The Normal Wayxedefine e 32
4.1.2 Enhancing %definébxdefine L 33
4.1.3 Concatenating Single Line Macro Toke¥s:. 34
4.1.4 Undefining macroSoundef 34
4.1.5 Preprocessor Variablésassign 35
4.2 String Handling in Macro$sstrlen and%substr L. 35
4.2.1 String Length%strlen 35
4.2.2 Sub-stringgbesubstr e 35
4.3 Multi—Line Macros%macro 36
4.3.1 Overloading Multi-Line Macros i 36
4.3.2Macro-Local Labels 37
4.3.3 Greedy Macro Parameters e 37
4.3.4 Default Macro Parameters e 38
4.3.5%0Q Macro Parameter Counter. e 39
4.3.6%rotate : Rotating Macro Parameters. 0o 39
4.3.7 Concatenating Macro Parameters 40
4.3.8 Condition Codes as Macro Parameters 41
4.3.9 Disabling Listing Expansion. 41
4.4 Conditional Assembly. e e 41
4.4.1%ifdef : Testing Single-Line Macro Existence. 42
4.4.2ifmacro : Testing Multi-Line Macro Existence 42
4.4.3%ifctx :Testingthe ContextStack 42
4.4 4%if : Testing Arbitrary Numeric Expressions L 43
4.45%ifidn and%ifidni : Testing Exact TextIdentity 43
4.4.6%ifid , %ifnum , %ifstr : Testing Token Types. 43
4.4.7%error : Reporting User-Defined Errors 44
4.5 Preprocessor LOOPEIrep o o e e e e 45
4.6 Including Other Files 45
4.7 The Context Stack. e 46
4.7.1%push and%pop Creating and Removing Contexts 46
4.7.2 Context—Local Labels 46

4.7.3 Context-Local Single-Line Macros. 47

4.7.4%repl : Renaminga Context 47
4.7.5 Example Use of the Context Stack: Block IFs 47
4.8 Standard Macros. 49
4.8.1__NASM_MAJOR_, NASM_MINOR_, NASM_SUBMINOR_and
___NASM_PATCHLEVEL_: NASM Version. v 49
4.8.2__NASM_VERSION_ID_:NASM VersionID. 49
4.8.3__NASM_VER_:NASM Versionstring. it 49
48.4 FILE and_LINE__ :File NameandLineNumber. 49
485 BITS__:CurrentBITSMode i 50
4.8.6STRUCandENDSTRUDeclaring Structure Data Types. 50
4.8.7ISTRUC, AT andIEND: Declaring Instances of Structures 51
4.8.8ALIGN andALIGNB: Data Alignment 51
4.9 TASM Compatible Preprocessor Directives 52
4.9.1%arg DireCtive. o o 52
4.9.2%stacksize Directive. 53
4.9.3%local Directive e e 53
4.10 Other Preprocessor Directives. e 54
4.10.1%line DIireCtive e 54
4.10.2%!<env>: Read an environmentvariable. 54
Chapter 5: Assembler Directives e 56
5.1BITS: Specifying Target Processor Mode. 56
5.1.1USE16& USE32 Aliases for BITS i 57
5.2DEFAULT Change the assemblerdefaults. 57
5.3SECTIONor SEGMENTChanging and Defining Sections 57
531 The _SECT__MaCro o i i e e e e e e e e e e e e e e e 57
5.4ABSOLUTEDefining Absolute Labels 58
5.5EXTERN Importing Symbols from Other Modules 59
5.6 GLOBAL Exporting Symbols to Other Modules. 59
5.7COMMOMefining Common Data Areas i, 60
5.8CPU Defining CPU Dependencies. i i i e 60
5.9FLOAT. Handling of floating—pointconstants. 61
Chapter 6: Output Formats. e 62
6.1bin : Flat-Form Binary Output. 62
6.1.10RGBInary File Program Origin e 62

6.1.2bin Extensions to th8ECTIONDiIrective. o v v v i i 62

6.1.3Multisection supportforthe BINformat. 63
6.1.4Mapfiles 63
6.20bj : Microsoft OMF ObjectFiles 63
6.2.10bj Extensions to thEEGMENDirective. 64
6.2.2GROUPDefining Groups of Segments 00 65
6.2.3UPPERCASHDisabling Case Sensitivity inQutput 65
6.2.4IMPORT Importing DLL Symbols 66
6.2.5EXPORTExporting DLL Symbols 66
6.2.6..start : Defining the Program Entry Point 66
6.2.70bj Extensions to thEXTERNDirective 67
6.2.80bj Extensions to thEOMMOMirective 67
6.3win32 : Microsoft Win32 Object Files. 68
6.3.1win32 Extensions to th8ECTIONDirective 68
6.4win64 : Microsoft Win64 Object Files. 69
6.5coff : Common ObjectFile Format 69
6.6macho: Mach ObjectFile Format 69
6.7 elf, elf32, and elf64 : Executable and Linkable Format Object Files. 69
6.7.1elf Extensions to thEECTIONDirective. oo v v v v v .. 69
6.7.2 Position—-Independent Coadf. Special Symbols and/RT. 70
6.7.3elf Extensions to th&LOBALDirective 70
6.7.4elf Extensions to thEOMMODIirective 71
6.7.516-bitcode and ELF 71
6.8aout : Linuxa.out ObjectFiles 71
6.9aoutb : NetBSD/FreeBSD/OpenBS&out ObjectFiles 71
6.10as86 : Minix/Linux as86 ObjectFiles. 72
6.11rdf : Relocatable Dynamic Object File Format 72
6.11.1 Requiring a Library: THEEBRARY Directive 72
6.11.2 Specifying a Module Name: TREODULBDirective 72
6.11.3rdf Extensions to th&LOBALdirective, 73
6.11.4rdf Extensions to thEXTERMNdirective 73
6.12dbg: Debugging Format. 73
Chapter 7: Writing 16-bit Code (DOS, Windows 3/3.1) 75
7.1 ProducingEXE Files. e 75
7.1.1 Using th@bj Format To GeneratEXE Files 75

7.1.2 Using thdin Format To Generat&EXE Files 76

7.2 ProducingCOMF iles. 77
7.2.1 Using thédin Format To Generat€OMFiles 77
7.2.2 Using th@bj Format To Generat€OMFiles 78

7.3 ProducingSYS Files. e e e e 78

7.4 Interfacing to 16-bit C Programs. e 78
7.4.1 External SymbolNames 78
7.4.2 Memory Models 79
7.4.3 Function Definitions and FunctionCalls 80
7.4.4 Accessing Data ltems 82
7.4.5cl16.mac : Helper Macros for the 16-bitCInterface 83

7.5 Interfacing to Borland Pascal Programs 84
7.5.1 The Pascal Calling Convention i 84
7.5.2 Borland Pascal Segment Name Restrictions 85
7.5.3 Usingcl6.mac With Pascal Programs 86

Chapter 8: Writing 32-bit Code (Unix, Win32, DIJGPP). 87

8.1 Interfacingto 32-bit C Programs. e e 87
8.1.1 External SymbolNames 87
8.1.2 Function Definitions and Function Calls 87
8.1.3 Accessing Data ltems e 89
8.1.4c32.mac : Helper Macros for the 32-bitC Interface 89

8.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries. 90
8.2.1 Obtaining the Address of the GOT 90
8.2.2 Finding Your Local Dataltems 91
8.2.3 Finding External and Common Dataltems 92
8.2.4 Exporting Symbols to the LibraryUser. 92
8.2.5 Calling Procedures Outside the Library., 93
8.2.6 Generating the Library File 93

Chapter 9: Mixing 16 and 32 BitCode e 94

9.1 MiXxed=Size JUMPS o o e e 94

9.2 Addressing Between Different—Size Segments 94

9.3 Other Mixed-Size Instructions 95

Chapter 10: Writing 64-bit Code (Unix, Win64). 97

10.1 Immediates and displacements in 64-bitmode. L 97

10.2 Interfacing to 64—bit C Programs (Unix) i i i 98

10.3 Interfacing to 64-bit C Programs (Win64) 98
Chapter 11: Troubleshooting

....................................... 99
11.1 Common Problems. e e 99
11.1.1 NASM Generates InefficientCode. 99
11.1.2 My Jumpsare Qutof Range e 99
11.1.30RGDoesNtWOrK 99
11.24TIMES Doesn't Work 100
11.2BUGS . - o o e e e 100
Appendix A: Ndisasm 102
AllIntroduction. e 102
A.2 Getting Started: Installation 102
A3 RUNNing NDISASM e 102
A.3.1 COM Files: Specifyingan Origin. 102
A.3.2 Code Following Data: Synchronisation. 102
A.3.3 Mixed Code and Data: Automatic (Intelligent) Synchronisation 103
A.3.4 Other Options e e 104
A4 Bugs and Improvements e e e e e 104

Chapter 1: Introduction

1.1 What Is NASM?

The Netwide Assembler, NASM, is an 80x86 and x86—64 assembler designed for portability and
modularity. It supports a range of object file formats, including Linux *B8@D a.out , ELF,

COFF Mach—-Q Microsoft 16—hitOBJ, Win32 andWin64 . It will also output plain binary files.

Its syntax is designed to be simple and easy to understand, similar to Intel's but less complex. It
supports from the upto and includifgntium , P6, MMX3DNow!, SSE SSE2, SSE3 andx64
opcodes. NASM has a strong support for macro conventions.

1.1.1 Why Yet Another Assembler?

The Netwide Assembler grew out of an idea oobmp.lang.asm.x86 (or possibly
alt.lang.asm — | forget which), which was essentially that there didn’t seem to be afgaod
x86—series assembler around, and that maybe someone ought to write one.

e a86 is good, but not free, and in particular you don’t get any 32-bit capability until you pay. It's
DOS only, too.

e gas is free, and ports over to DOS and Unix, but it's not very good, since it's designed to be a
back end tagcc , which always feeds it correct code. So its error checking is minimal. Also, its
syntax is horrible, from the point of view of anyone trying to actuatlige anything in it. Plus
you can'’t write 16—bit code in it (properly.)

e as86 is specific to Minix and Linux, and (my version at least) doesn’t seem to have much (or
any) documentation.

* MASMsn't very good, and it's (was) expensive, and it runs only under DOS.

« TASMis better, but still strives for MASM compatibility, which means millions of directives and
tons of red tape. And its syntax is essentially MASM'’s, with the contradictions and quirks that
entails (although it sorts out some of those by means of Ideal mode.) It's expensive too. And it's
DOS-only.

So here, for your coding pleasure, is NASM. At present it's still in prototype stage — we don’t
promise that it can outperform any of these assemblers. But pl@aeasesend us bug reports,

fixes, helpful information, and anything else you can get your hands on (and thanks to the many
people who've done this already! You all know who you are), and we'll improve it out of all
recognition. Again.

1.1.2 License Conditions

Please see the filEOPYING supplied as part of any NASM distribution archive, for the license
conditions under which you may use NASM. NASM is now under the so—called GNU Lesser
General Public License, LGPL.

1.2 Contact Information

The current version of NASM (since about 0.98.08) is maintained by a team of developers,
accessible through theasm-devel mailing list (see below for the link). If you want to report a
bug, please read section 11.2 first.

NASM has a WWW page attp://nasm.sourceforge.net . If it's not there, google for us!

http://nasm.sourceforge.net

The original authors are e—mailable jates@dsf.org.uk and anakin@pobox.com . The
latter is no longer involved in the development team.

New releases of NASM are uploaded to the official diti#g://nasm.sourceforge.net
and toftp.kernel.org andibiblio.org

Announcements are posted tocomp.lang.asm.x86 , altlang.asm and
comp.os.linux.announce

If you want information about NASM beta releases, and the current development status, please
subscribe to the nasm-devel email list by registering at
http://sourceforge.net/projects/nasm :

1.3 Installation
1.3.1 Installing NASM under MS-DOS or Windows

Once you've obtained the DOS archive for NASNgsmXXX.zip (where XXX denotes the
version number of NASM contained in the archive), unpack it into its own directory (for example
c:\nasm).

The archive will contain four executable files: the NASM executable filasm.exe and
nasmw.exe , and the NDISASM executable fileslisasm.exe andndisasmw.exe . In each
case, the file whose name endsviis aWin32 executable, designed to run undiéindows 95 or
Windows NT Intel, and the other one is a 16-BiDSexecutable.

The only file NASM needs to run is its own executable, so copy (at least) oasmiexe and
nasmw.exe to a directory on your PATH, or alternatively ediitoexec.bat to add thenasm
directory to yourPATH (If you're only installing theNin32 version, you may wish to rename it to
nasm.exe .)

That's it — NASM s installed. You don’t need the nasm directory to be present to run NASM
(unless you've added it to yoRATH, so you can delete it if you need to save space; however, you
may want to keep the documentation or test programs.

If you've downloaded the DOS source archimasmXXXs.zip , the nasm directory will also
contain the full NASM source code, and a selection of Makefiles you can (hopefully) use to rebuild
your copy of NASM from scratch.

Note that the source filéasnsa.c , insnsd.c ,insnsi.h andinsnsn.c are automatically
generated from the master instruction taiblens.dat by a Perl script; the filenacros.c is
generated fronstandard.mac by another Perl script. Although the NASM source distribution
includes these generated files, you will need to rebuild them (and hence, will need a Perl interpreter)
if you change insns.dat, standard.mac or the documentation. It is possible future source distributions
may not include these files at all. Ports of Perl for a variety of platforms, including DOS and
Windows, are available from www.cpan.org.

1.3.2 Installing NASM under Unix

Once you've obtained the Unix source archive for NASidsm—X.XX.tar.gz (where X. XX
denotes the version number of NASM contained in the archive), unpack it into a directory such as
/usr/local/src . The archive, when unpacked, will create its own subdirectasyn—X.XX.

NASM is an auto—configuring package: once you've unpackedditfo the directory it's been
unpacked into and typéconfigure . This shell script will find the best C compiler to use for
building NASM and set up Makefiles accordingly.

Once NASM has auto—-configured, you can typake to build thenasm andndisasm binaries,
and thenmake install to install them in/usr/local/bin and install the man pages
nasm.l and ndisasm.1l in /usr/local/man/manl . Alternatively, you can give options

11

mailto:jules@dsf.org.uk
mailto:anakin@pobox.com
http://nasm.sourceforge.net
ftp://ftp.kernel.org/pub/software/devel/nasm/
ftp://ibiblio.org/pub/Linux/devel/lang/assemblers/
news:comp.lang.asm.x86
news:alt.lang.asm
news:comp.os.linux.announce
http://sourceforge.net/projects/nasm
http://www.cpan.org/ports/

12

such as——prefix to the configure script (see the fiINSTALL for more details), or install the
programs yourself.

NASM also comes with a set of utilities for handling RBOFFcustom object—file format, which
are in therdoff subdirectory of the NASM archive. You can build these withke rdf and
install them withmake rdf_install , if you want them.

If NASM fails to auto—configure, you may still be able to make it compile by using the fall-back
Unix makefile Makefile.unx . Copy or rename that file thMakefile and try typingmake.
There is also a Makefile.unx file in théoff subdirectory.

Chapter 2: Running NASM

2.1 NASM Command-Line Syntax
To assemble a file, you issue a command of the form
nasm —f <format> <filename> [-0 <output>]
For example,
nasm —f elf myfile.asm
will assemblanyfile.asm into anELF object filemyfile.o . And
nasm —f bin myfile.asm —o myfile.com
will assemblemyfile.asm into a raw binary filemyfile.com

To produce a listing file, with the hex codes output from NASM displayed on the left of the original
sources, use thd option to give a listing file name, for example:

nasm —f coff myfile.asm —I myfile.Ist

To get further usage instructions from NASM, try typing

nasm —-h

As —hf , this will also list the available output file formats, and what they are.

If you use Linux but aren’t sure whether your systemdsit or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like
nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1

then your system iELF, and you should use the optiehelf when you want NASM to produce
Linux object files. If it says

nasm: Linux/i386 demand-paged executable (QMAGIC)

or something similar, your systemasout , and you should usef aout instead (Linuxa.out
systems have long been obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won't see any
output at all, unless it gives error messages.

2.1.1 The-o Option: Specifying the Output File Name

NASM will normally choose the name of your output file for you; precisely how it does this is
dependent on the object file format. For Microsoft object file formaltg (andwin32), it will
remove theasm extension (or whatever extension you like to use — NASM doesn't care) from
your source file name and substitutdhj . For Unix object file formatsaput , coff , elf |,
macho andas86) it will substitute.o . Forrdf , it will use.rdf , and for thebin format it will
simply remove the extension, so thagfile.asm produces the output fil@yfile

If the output file already exists, NASM will overwrite it, unless it has the same name as the input
file, in which case it will give a warning and usasm.out as the output file name instead.

13

For situations in which this behaviour is unacceptable, NASM provides-agheommand-line
option, which allows you to specify your desired output file name. You invokby following it
with the name you wish for the output file, either with or without an intervening space. For example:

nasm —f bin program.asm —o program.com
nasm —f bin driver.asm —odriver.sys

Note that this is a small o, and is different from a capital O , which is used to specify the number of
optimisation passes required. See section 2.1.17.

2.1.2 The—f Option: Specifying the Output File Format

If you do not supply thef option to NASM, it will choose an output file format for you itself. In
the distribution versions of NASM, the default is always ; if you've compiled your own copy of
NASM, you can redefin©F_DEFAULTat compile time and choose what you want the default to
be.

Like —o, the intervening space betweeh and the output file format is optional; sbelf and
—felf are both valid.

A complete list of the available output file formats can be given by issuing the command
nasm —hf .

2.1.3 The-l Option: Generating a Listing File

If you supply the-I option to NASM, followed (with the usual optional space) by a file name,
NASM will generate a source-listing file for you, in which addresses and generated code are listed
on the left, and the actual source code, with expansions of multi-line macros (except those which
specifically request no expansion in source listings: see section 4.3.9) on the right. For example:

nasm —f elf myfile.asm —I myfile.Ist

If a list file is selected, you may turn off listing for a section of your source [listh-] , and
turn it back on with[list +] , (the default, obviously). There is no "user form" (without the
brackets). This can be used to list only sections of interest, avoiding excessively long listings.

2.1.4 The-MOption: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This can be redirected to a file
for further processing. For example:

NASM —-M myfile.asm > myfile.dep
2.1.5 The-MQOption: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This differs frdvh the
option in that if a nonexisting file is encountered, it is assumed to be a generated file and is added to
the dependency list without a prefix.

2.1.6 The—F Option: Selecting a Debug Information Format

This option is used to select the format of the debug information emitted into the output file, to be
used by a debugger (aiill be). Use of this switch do@®t enable output of the selected debug info
format. Use-g, see section 2.1.7, to enable output.

A complete list of the available debug file formats for an output format can be seen by issuing the
commandnasm —f <format> -y . (only "borland" in "—f obj", as of 0.98.35, but "watch this
space”) See: section 2.1.21.

This should not be confused with the "—f dbg" output format option which is not built into NASM
by default. For information on how to enable it when building from the sources, see section 6.12

2.1.7 The—g Option: Enabling Debug Information.

This option can be used to generate debugging information in the specified format. See: section
2.1.6. Using—g without —F results in emitting debug info in the default format, if any, for the
selected output format. If no debug information is currently implemented in the selected output
format,—g is silently ignored

2.1.8 The—X Option: Selecting an Error Reporting Format

This option can be used to select an error reporting format for any error messages that might be
produced by NASM.

Currently, two error reporting formats may be selected. They areXkie option and the-Xgnu
option. The GNU format is the default and looks like this:

filename.asm:65: error: specific error message

wherefilename.asm is the name of the source file in which the error was dete6teds the
source file line number on which the error was deteatedy is the severity of the error (this
could bewarning), andspecific error message is a more detailed text message which
should help pinpoint the exact problem.

The other format, specified byXvc is the style used by Microsoft Visual C++ and some other
programs. It looks like this:

filename.asm(65) : error: specific error message

where the only difference is that the line number is in parentheses instead of being delimited by
colons.

See also th¥isual C++ output format, section 6.3.
2.1.9 The-Z Option: Send Errors to a File

UnderMS-DOSt can be difficult (though there are ways) to redirect the standard—error output of a
program to a file. Since NASM usually produces its warning and error messagttean |, this
can make it hard to capture the errors if (for example) you want to load them into an editor.

NASM therefore provides theZ option, taking a filename argument which causes errors to be sent
to the specified files rather than standard error. Therefore you can redirect the errors into a file by

typing
nasm —Z myfile.err —f obj myfile.asm

In earlier versions of NASM, this option was callel, but it was changed sined is an option
conventionally used for preprocessing only, with disastrous results. See section 2.1.15.

2.1.10 The-s Option: Send Errors to stdout

The —s option redirects error messagesstdout rather thanstderr , so it can be redirected
underMS-DOSTo assemble the filmyfile.asm and pipe its output to thmore program, you
can type:

nasm —s —f obj myfile.asm | more
See also theZ option, section 2.1.9.
2.1.11 The-i Option: Include File Search Directories

When NASM sees th&include orincbin directive in a source file (see section 4.6 or section
3.2.3), it will search for the given file not only in the current directory, but also in any directories

15

specified on the command line by the use of-theoption. Therefore you can include files from a
macro library, for example, by typing

nasm —ic:\\macrolib\\ -f obj myfile.asm
(As usual, a space between and the path name is allowed, and optional).

NASM, in the interests of complete source—code portability, does not understand the file naming
conventions of the OS it is running on; the string you provide as an argumentio tpion will
be prepended exactly as written to the name of the include file. Therefore the trailing backslash in
the above example is necessary. Under Unix, a trailing forward slash is similarly necessary.

(You can use this to your advantage, if you're really perverse, by noting that the fiimn will

causé»include "bar.i" to search for the filoobar.i ...)

If you want to define atandardinclude search path, similar tosr/include on Unix systems,
you should place one or moré directives in theNASMEN\environment variable (see section
2.1.23).

For Makefile compatibility with many C compilers, this option can also be specifield.as
2.1.12 The-p Option: Pre—Include a File

NASM allows you to specify files to bere—includedinto your source file, by the use of the
option. So running

nasm myfile.asm —p myinc.inc

is equivalent to running nasm myfile.asm and placing the directive
%include "myinc.inc" at the start of the file.

For consistency with thel , =D and-U options, this option can also be specified-Bs
2.1.13 The-d Option: Pre—Define a Macro

Just as the-p option gives an alternative to placifginclude directives at the start of a source
file, the—d option gives an alternative to placin§wefine directive. You could code

nasm myfile.asm —dFO0O=100
as an alternative to placing the directive
%define FOO 100

at the start of the file. You can miss off the macro value, as well: the cftfe@Ois equivalent to
coding %define FOO . This form of the directive may be useful for selecting assembly—-time
options which are then tested usiifdef , for example-dDEBUG

For Makefile compatibility with many C compilers, this option can also be specifieD.as
2.1.14 The-u Option: Undefine a Macro

The —u option undefines a macro that would otherwise have been pre-defined, either automatically
or by a—p or—d option specified earlier on the command lines.

For example, the following command line:
nasm myfile.asm —dFOO=100 —uFOO

would result inFOOnot being a predefined macro in the program. This is useful to override options
specified at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can also be specified.as

2.1.15 The-E Option: Preprocess Only

NASM allows the preprocessor to be run on its own, up to a point. UsingBhaption (which
requires no arguments) will cause NASM to preprocess its input file, expand all the macro
references, remove all the comments and preprocessor directives, and print the resulting file on
standard output (or save it to a file, if the option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate expressions
which depend on the values of symbols: so code such as

%assign tablesize ($-tablestart)
will cause an error in preprocess—only mode.

For compatiblity with older version of NASM, this option can also be written —E in older
versions of NASM was the equivalent of the currefitoption, section 2.1.9.

2.1.16 The-a Option: Don't Preprocess At All

If NASM is being used as the back end to a compiler, it might be desirable to suppress
preprocessing completely and assume the compiler has already done it, to save time and increase
compilation speeds. Thea option, requiring no argument, instructs NASM to replace its powerful
preprocessor with a stub preprocessor which does nothing.

2.1.17 The-OnOption: Specifying Multipass Optimization.

NASM defaults to being a two pass assembler. This means that if you have a complex source file
which needs more than 2 passes to assemble optimally, you have to enable extra passes.

Using the-O option, you can tell NASM to carry out multiple passes. The syntax is:

» —0O0 strict two—pass assembly, JMP and Jcc are handled more like v0.98, except that backward
JMPs are short, if possible. Immediate operands take their long forms if a short form is not
specified.

e -0l strict two—pass assembly, but forward branches are assembled with code guaranteed to
reach; may produce larger code than —OO0, but will produce successful assembly more often if
branch offset sizes are not specified. Additionally, immediate operands which will fit in a signed
byte are optimized, unless the long form is specified.

« —On multi-pass optimization, minimize branch offsets; also will minimize signed immediate
bytes, overriding size specification unless s$krict keyword has been used (see section 3.7).
The number specifies the maximum number of passes. The more passes, the better the code, bu
the slower is the assembly.

« —Ox wherex is the actual lettex, indicates to NASM to do unlimited passes.

Note that this is a capital O, and is different from a small o, which is used to specify the output
format. See section 2.1.1.

2.1.18 The-t option: Enable TASM Compatibility Mode

NASM includes a limited form of compatibility with BorlandT/ASM When NASM’s—t option is
used, the following changes are made:

« local labels may be prefixed wit® @hstead of

« TASM-style response files beginning wi@may be specified on the command line. This is
different from the-@resp style that NASM natively supports.

« size override is supported within brackets. In TASM compatible mode, a size override inside
square brackets changes the size of the operand, and not the address type of the operand as |

17

does in NASM syntax. E.gnov eax,[DWORD val] is valid syntax in TASM compatibility
mode. Note that you lose the ability to override the default address type for the instruction.

* %arg preprocessor directive is supported which is similar to TASMRS&directive.
* %local preprocessor directive
e Opstacksize preprocessor directive

« unprefixed forms of some directives supportedg(, elif , else , endif , if , ifdef |,
ifdifi ,ifndef ,include ,local)

* maore...

For more information on the directives, see the section on TASM Compatiblity preprocessor
directives in section 4.9.

2.1.19 The-wOption: Enable or Disable Assembly Warnings

NASM can observe many conditions during the course of assembly which are worth mentioning to
the user, but not a sufficiently severe error to justify NASM refusing to generate an output file.
These conditions are reported like errors, but come up with the word ‘warning’ before the message.
Warnings do not prevent NASM from generating an output file and returning a success status to the
operating system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the
user. Therefore NASM supports th&v command-line option, which enables or disables certain
classes of assembly warning. Such warning classes are described by a name, for example
orphan-labels ; you can enable warnings of this class by the command-line option
-w+orphan-labels and disable it byw-orphan-Ilabels

The suppressible warning classes are:

e macro—params covers warnings about multi-line macros being invoked with the wrong
number of parameters. This warning class is enabled by default; see section 4.3.1 for an example
of why you might want to disable it.

« macro-selfref warns if a macro references itself. This warning class is enabled by default.

» orphan-labels covers warnings about source lines which contain no instruction but define a
label without a trailing colon. NASM does not warn about this somewhat obscure condition by
default; see section 3.1 for an example of why you might want it to.

¢ number—overflow covers warnings about numeric constants which don’t fit in 32 bits (for

example, it's easy to type one too many Fs and pro@uaéffffff by mistake). This
warning class is enabled by default.
* gnu-elf-extensions warns if 8—bit or 16—bit relocations are used-irelf format. The

GNU extensions allow this. This warning class is enabled by default.

« In addition, warning classes may be enabled or disabled across sections of source code with
[warning +warning—name] or [warning -warning—nhame] . No "user form"
(without the brackets) exists.

2.1.20 The-v Option: Display Version Info

Typing NASM —v will display the version of NASM which you are using, and the date on which it
was compiled.

You will need the version number if you report a bug.

2.1.21 The-y Option: Display Available Debug Info Formats

Typing nasm —f <option> -y will display a list of the available debug info formats for the
given output format. The default format is indicated by an asteriskn&sgn —f obj -y yields
*porland . (as of 0.98.35, thenly debug info format implemented).

2.1.22 The—-prefix and--postfix Options.

The ——prefix —and—-postfix options prepend or append (respectively) the given argument to
all global orextern variables. E.g-—prefix _ will prepend the underscore to all global and
external variables, as C sometimes (but not always) likes it.

2.1.23 TheNASMENEnvironment Variable

If you define an environment variable callBlASMENVthe program will interpret it as a list of
extra command-line options, which are processed before the real command line. You can use this to
define standard search directories for include files, by puttingptions in theNASMENVWariable.

The value of the variable is split up at white space, so that the vald&:\nasmlib will be
treated as two separate options. However, that means that the-ddlA®E="my name" won’t

do what you might want, because it will be split at the space and the NASM command-line
processing will get confused by the two nonsensical wetddAME="myandname".

To get round this, NASM provides a feature whereby, if you beginN\h8 MEN\&nvironment
variable with some character that isn't a minus sign, then NASM will treat this character as the
separator character for options. So setting tANASMENV variable to the value
I-sl-ic:\nasmlib is equivalent to setting it to-s -ic:\nasmlib , but
I-dNAME="my name" will work.

This environment variable was previously cald&iSMThis was changed with version 0.98.31.

2.2 Quick Start for MASM Users

If you're used to writing programs with MASM, or with TASM in MASM-compatible (non-Ideal)
mode, or witha86, this section attempts to outline the major differences between MASM'’s syntax
and NASM's. If you're not already used to MASM, it's probably worth skipping this section.

2.2.1 NASM Is Case-Sensitive

One simple difference is that NASM is case-sensitive. It makes a difference whether you call your
label foo , Foo or FOO If you're assembling t®OSor OS/2 .OBJ files, you can invoke the
UPPERCASHlirective (documented in section 6.2) to ensure that all symbols exported to other
code modules are forced to be upper case; but even il a single module, NASM will
distinguish between labels differing only in case.

2.2.2 NASM Requires Square Brackets For Memory References

NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that it
should be possible, as far as is practical, for the user to look at a single line of NASM code and tell
what opcode is generated by it. You can’t do this in MASM: if you declare, for example,

foo equ 1
bar dw 2

then the two lines of code

mov ax,foo
mov ax,bar

generate completely different opcodes, despite having identical-looking syntaxes.

19

20

NASM avoids this undesirable situation by having a much simpler syntax for memory references.
The rule is simply that any access to tmmtentsof a memory location requires square brackets
around the address, and any access tadligessof a variable doesn’t. So an instruction of the
form mov ax,foo will alwaysrefer to a compile-time constant, whether it's BQUor the
address of a variable; and to access twmtents of the variablebar, you must code

mov ax,[bar]

This also means that NASM has no need for MASMIBFSETkeyword, since the MASM code

mov ax,offset bar means exactly the same thing as NASM@v ax,bar . If you're trying
to get large amounts of MASM code to assemble sensibly under NASM, you can always code
%idefine offset to make the preprocessor treat @ieFSETkeyword as a no—-op.

This issue is even more confusingai®6 , where declaring a label with a trailing colon defines it to
be a ‘label’ as opposed to a ‘variable’ and caws to adopt NASM-style semantics; soad86,
mov ax,var has different behaviour depending on whethar was declared agr: dw 0 (a
label) orvar dw 0 (a word-size variable). NASM is very simple by comparismrerythingis a
label.

NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by

MASM and its clones, such asov ax,table[bx] , where a memory reference is denoted by

one portion outside square brackets and another portion inside. The correct syntax for the above is
mov ax,[table+bx] . Likewise, mov ax,es:[di] is wrong andmov ax,[es:di] is

right.

2.2.3 NASM Doesn't Store Variable Types

NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM
will remember, on seeingar dw 0 , that you declaredar as a word-size variable, and will then

be able to fill in the ambiguity in the size of the instructioov var,2 , NASM will deliberately
remember nothing about the symb@lr except where it begins, and so you must explicitly code
mov word [var],2

For this reason, NASM doesn't support th®DS MOVS STOS SCAS CMPSINS, or OUTS
instructions, but only supports the forms suchL&DSB MOVSWand SCASD which explicitly
specify the size of the components of the strings being manipulated.

2.2.4 NASM Doesn'tASSUME

As part of NASM'’s drive for simplicity, it also does not support A&SUMHElirective. NASM will
not keep track of what values you choose to put in your segment registers, and will never
automaticallygenerate a segment override prefix.

2.2.5 NASM Doesn’'t Support Memory Models

NASM also does not have any directives to support different 16—bit memory models. The
programmer has to keep track of which functions are supposed to be called with a far call and which
with a near call, and is responsible for putting the correct forREXF instruction RETNor RETF,

NASM acceptsRET itself as an alternate form fdRETN; in addition, the programmer is
responsible for coding CALL FAR instructions where necessary when catkitegnal functions,

and must also keep track of which external variable definitions are far and which are near.

2.2.6 Floating—Point Differences

NASM uses different names to refer to floating—point registers from MASM: where MASM would
call themST(0) , ST(1) and so on, and86 would call them simph0, 1 and so on, NASM
chooses to call thestO , stl etc.

As of version 0.96, NASM now treats the instructions with ‘nowait’ forms in the same way as
MASM-compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was
based on a misunderstanding by the authors.

2.2.7 Other Differences
For historical reasons, NASM uses the keyw®WORDBvhere MASM and compatible assemblers

useTBYTE
NASM does not declare uninitialized storage in the same way as MASM: where a MASM
programmer might usstack db 64 dup (?) , NASM requiresstack resb 64 , intended

to be read as ‘reserve 64 bytes’. For a limited amount of compatibility, since NASM2raata
valid character in symbol names, you can c@d=gqu 0 and then writingdw ? will at least do
something vaguely usefuDUPis still not a supported syntax, however.

In addition to all of this, macros and directives work completely differently to MASM. See chapter
4 and chapter 5 for further details.

21

22

Chapter 3: The NASM Language

3.1 Layout of a NASM Source Line

Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor
directive or an assembler directive: see chapter 4 and chapter 5) some combination of the four fields

label: instruction operands ; comment

As usual, most of these fields are optional; the presence or absence of any combination of a label,
an instruction and a comment is allowed. Of course, the operand field is either required or forbidden
by the presence and nature of the instruction field.

NASM uses backslash (\) as the line continuation character; if a line ends with backslash, the next
line is considered to be a part of the backslash—ended line.

NASM places no restrictions on white space within a line: labels may have white space before
them, or instructions may have no space before them, or anything. The colon after a label is also
optional. (Note that this means that if you intend to dodsb alone on a line, and typedab

by accident, then that's still a valid source line which does nothing but define a label. Running

NASM with the command-line optiorw+orphan—labels will cause it to warn you if you

define a label alone on a line without a trailing colon.)

Valid characters in labels are letters, numbers$, #, @ ~, . , and?. The only characters which

may be used as tHest character of an identifier are letters,(with special meaning: see section
3.9),_and?. An identifier may also be prefixed with$ato indicate that it is intended to be read as

an identifier and not a reserved word; thus, if some other module you are linking with defines a
symbol calledeax, you can refer tdbeax in NASM code to distinguish the symbol from the
register. Maximum length of an identifier is 4095 characters.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU
instructions, MMX instructions and even undocumented instructions are all supported. The
instruction may be prefixed byOCK REP, REPEREPZ or REPNEREPNZ in the usual way.

Explicit address—size and operand-size prefiRd$, A32, 016 and O32 are provided — one
example of their use is given in chapter 9. You can also use the name of a segment register as an
instruction prefix: codinges mov [bx],ax is equivalent to codingnov [es:bx],ax . We
recommend the latter syntax, since it is consistent with other syntactic features of the language, but
for instructions such asODSB which has no operands and yet can require a segment override,
there is no clean syntactic way to proceed apart shodsb

An instruction is not required to use a prefix: prefixes sucBAA32, LOCKor REPEcan appear
on a line by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM also supports a number of pseudo-instructions,
described in section 3.2.

Instruction operands may take a number of forms: they can be registers, described simply by the
register name (e.@x, bp, ebx, crO : NASM does not use thgas —style