NASM — The Netwide Assembler

version 2.13rc10

© 1996-2017 The NASM Development Team — All Rights Reserved

This document is redistributable under the license given in the file "LICENSE" distributed in the NASM
archive.

Contents

Chapter 1: Introduction. e e e e e 17
LAIWhatIs NASM?. e 17
1.1.1 Why Yet Another Assembler?. e 17
1.1.2 License ConditionS e e e 17
1.2 Contact Information L 18
L3 Installation. e 18
1.3.1 Installing NASM under MS-DOS orWindows, 18
1.3.2 Installing NASM under Unix e e e e 19
Chapter 2: Running NASM. e 20
2.1 NASM Command-Line Syntax e e 20
2.1.1 The-o Option: Specifying the OutputFileName 20
2.1.2 The-f Option: Specifying the Output File Format 21
2.1.3 The-l Option: GeneratingalListingFile 21
2.1.4 The-MOption: Generate Makefile Dependencies. 21
2.1.5 The-MGOption: Generate Makefile Dependencies 21
2.1.6 The-MFOption: Set Makefile Dependency File 21
2.1.7 The-MDOption: Assemble and Generate Dependencies.
2.1.8 The-MTOption: Dependency TargetName. 22
2.1.9 The-MQOption: Dependency Target Name (Quoted) 22
2.1.10 The-MPOption: Emit phony targets. 22
2.1.11 The-F Option: Selecting a Debug Information Format 22
2.1.12 The-g Option: Enabling Debug Information. 22
2.1.13 The-X Option: Selecting an Error Reporting Format. 22
2.1.14 The-Z Option: Send ErrorstoaFile. 23
2.1.15 The-s Option: Send Errors tetdout, 23
2.1.16 The-i Option: Include File Search Directories 23
2.1.17 The-p Option: Pre-Include aFile. ... 24
2.1.18 The-d Option: Pre-DefineaMacro. v i it 24
2.1.19 The-u Option: UndefineaMacro. i ittt 24

2.1.20 The-E Option: Preprocess Only. i e e e e e 24

2.1.21 The-a Option: Don’t Preprocess AtAll. 25
2.1.22 The-OOption: Specifying Multipass Optimization 25
2.1.23 The-t Option: Enable TASM Compatibility Mode 25
2.1.24 The-w and-WOptions: Enable or Disable Assembly Warnings 25
2.1.25 The-v Option: Display VersionInfo 27
2.1.26 The-y Option: Display Available Debug Info Formats 27
2.1.27 The——prefix and—--postfix Options. 27
2.1.28 TheNASMEN¥ENnvironment Variable, 27
2.2 Quick Start for MASM USEIS e e e e e e 28
221 NASMIs Case—Sensitive e 28
2.2.2 NASM Requires Square Brackets For Memory References 28
2.2.3 NASM Doesn'’t Store Variable Types e 28
224 NASM DoesnASSUME 29
2.2.5 NASM Doesn’'t Support Memory Models 29
2.2.6 Floating—Point Differences e 29
2.2.7 Other Differences. e 29
Chapter 3: The NASM Language 0 i i e e e e e e e e e e e e e e e 30
3.1 LayoutofaNASM Source Line e e 30
3.2 Pseudo-Instructions L e 31
3.2.1DBand Friends: Declaring Initialized Data 31
3.2.2RESBand Friends: Declaring Uninitialized Data 31
3.2.3INCBIN: Including External Binary Files. 32
3.24EQUDefining Constants e e e 32
3.2.5TIMES: Repeating InstructionsorData 32
3.3 Effective Addresses 33
3.4CoNnstants L e e 34
34 1NumericConstants e 34
3.4.2Character Strings e e e e e e 35
343 Character Constants. e 36
3.44String Constants L L e e e e 36
3.4.5Unicode Strings. L e e e e 36

3.4.6 Floating—PointConstants e e e 36

347 Packed BCD Constants e e e e e 38

BE5EXPrESSIONS i e e e e 38
3.5.1] : Bitwise OR Operator. o e e 38
3.5.27: Bitwise XOR Operator. o e e e e e e 38
3.5.3& Bitwise AND Operator. e e e e e 38
3.5.4<<and>>: Bit ShiftOperators e 38
3.5.5+ and-: Addition and Subtraction Operators 38
3.5.6*%,/,/l ,%and%%Multiplication and Division. 39
35.7Unary Operators e e e e e e e e e e 39

3.6SEGandWRT. e 39

3.7STRICT: Inhibiting Optimization e e 40

3.8 Critical EXPressions e e e e 40

3.9 Local Labels. 40

Chapter 4: The NASM PreproCessor o v v i i i e e e e e e e e e e e e e e e 42

4.1 Single-Line MacCros e e e 42
4.1.1 The Normal Wayedefine e 42
4.1.2 Resolvingbdefine : %xdefine 43
4.1.3 Macro Indirectior®6[...] e e e e 44
4.1.4 Concatenating Single Line Macro Toke¥s; 44
4.1.5 The Macro Name Itsefb?and%?? 45
4.1.6 Undefining Single-Line Macro%undef, 45
4.1.7 Preprocessor Variablésassign L 45
4.1.8 Defining Strings¥edefstr L 46
4.1.9 Defining Tokengodeftok L 46

4.2 String Manipulation in Macros. e e e e 46
4.2.1 Concatenating String&istrcat L 46
4.2.2 String Lengthestrlen L L L e e a7
4.2.3 Extracting Substring®bsubstr L 47

4.3 Multi-Line Macros%macro e e 47
4.3.1 Overloading Multi-Line Macros i e e e 48
4.3.2 Macro-Local Labels 49
4.3.3 Greedy Macro Parameters. e e e e e e e 49
4.3.4 Macro Parameters Range e e e 50

4.3.5 Default Macro Parameters e e e e e e 51

4.3.6%0Q Macro Parameter Counter. e 52
4.3.7%0Q Label PreceedingMacro e 52
4.3.8%rotate : Rotating Macro Parameters e 52
4.3.9 Concatenating Macro Parameters e e e 53
4.3.10 Condition Codes as Macro Parameters. v v i 54
4.3.11 Disabling Listing EXpansion. e e e e e 54
4.3.12 Undefining Multi-Line Macro®bunmacro. v i i e e 54
4.4 Conditional Assembly L e 55
4.4.1%ifdef : Testing Single-Line Macro Existence. 55
4.4.2%ifmacro : Testing Multi-Line Macro Existence 56
4.4.3%ifctx : Testingthe ContextStack. 56
4.4.4%if : Testing Arbitrary Numeric Expressions 56
4.4.5%ifidn and%ifidni : Testing Exact TextlIdentity 57
4.4.6%ifid , %ifnum , %ifstr : Testing Token Types 57
4.4.7%iftoken :TestforaSingle Token, 58
4.4.8%ifempty : Testfor Empty Expansion. e 58
4.4.9%ifenv : Test If Environment Variable Exists 58
4.5 Preprocessor LOOPHIreD. v v v e e e e e e e e e e e e e e 59
4.6 Source Files and Dependencies e 59
4.6.1%include :Including OtherFiles 60
4.6.2%pathsearch : SearchthelIncludePath 60
4.6.3%depend: Add DependentFiles 60
4.6.4%use: Include Standard Macro Package 61
47 TheContext Stack 61
4.7.1%push and%pop Creating and Removing Contexts 61
4.7.2 Context-Local Labels. 61
4.7.3 Context-Local Single—-Line Macros. e e 62
4.7.4 Context Fall-Through Lookup e 62
4.7.5%repl : Renaminga Context e e e e 63
4.7.6 Example Use of the Context Stack: Block IFs 63
4.8 Stack Relative Preprocessor Directives. e e e 65

4.8.1%arg Directive. L e e e 65

4.8.2%stacksize Directive L e e e 65

4.8.3%local Directive e 66
4.9 Reporting User-Defined Errofgierror , %warning , %fatal 66
4.10 Other Preprocessor Directives e 67

4.10.1%line Directive e 67

4.10.2%!<env>: Read an environmentvariable.. L Lo 68
411 Standard MacCros e 68

4.11. 1 NASM Version Macros o v v i e e e e 68

4.11.2__NASM_VERSION_ID_:NASMVersionID. 68

4.11.3 _NASM _VER :NASMVersionstring 69

411.4 FILE__ and__LINE__ :File Name and Line Number. 69

4115 BITS__ :CurrentBITSMode e 69

4.11.6__ OUTPUT_FORMAT: Current Qutput Format 69

4.11.7 Assembly Date and Time Macros 0 i i i i e e e 70

4.11.8 USE package :Packagelnclude Test. 70

4119 PASS_ :AssemblyPass. 70

4.11.10STRUCandENDSTRUDeclaring Structure Data Types. 71

4.11.11ISTRUC, AT andIlEND: Declaring Instances of Structures 72

4.11.12ALIGN andALIGNB: Data Alignment e 72

4.11.13SECTALIGN Section Alignment. i 73

Chapter 5: Standard Macro Packages i e e e 75
5.1laltreg : Alternate Register Names e 75
5.2smartalign :SmartALIGNMacro e e 75
5.3fp : Floating—point macros. e e e e 76
5.4ifunc :lIntegerfunctions L e 76

5.4.1 Integer logarithms e e 76

Chapter 6: Assembler Directives e e e e 77
6.1BITS: Specifying Target Processor Mode i 77

6.1.1USE16& USE32 AliasesforBITS e 78
6.2DEFAULT Change the assemblerdefaults 78

6.2.1REL& ABS RIP-relative addressing e 78

6.2.2BND& NOBNDBNDprefix o e e 78
6.3SECTIONor SEGMENTChanging and Defining Sections 78

6.3.1 The SECT__MaCro. o v it e e e e e e e e e e e e s s e e 79

6.4ABSOLUTEDefining Absolute Labels. 79
6.5EXTERNImporting Symbols from Other Modules. 80
6.6 GLOBAL Exporting Symbols to Other Modules 81
6.7COMMOMefining Common Data Areas. v i v i i e e e 81
6.8CPU Defining CPU Dependencies. i i i i i e e e e 82
6.9FLOAT Handling of floating—pointconstants 82
6.10[WARNING]: Enable or disable warnings. e 83
Chapter 7: Output Formats e e e 84
7.1bin : Flat—-Form Binary Output e e 84
7.1.10RGBinary File Program Origin e e 84
7.1.2bin Extensions to th8ECTIONDirective v i e 85
7.1.3 Multisection Support forthen Format 85
7.1A4MapFiles. e 85
7.2ith :Intel Hex Output. e e 86
7.3srec : Motorola S—Records Qutput e 86
7.40bj : Microsoft OMF ObjectFiles e 86
7.4.1obj Extensionsto thEEGMENTDirective 87
7.4.2GROUPDefining Groups of Segments e 88
7.4.3UPPERCASHDisabling Case SensitivityinOQutput 88
7.4.4IMPORT Importing DLL Symbols e 88
7.45EXPORTExporting DLL Symbols 89
7.4.6..start : Defining the Program Entry Point. 89
7.4.70bj Extensions to thEXTERNDiIrective. 89
7.4.80bj Extensions to th€EOMMONirective. v i i 90
7.5win32 : Microsoft Win32 ObjectFiles. 90
7.5.1win32 Extensions to thBECTIONDirective 91
7.5.2win32 : Safe Structured ExceptionHandling 91
7.5.3 Debugging formats for Windows 93
7.6win64 : Microsoft Win64 ObjectFiles. o 93
7.6.1win64 : Writing Position—-IndependentCode 93
7.6.2win64 : Structured Exception Handling. Lo 94

7.7coff :Common ObjectFile Format 97

7.8macho32 andmacho64: Mach Object File Format. 97

7.8.1macho extensions to thEECTIONDirective 97
7.8.2 Thread Local Storage in Mach-®acho special symbolsard/RT 98
7.8.3macho specfic directivesubsections_via symbols Lo L. 98
7.8.4macho specfic directiveno_dead _strip L 98
7.9elf32 ,elf64 ,elfx32 :Executable and Linkable Format ObjectFiles 98
7.9.1 ELF specificdirectivesabi e 98
7.9.2elf extensions to th8ECTIONDirective, 99
7.9.3 Position—-Independent Codeacho Special Symbols and/RT. 99
7.9.4 Thread Local Storage in EL&lf Special Symbolsand/RT. 100
7.9.5elf Extensions to th&LOBALDirective. 100
7.9.6elf Extensions to th€EOMMONirective 101
7.9.716-bitcodeand ELF 101
7.9.8Debug formatsand ELF 101
7.10aout : Linuxa.out ObjectFiles e 101
7.11aoutb : NetBSD/FreeBSD/OpenBS&out ObjectFiles. 102
7.12as86 : Minix/Linux as86 ObjectFiles. 102
7.13rdf : Relocatable Dynamic Object File Format 102
7.13.1 Requiring a Library: THEBRARY Directive 102
7.13.2 Specifying a Module Name: TREODULBirective 103
7.13.3rdf Extensions to th&LOBALDirective 103
7.13.4rdf Extensions to thEXTERNDirective, 103
7.14dbg: Debugging Format e 103
Chapter 8: Writing 16—bit Code (DOS, Windows 3/3.1). v i i i i i 105
8.1 ProducingEXE Files e 105
8.1.1 Using th@bj Format To GeneratEXE Files. 105
8.1.2 Using thdin Format To GeneratEXE Files. 106
8.2 ProducingCOMEFiles e 107
8.2.1 Using thdin Format To Generat€OMFiles. 107
8.2.2 Using th@bj Format To Generat€OMFiles. 108
8.3 ProducingSYS Files e 108
8.4 Interfacing to 16-bit C Programs. e e e 108
8.4.1 External Symbol Names e 108

8.4.2Memory Models e 109

8.4.3 Function Definitions and Function Calls., 110
8.4.4 Accessing Dataltems. 112
8.4.5cl16.mac : Helper Macros for the 16-bitCInterface 113
8.5 Interfacing to Borland Pascal Programs e 114
8.5.1 The Pascal Calling Convention it 114
8.5.2 Borland Pascal Segment Name Restrictions, 116
8.5.3 Usingcl6.mac With Pascal Programs. 116
Chapter 9: Writing 32-bit Code (Unix, Win32, DJGPP). i . 117
9.1 Interfacing to 32-bit C Programs. e e e e e 117
9.1.1 External Symbol Names 117
9.1.2 Function Definitions and FunctionCalls. 117
9.1.3Accessing Dataltems. e 119
9.1.4c32.mac : Helper Macros for the 32-bhitCiInterface 120
9.2 Writing NetBSD/FreeBSD/OpenBSD and Linux/ELF Shared Libraries. 120
9.2.1 Obtaining the Address of the GOT 121
9.2.2 Finding Your Local Dataltems e 122
9.2.3 Finding External and Common Dataltems 122
9.2.4 Exporting Symbols to the Library User 122
9.2.5 Calling Procedures Outside the Library 123
9.2.6 Generating the Library File 123
Chapter 10: Mixing 16 and 32 BitCode. e e 125
10.1 MiXxed=Size JUMPS o i e e e e 125
10.2 Addressing Between Different-Size Segments o000 125
10.3 Other Mixed-Size Instructions e 126
Chapter 11: Writing 64-bit Code (Unix, Win64) i i i i 128
11.1 Register Names in 64-bitMode 128
11.2 Immediates and Displacements in 64-bitMode 128
11.3 Interfacing to 64-bit C Programs (Unix) e 129
11.4 Interfacing to 64-bit C Programs (Win64) e 130
Chapter 12: Troubleshooting e 131
12.1 Common Problems L e 131

12.1.1 NASM Generates Inefficient Code. e 131

12.1.2 My JumpsareQutof Range e 131

12.1.30R@Doesnt Work o e 131
12.14TIMES Doesn't Work o o o e 132
12.2BUGS . . . o o e e e e e e e e e e e e e e e e e e 132
Appendix A: Ndisasm e e 134
Al Introduction. L e 134
A.2 Getting Started: Installation e 134
A3 Running NDISASM. e e 134
A.3.1 COM Files: Specifyingan Origin. i e 134
A.3.2 Code Following Data: Synchronisation. 135
A.3.3 Mixed Code and Data: Automatic (Intelligent) Synchronisation 135
A.3.40therOptions e e e e 136
A.4Bugs and Improvements. e e e e e e 136
Appendix B: Instruction List L e e e 137
B.lIntroduction. L e 137
B.1.1 Special INStructions.... e e e 137
B.1.2 Conventional instructions. 137
B.1.3 Katmai Streaming SIMD instructions (SSE — a.k.a. KNI, XMM, MMX2) 166
B.1.4 Introduced in Deschutes but necessary for SSEsupport 168
B.1.5 XSAVE group (AVX and extended state). 168
B.1.6 Generic memory operations. e e e e e e e 168
B.1.7 New MMX instructions introduced in Katmai. 169
B.1.8 AMD Enhanced 3DNow! (Athlon) instructions 169
B.1.9 Willamette SSE2 Cacheability Instructions 169
B.1.10 Willamette MMX instructions (SSE2 SIMD Integer Instructions) 169
B.1.11 Willamette Streaming SIMD instructions (SSE2) 171
B.1.12 Prescott New Instructions (SSE3) e 173
B.1.13VMX/SVM INStructions. e 173
B.1.14 Extended Page Tables VMX instructions 174
B.1.15 Tejas New Instructions (SSSE3). 0 o i v i e 174
B.1.16 AMD SSE4A e 175
B.1.17 New instructions in Barcelona. 175
B.1.18 Penryn New Instructions (SSE4.1). e 175

11

B.1.19 Nehalem New Instructions (SSE4.2). i i i i 176

B.1.20 Intel SMX. e 177
B.1.21 Geode (Cyrix) 3DNow! additions 177
B.1.22 Intel new instructions in 222, e 177
B.1.23 Intel AES instructions. e 177
B.1.24 Intel AVX AES iNStructions. e e 177
B.1.25 Intel AVXinstructions 177
B.1.26 Intel Carry—Less Multiplication instructions (CLMUL) 191
B.1.27 Intel AVX Carry-Less Multiplication instructions (CLMUL) 191
B.1.28 Intel Fused Multiply—Add instructions (FMA). 192
B.1.29 Intel post—32 nm processor instructions e e 196
B.1.30 VIA (Centaur) security instructions e 196
B.1.31 AMD Lightweight Profiling (LWP) instructions 196
B.1.32 AMD XOP and FMA4 instructions (SSE5) o 197
B.1.33 Intel AVX2 inStructions 199
B.1.34 Transactional Synchronization Extensions (TSX) 203
B.1.35 Intel BMI1 and BMI2 instructions, AMD TBM instructions 204
B.1.36 MJC PUBLIC BEGIN. e 205
B.1.37 MJC PUBLICEND 237
B.1.38 This one was killed before it saw the lightofday 238
B.1.39 Systematic names for the hinting nop instructions 238
Appendix C: NASM Version History e e 243
C.ANASM2SENES . . . o o o o e e e e e e e 243
C.1.AVersion 2.13 L e 243
C.1.2Version 2.12.02 e e 244
C.1.3Version 2.12.01 e e 244
C.1.AVersion 2.12 e e 244
C.1.5Version 2.11.09 e e 245
C.1.6Version 2.11.08 e e 245
C.1.7Version 2.11.07 o e 245
C.1.8Version 2.11.06 e e 245
C.1.9Version 2.11.05 e e e 245

C.1.10Version 2.11.04 o e e 245

C.1.12Version 2.11.03. e e e 246

C.1.12Version 2.11.02. e e 246
C.1.13Version 2.11.01 L e e 246
C.L.14Version 2.11 L e 246
C.1.15Version 2.10.09. e e 247
C.1.16 Version 2.10.08 e e 247
C.1.17 Version 2.10.07 o e e e 247
C.1.18Version 2.10.06 e e 247
C.1.19Version 2.10.05. e e 248
C.1.20 Version 2.10.04 e e 248
C.1.21Version 2.10.03 L e 248
C.1.22Version 2.10.02 e e 248
C.1.23Version 2.10.01 e e 248
C.1.24Version 2.10 e 248
C.1.25Version 2.09.10 e e 249
C.1.26 Version 2.09.09 e e 249
C.1.27 Version 2.09.08 e e 249
C.1.28Version 2.09.07 e e 249
C.1.29Version 2.09.06 e e 249
C.1.30 Version 2.09.05. e e 249
C.1.31Version 2.09.04 e e 249
C.1.32Version 2.09.03 e e 249
C.1.33Version 2.09.02. e e 250
C.1.34Version 2.09.01 e e 250
C.1.35Version 2.09 e e 250
C.1.36 Version 2.08.02 e e 251
C.1.37Version 2.08.01 e 251
C.1.38Version 2.08 e e 251
C.1.39Version 2.07 e 252
C.1.40Version 2.06 e e 252
C.141Version 2.05.01. e 253
C.1.42Version 2.05 e e 253
C.1.43Version 2.04 253

13

14

C.1.44Version 2.03.01 254

C.1.45Version 2.03 L e 254
C.1.46 Version 2.02 e e 255
C.1.A47 Version 2.01 e e 255
C.1.48Version 2.00 e e 256
C.2NASMO0.98 Series v o e e 256
C.2.1Version 0.98.39 257
C.2.2Version 0.98.38 257
C.2.3Version 0.98.37 257
C.24Version 0.98.36 257
C.25Version 0.98.35 L 258
C.2.6Version 0.98.34 258
C.2.7Version 0.98.33 L 258
C.2.8Version 0.98.32 259
C.29Version 0.98.31 259
C.2.10Version 0.98.30 e e 259
C.2.11Version 0.98.28 e e 259
C.2.12Version 0.98.26 e e 260
C.2.13 Version 0.98.25alt. 260
C.2.14 Version 0.98.25 L e e 260
C.2.15Version 0.98.24pL. e e 260
C.2.16 Version 0.98.24 L e e e 260
C.2.17Version 0.98.23 e e 260
C.2.18Version 0.98.22 e e 260
C.2.19Version 0.98.21 e e 260
C.2.20 Version 0.98.20 e 260
C.2.21Version 0.98.19. e e 260
C.2.22Version 0.98.18 e e 260
C.2.23Version 0.98.17 e e 260
C.2.24Version 0.98.16 e e 260
C.2.25Version 0.98.15. e e 261
C.2.26 Version 0.98.14 e 261
C.2.27Version 0.98.13 L e e 261

C.2.28Version 0.98.12. 261

C.2.29Version 0.98.11 e e 261
C.2.30Version 0.98.10 e 261
C.2.31Version 0.98.09. e e 261
C.2.32Version 0.98.08 e e 261
C.2.33 Version 0.98.09b with John Coffman patches released 28-Oct-2001 262
C.2.34 Version 0.98.07 released 01/28/01. i 262
C.2.35 Version 0.98.06f released 01/18/01 262
C.2.36 Version 0.98.06e released 01/09/01 262
C.2.37Version 0.98pl e e 263
C.2.38 Version 0.98bf (bug—fixed) 263
C.2.39 Version 0.98.03 with John Coffman’s changes released 27-Jul-2000 263
C.240Version 0.98.03 L e 263
C.241Version 0.98 267
C.2.42Version 0.98p9 e e 267
C.2.43Version 0.98p8 e 267
C.2.44Version 0.98p7 e e e 267
C.2.45Version 0.98p6 e e 268
C.2.46 Version 0.98P3.7 e e e 268
C.2.47Version 0.98p3.6 e e e 268
C.2.48Version 0.98p3.5 e e 268
C.2.49Version 0.98p3.4 e e 269
C.2.50Version 0.98P3.3 e e 269
C.2.51Version 0.98P3.2 e e 269
C.2.52Version 0.98p3-hpa. e 269
C.2.53 Version 0.98 pre-release 3 e 270
C.2.54 Version 0.98 pre-release 2 e 270
C.255Version 0.98 pre-release 1 e e 270
C.3NASMO.9SENES o o e e e e e 271
C.3.1 Version 0.97 released December 1997 271
C.3.2 Version 0.96 released November 1997o 272
C.3.3Version 0.95released July 1997 274
C.3.4 Version 0.94 released April 1997 275

15

16

C.3.5Version 0.93 released January 1997. e e e 276

C.3.6 Version 0.92 released January 1997. e e e 276
C.3.7 Version 0.91 released November 1996 e 277
C.3.8 Version 0.90 released October 1996 0 e 277

Chapter 1: Introduction

1.1 What Is NASM?

The Netwide Assembler, NASM, is an 80x86 and x86-64 assembler designed for portability and modularity.
It supports a range of object file formats, including Linux aB$D a.out , ELF, COFF Mach-Q,
Microsoft 16—bitOBJ, Win32 andWin64 . It will also output plain binary files. Its syntax is designed to be
simple and easy to understand, similar to Intel's but less complex. It supports all currently known x86
architectural extensions, and has strong support for macros.

1.1.1 Why Yet Another Assembler?

The Netwide Assembler grew out of an ideacomp.lang.asm.x86 (or possiblyalt.lang.asm —
forget which), which was essentially that there didn’t seem to be afge®#86—series assembler around,
and that maybe someone ought to write one.

e aB6 is good, but not free, and in particular you don’t get any 32-bit capability until you pay. It's DOS
only, too.

e gas is free, and ports over to DOS and Unix, but it's not very good, since it's designed to be a back end to
gcc, which always feeds it correct code. So its error checking is minimal. Also, its syntax is horrible, from
the point of view of anyone trying to actuallyrite anything in it. Plus you can’t write 16-bit code in it
(properly.)

e as86 is specific to Minix and Linux, and (my version at least) doesn't seem to have much (or any)
documentation.
« MASMsnN't very good, and it's (was) expensive, and it runs only under DOS.

« TASMis better, but still strives for MASM compatibility, which means millions of directives and tons of
red tape. And its syntax is essentially MASM’s, with the contradictions and quirks that entails (although it
sorts out some of those by means of Ideal mode.) It's expensive too. And it's DOS-only.

So here, for your coding pleasure, is NASM. At present it’s still in prototype stage — we don’t promise that it
can outperform any of these assemblers. But plgdsasesend us bug reports, fixes, helpful information,

and anything else you can get your hands on (and thanks to the many people who've done this already! You
all know who you are), and we’ll improve it out of all recognition. Again.

1.1.2 License Conditions

Please see the filel CENSE, supplied as part of any NASM distribution archive, for the license conditions
under which you may use NASM. NASM is now under the so—called 2-clause BSD license, also known as
the simplified BSD license.

Copyright 1996-2016 the NASM Authors — All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

« Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

17

« Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1.2 Contact Information

The current version of NASM (since about 0.98.08) is maintained by a team of developers, accessible through
thenasm-devel mailing list (see below for the link). If you want to report a bug, please read section 12.2
first.

NASM has a website &ittp://www.nasm.us/ . If it's not there, google for us!

New releases, release candidates, and daily development snapshots of NASM are available from the official
web site.

If you want information about the current development status, please subscriben&srivedevel email
list; see link from the website.

1.3 Installation
1.3.1 Installing NASM under MS-DOS or Windows

Once you've obtained the appropriate archive for NASMasm-XXX-dos.zip or
nasm-XXX-win32.zip (where XXX denotes the version number of NASM contained in the archive),
unpack it into its own directory (for examplanasm).

The archive will contain a set of executable files: the NASM executabledden.exe , the NDISASM
executable filmmdisasm.exe , and possibly additional utilities to handle the RDOFF file format.

The only file NASM needs to run is its own executable, so c@syn.exe to a directory on your PATH, or
alternatively ediautoexec.bat to add thenasm directory to youlPATH(to do that under Windows XP,

go to Start > Control Panel > System > Advanced > Environment Variables; these instructions may work
under other versions of Windows as well.)

That's it — NASM is installed. You don't need the nasm directory to be present to run NASM (unless you've
added it to youPATH), so you can delete it if you need to save space; however, you may want to keep the
documentation or test programs.

If you've downloaded the DOS source archimasm—-XXX.zip , thenasm directory will also contain the
full NASM source code, and a selection of Makefiles you can (hopefully) use to rebuild your copy of NASM
from scratch. See the filBISTALL in the source archive.

Note that a number of files are generated from other files by Perl scripts. Although the NASM source
distribution includes these generated files, you will need to rebuild them (and hence, will need a Perl

http://www.nasm.us/

interpreter) if you change insns.dat, standard.mac or the documentation. It is possible future source
distributions may not include these files at all. Ports of Perl for a variety of platforms, including DOS and
Windows, are available from www.cpan.org.

1.3.2 Installing NASM under Unix

Once you've obtained the Unix source archive for NASdsm—-XXX.tar.gz (where XXX denotes the
version number of NASM contained in the archive), unpack it into a directory suabkréscal/src
The archive, when unpacked, will create its own subdirectasy—XXX

NASM is an auto—configuring package: once you've unpackexd ito the directory it's been unpacked into
and type./configure . This shell script will find the best C compiler to use for building NASM and set up
Makefiles accordingly.

Once NASM has auto-configured, you can typake to build thenasm andndisasm binaries, and then
make install to install them in/usr/local/bin and install the man pagesasm.l and
ndisasm.1 in /usr/local/man/manl . Alternatively, you can give options such-asprefix to the
configure script (see the filNSTALL for more details), or install the programs yourself.

NASM also comes with a set of utilities for handling RBOFFcustom object-file format, which are in the
rdoff subdirectory of the NASM archive. You can build these withke rdf and install them with
make rdf_install , if you want them.

19

http://www.cpan.org/ports/

Chapter 2: Running NASM

2.1 NASM Command-Line Syntax

To assemble a file, you issue a command of the form

nasm —f <format> <filename> [-0 <output>]

For example,

nasm —f elf myfile.asm

will assemblemyfile.asm into anELF object filemyfile.o . And
nasm —f bin myfile.asm —o myfile.com

will assemblemyfile.asm into a raw binary filanyfile.com

To produce a listing file, with the hex codes output from NASM displayed on the left of the original sources,
use the-l option to give a listing file name, for example:

nasm —f coff myfile.asm - myfile.lst

To get further usage instructions from NASM, try typing

nasm —h

As —hf , this will also list the available output file formats, and what they are.

If you use Linux but aren’t sure whether your systemasit or ELF, type

file nasm

(in the directory in which you put the NASM binary when you installed it). If it says something like
nasm: ELF 32-bit LSB executable i386 (386 and up) Version 1

then your system iELF, and you should use the optiehelf when you want NASM to produce Linux
object files. If it says

nasm: Linux/i386 demand-paged executable (QMAGIC)

or something similar, your systemasout , and you should usef aout instead (Linuxa.out systems
have long been obsolete, and are rare these days.)

Like Unix compilers and assemblers, NASM is silent unless it goes wrong: you won’t see any output at all,
unless it gives error messages.

2.1.1 The-o Option: Specifying the Output File Name

NASM will normally choose the name of your output file for you; precisely how it does this is dependent on
the object file format. For Microsoft object file formatsb| , win32 andwin64), it will remove the.asm
extension (or whatever extension you like to use — NASM doesn't care) from your source file hame and
substitute.obj . For Unix object file formatsaput , as86, coff , elf32 , elf64 , elfx32 , ieee ,
macho32 and macho64) it will substitute.o . Fordbg, rdf , ith andsrec , it will use .dbg , .rdf ,

.ith and .srec , respectively, and for théin format it will simply remove the extension, so that
myfile.asm produces the output filmyfile

If the output file already exists, NASM will overwrite it, unless it has the same name as the input file, in
which case it will give a warning and usasm.out as the output file name instead.

For situations in which this behaviour is unacceptable, NASM providesatemmand-line option, which
allows you to specify your desired output file name. You inveledy following it with the name you wish
for the output file, either with or without an intervening space. For example:

nasm —f bin program.asm —o program.com
nasm —f bin driver.asm —odriver.sys

Note that this is a small o, and is different from a capital O , which is used to specify the number of
optimisation passes required. See section 2.1.22.

2.1.2 The—f Option: Specifying the Output File Format

If you do not supply the-f option to NASM, it will choose an output file format for you itself. In the
distribution versions of NASM, the default is alwayia ; if you've compiled your own copy of NASM, you
can redefin@F _DEFAULTat compile time and choose what you want the default to be.

Like -0, the intervening space betweeh and the output file format is optional; sbelf and-felf are
both valid.

A complete list of the available output file formats can be given by issuing the comasmd-hf .

2.1.3 The-l Option: Generating a Listing File

If you supply the-l option to NASM, followed (with the usual optional space) by a file name, NASM will
generate a source-listing file for you, in which addresses and generated code are listed on the left, and the
actual source code, with expansions of multi-line macros (except those which specifically request no
expansion in source listings: see section 4.3.11) on the right. For example:

nasm —f elf myfile.asm —I myfile.Ist

If a list file is selected, you may turn off listing for a section of your source[ligth-] , and turn it back
on with[list +] , (the default, obviously). There is no "user form" (without the brackets). This can be used
to list only sections of interest, avoiding excessively long listings.

2.1.4 The-MOption: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This can be redirected to a file for
further processing. For example:

nasm —-M myfile.asm > myfile.dep
2.1.5 The-MGOption: Generate Makefile Dependencies

This option can be used to generate makefile dependencies on stdout. This differs frbroghien in that if
a nonexisting file is encountered, it is assumed to be a generated file and is added to the dependency list
without a prefix.

2.1.6 The-MFOption: Set Makefile Dependency File

This option can be used with thé/ or -MGoptions to send the output to a file, rather than to stdout. For
example:

21

22

nasm -M —-MF myfile.dep myfile.asm

2.1.7 The-MDOption: Assemble and Generate Dependencies

The -MDoption acts as the combination of th® and —MF options (i.e. a filename has to be specified.)
However, unlike the-Mor ~-MGoptions,~MDdoesnot inhibit the normal operation of the assembler. Use this
to automatically generate updated dependencies with every assembly session. For example:

nasm —f elf —o myfile.o ~-MD myfile.dep myfile.asm

2.1.8 The-MTOption: Dependency Target Name

The-MT option can be used to override the default name of the dependency target. This is normally the same
as the output filename, specified by the option.

2.1.9 The-MQOption: Dependency Target Name (Quoted)

The —MQoption acts as theMT option, except it tries to quote characters that have special meaning in
Makefile syntax. This is not foolproof, as not all characters with special meaning are quotable in Make. The
default output (if no-MTor —MQoption is specified) is automatically quoted.

2.1.10 The-MPOption: Emit phony targets

When used with any of the dependency generation options;MRoption causes NASM to emit a phony
target without dependencies for each header file. This prevents Make from complaining if a header file has
been removed.

2.1.11 The-F Option: Selecting a Debug Information Format

This option is used to select the format of the debug information emitted into the output file, to be used by a
debugger (omill be). Prior to version 2.03.01, the use of this switchndilenable output of the selected

debug info format. Useg, see section 2.1.12, to enable output. Versions 2.03.01 and later automatically
enable-g if —F is specified.

A complete list of the available debug file formats for an output format can be seen by issuing the command
nasm —f <format> -y . Not all output formats currently support debugging output. See section 2.1.26.

This should not be confused with thedbg output format option which is not built into NASM by default.
For information on how to enable it when building from the sources, see section 7.14.

2.1.12 The-g Option: Enabling Debug Information.

This option can be used to generate debugging information in the specified format. See section 2.1.11. Using
—g without—F results in emitting debug info in the default format, if any, for the selected output format. If no
debug information is currently implemented in the selected output forignag,silently ignored

2.1.13 The-X Option: Selecting an Error Reporting Format

This option can be used to select an error reporting format for any error messages that might be produced by
NASM.

Currently, two error reporting formats may be selected. They areXe option and the-Xgnu option. The
GNU format is the default and looks like this:

filename.asm:65: error: specific error message

wherefilename.asm is the name of the source file in which the error was deteg@feds the source file

line number on which the error was detectedor is the severity of the error (this could Wwarning),

and specific error message is a more detailed text message which should help pinpoint the exact
problem.

The other format, specified byXvc is the style used by Microsoft Visual C++ and some other programs. It
looks like this:

filename.asm(65) : error: specific error message
where the only difference is that the line number is in parentheses instead of being delimited by colons.

See also th¥isual C++ output format, section 7.5.

2.1.14 The-Z Option: Send Errors to a File

UnderMS-DOSt can be difficult (though there are ways) to redirect the standard—error output of a program
to a file. Since NASM usually produces its warning and error messagadasn |, this can make it hard to
capture the errors if (for example) you want to load them into an editor.

NASM therefore provides theZ option, taking a filename argument which causes errors to be sent to the
specified files rather than standard error. Therefore you can redirect the errors into a file by typing

nasm -Z myfile.err —f obj myfile.asm

In earlier versions of NASM, this option was calle@, but it was changed sinceE is an option
conventionally used for preprocessing only, with disastrous results. See section 2.1.20.

2.1.15 The-s Option: Send Errors to stdout

The —s option redirects error messagesstolout rather thanstderr , so it can be redirected under
MS-DOSTo assemble the filmyfile.asm and pipe its output to thmore program, you can type:

nasm —s —f obj myfile.asm | more

See also theZ option, section 2.1.14.

2.1.16 The-i Option: Include File Search Directories

When NASM sees thésinclude or %pathsearch directive in a source file (see section 4.6.1, section
4.6.2 or section 3.2.3), it will search for the given file not only in the current directory, but also in any
directories specified on the command line by the use ofitheption. Therefore you can include files from a
macro library, for example, by typing

nasm —ic:\macrolib\ —f obj myfile.asm
(As usual, a space between and the path name is allowed, and optional).

NASM, in the interests of complete source—code portability, does not understand the file naming conventions
of the OS it is running on; the string you provide as an argument to thption will be prepended exactly as
written to the name of the include file. Therefore the trailing backslash in the above example is necessary.
Under Unix, a trailing forward slash is similarly necessary.

(You can use this to your advantage, if you're really perverse, by noting that the eftion will cause
%include "bar.i" to search for the filkoobar.i ...

If you want to define astandardinclude search path, similar fasr/include on Unix systems, you
should place one or moré directives in th&NASMENnvironment variable (see section 2.1.28).

23

For Makefile compatibility with many C compilers, this option can also be specifield.as

2.1.17 The-p Option: Pre-Include a File

NASM allows you to specify files to bere—includedinto your source file, by the use of thp option. So
running

nasm myfile.asm —p myinc.inc

is equivalent to runningasm myfile.asm and placing the directivé&include "myinc.inc" at the
start of the file.

For consistency with thel , =D and-U options, this option can also be specified-Bs

2.1.18 The-d Option: Pre-Define a Macro

Just as the-p option gives an alternative to placifignclude directives at the start of a source file, ttte
option gives an alternative to placin§alefine directive. You could code

nasm myfile.asm —dFOO=100
as an alternative to placing the directive
%define FOO 100

at the start of the file. You can miss off the macro value, as well: the olé@Ois equivalent to coding
%define FOO . This form of the directive may be useful for selecting assembly—-time options which are then
tested usingoifdef |, for example-dDEBUG

For Makefile compatibility with many C compilers, this option can also be specified.as

2.1.19 The-u Option: Undefine a Macro

The —u option undefines a macro that would otherwise have been pre-defined, either automatically or by a
—p or —d option specified earlier on the command lines.

For example, the following command line:
nasm myfile.asm —dFO0O=100 -uFOO

would result inFOOnot being a predefined macro in the program. This is useful to override options specified
at a different point in a Makefile.

For Makefile compatibility with many C compilers, this option can also be specified.as

2.1.20 The-E Option: Preprocess Only

NASM allows the preprocessor to be run on its own, up to a point. Usingitloption (which requires no
arguments) will cause NASM to preprocess its input file, expand all the macro references, remove all the
comments and preprocessor directives, and print the resulting file on standard output (or save it to a file, if the
-0 option is also used).

This option cannot be applied to programs which require the preprocessor to evaluate expressions which
depend on the values of symbols: so code such as

%assign tablesize ($-tablestart)

will cause an error in preprocess—only mode.

For compatiblity with older version of NASM, this option can also be written—E in older versions of
NASM was the equivalent of the currefz option, section 2.1.14.

2.1.21 The-a Option: Don’t Preprocess At All

If NASM is being used as the back end to a compiler, it might be desirable to suppress preprocessing
completely and assume the compiler has already done it, to save time and increase compilation speeds. The
—a option, requiring no argument, instructs NASM to replace its powerful preprocessor with a stub
preprocessor which does nothing.

2.1.22 The-OOption: Specifying Multipass Optimization
Using the-O option, you can tell NASM to carry out different levels of optimization. The syntax is:

e —0O0 No optimization. All operands take their long forms, if a short form is not specified, except
conditional jumps. This is intended to match NASM 0.98 behavior.

¢ —0OL1 Minimal optimization. As above, but immediate operands which will fit in a signed byte are
optimized, unless the long form is specified. Conditional jumps default to the long form unless otherwise
specified.

e —-Ox (where x is the actual lettex): Multipass optimization. Minimize branch offsets and signed
immediate bytes, overriding size specification unlesssthiet keyword has been used (see section

3.7). For compatibility with earlier releases, the lekemay also be any number greater than one. This
number has no effect on the actual number of passes.

The-Ox mode is recommended for most uses, and is the default since NASM 2.09.

Note that this is a capit&), and is different from a smadl, which is used to specify the output file name. See
section 2.1.1.

2.1.23 The-t Option: Enable TASM Compatibility Mode

NASM includes a limited form of compatibility with BorlandlASM When NASM’'s—t option is used, the
following changes are made:

« local labels may be prefixed wit® @nhstead of

« size override is supported within brackets. In TASM compatible mode, a size override inside square
brackets changes the size of the operand, and not the address type of the operand as it does in NASM
syntax. E.gmov eax,[DWORD val] is valid syntax in TASM compatibility mode. Note that you lose
the ability to override the default address type for the instruction.

» unprefixed forms of some directives supportedg(, elif , else , endif , if , ifdef , ifdifi ,
ifndef ,include ,local)

2.1.24 The-wand -WOptions: Enable or Disable Assembly Warnings

NASM can observe many conditions during the course of assembly which are worth mentioning to the user,
but not a sufficiently severe error to justify NASM refusing to generate an output file. These conditions are
reported like errors, but come up with the word ‘warning’ before the message. Warnings do not prevent
NASM from generating an output file and returning a success status to the operating system.

Some conditions are even less severe than that: they are only sometimes worth mentioning to the user.
Therefore NASM supports thew command-line option, which enables or disables certain classes of
assembly warning. Such warning classes are described by a name, for exguinpie-labels ; you can

25

26

enable warnings of this class by the command-line optisr-orphan-labels and disable it by
—w-orphan-labels

The current warning classes are:

other specifies any warning not otherwise specified in any class.

macro—params covers warnings about multi-line macros being invoked with the wrong number of
parameters. This warning class is enabled by default; see section 4.3.1 for an example of why you might
want to disable it.

macro-selfref warns if a macro references itself. This warning class is disabled by default.

macro—defaults warns when a macro has more default parameters than optional parameters. This
warning class is enabled by default; see section 4.3.5 for why you might want to disable it.

orphan-labels covers warnings about source lines which contain no instruction but define a label
without a trailing colon. NASM warns about this somewhat obscure condition by default; see section 3.1
for more information.

number—-overflow covers warnings about numeric constants which don't fit in 64 bits. This warning
class is enabled by default.

gnu—elf-extensions warns if 8-bit or 16-bit relocations are used-inelf = format. The GNU
extensions allow this. This warning class is disabled by default.

float—overflow warns about floating point overflow. Enabled by default.

float—-denorm warns about floating point denormals. Disabled by default.

float—underflow warns about floating point underflow. Disabled by default.

float—toolong warns about too many digits in floating—point numbers. Enabled by default.
user controls%warning directives (see section 4.9). Enabled by default.

lock warns about OCKprefixes on unlockable instructions. Enabled by default.

hle warns about invalid use of the HMRACQUIREor XRELEASEprefixes. Enabled by default.

bnd warns about ineffective use of tB&Dprefix when a relaxed form of jmp instruction becomes jmp
short form. Enabled by default.

zext-reloc warns that a relocation has been zero—extended due to limitations in the output format.

ptr warns about keywords used in other assemblers that might indicate a mistake in the source code.
Currently only the MASMPTRkeyword is recognized.

bad-pragma warns about a malformed or otherwise unparsiieagma directive. Disabled by default.

unknown—-pragma warns about an unknow¥bpragma directive. This is not yet implemented. Disabled
by default.

not-my-pragma warns about &pragma directive which is not applicable to this particular assembly
session. This is not yet implemented. Disabled by default.

unknown-warning warns about a-w or —W option or a[WARNING] directive that contains an
unknown warning name or is otherwise not possible to process.

e all is an alias forall suppressible warning classes. Thua+all enables all available warnings, and
-w-all disables warnings entirely (since NASM 2.13).

Since version 2.00, NASM has also supported the gcc-like syrfkwvarning—class and
-Wno-warning—class instead of-w+warning—class and-w-warning-class , respectively; both
syntaxes work identically.

The option—w+error or —-Werror can be used to treat warnings as errors. This can be controlled on a per
warning class basis—y+error= warning—clas3; if no warning—classis specified NASM treats it as
-w+error=all ; the same applies tev—error or-Wno—error , of course.

In addition, you can control warnings in the source code itself, usinWABNING] directive. See section
6.10.

2.1.25 The-v Option: Display Version Info

Typing NASM -v will display the version of NASM which you are using, and the date on which it was
compiled.

You will need the version nhumber if you report a bug.

For command-line compatibility with Yasm, the formv is also accepted for this option starting in NASM
version 2.11.05.

2.1.26 The-y Option: Display Available Debug Info Formats

Typing nasm —f <option> -y will display a list of the available debug info formats for the given output
format. The default format is indicated by an asterisk. For example:

nasm —f elf -y

valid debug formats for 'elf32’ output format are
("' denotes default):
*stabs ELF32 (i386) stabs debug format for Linux
dwarf elf32 (i386) dwarf debug format for Linux

2.1.27 The-—prefix and--postfix Options.

The ——prefix ~ and ——postfix options prepend or append (respectively) the given argument to all
global or extern variables. E.g——prefix _ will prepend the underscore to all global and external
variables, as C requires it in some, but not all, system calling conventions.

2.1.28 TheNASMENWEnvironment Variable

If you define an environment variable callBtASMENVthe program will interpret it as a list of extra
command-line options, which are processed before the real command line. You can use this to define
standard search directories for include files, by puttingptions in theNASMENVWariable.

The value of the variable is split up at white space, so that the v&ldie:\nasmlib\ will be treated as

two separate options. However, that means that the valNAME="my name" won't do what you might

want, because it will be split at the space and the NASM command-line processing will get confused by the
two nonsensical wordsdNAME="myandname".

To get round this, NASM provides a feature whereby, if you begiN&k@MEN\environment variable with

some character that isn't a minus sign, then NASM will treat this character as the separator character for
options. So setting thdASMENWariable to the valué-s!-ic:\nasmlib\ is equivalent to setting it to

—s —ic:\nasmlib\ , but!-dNAME="my name" will work.

27

This environment variable was previously caldSMThis was changed with version 0.98.31.

2.2 Quick Start for MASM Users

If you're used to writing programs with MASM, or with TASM in MASM-compatible (non-Ideal) mode, or
with a86, this section attempts to outline the major differences between MASM'’s syntax and NASM'’s. If
you're not already used to MASM,, it's probably worth skipping this section.

2.2.1 NASM Is Case-Sensitive

One simple difference is that NASM is case-sensitive. It makes a difference whether you call ydoo label

Foo or FOO If you're assembling tdOSor OS/2 .OBJ files, you can invoke thElPPERCASKHlirective
(documented in section 7.4) to ensure that all symbols exported to other code modules are forced to be upper
case; but even thewjthin a single module, NASM will distinguish between labels differing only in case.

2.2.2 NASM Requires Square Brackets For Memory References

NASM was designed with simplicity of syntax in mind. One of the design goals of NASM is that it should be
possible, as far as is practical, for the user to look at a single line of NASM code and tell what opcode is
generated by it. You can't do this in MASM: if you declare, for example,

foo equ 1
bar dw 2

then the two lines of code

mov ax,foo
mov ax,bar

generate completely different opcodes, despite having identical-looking syntaxes.

NASM avoids this undesirable situation by having a much simpler syntax for memory references. The rule is
simply that any access to thententsof a memory location requires square brackets around the address, and
any access to theddressof a variable doesn’t. So an instruction of the fanov ax,foo will alwaysrefer

to a compile—time constant, whether it'sa@Uor the address of a variable; and to accessdht&ntsof the
variablebar , you must codenov ax,[bar]

This also means that NASM has no need for MASNDEFSET keyword, since the MASM code

mov ax,offset bar means exactly the same thing as NASktisv ax,bar . If you're trying to get
large amounts of MASM code to assemble sensibly under NASM, you can always code
%idefine offset to make the preprocessor treat @eFSETkeyword as a ho-op.

This issue is even more confusingaB6, where declaring a label with a trailing colon defines it to be a
‘label’ as opposed to a ‘variable’ and caua86 to adopt NASM-style semantics; soaié, mov ax,var

has different behaviour depending on whetrar was declared agar: dw 0 (a label) ovar dw 0 (a
word-size variable). NASM is very simple by comparisererythingis a label.

NASM, in the interests of simplicity, also does not support the hybrid syntaxes supported by MASM and its

clones, such asov ax,table[bx] , where a memory reference is denoted by one portion outside square
brackets and another portion inside. The correct syntax for the abmmyiax,[table+bx] . Likewise,
mov ax,es:[di] is wrong andnov ax,[es:di] is right.

2.2.3 NASM Doesn't Store Variable Types

NASM, by design, chooses not to remember the types of variables you declare. Whereas MASM wiill
remember, on seeingar dw 0 , that you declaredar as a word-size variable, and will then be able to fill

in the ambiguity in the size of the instructiorov var,2 , NASM will deliberately remember nothing about
the symbolvar except where it begins, and so you must explicitly code word [var],2

For this reason, NASM doesn’t support heDS MOVSSTOS SCAS CMPSINS, or OUTSinstructions,
but only supports the forms such BDSB MOVSWand SCASD which explicitly specify the size of the
components of the strings being manipulated.

2.2.4 NASM Doesn'tASSUME

As part of NASM'’s drive for simplicity, it also does not support A&SUMHlirective. NASM will not keep
track of what values you choose to put in your segment registers, and willanggaraticallygenerate a
segment override prefix.

2.2.5 NASM Doesn’'t Support Memory Models

NASM also does not have any directives to support different 16—bit memory models. The programmer has to
keep track of which functions are supposed to be called with a far call and which with a near call, and is
responsible for putting the correct formRET instruction RETNor RETE NASM acceptRET itself as an
alternate form forRETN; in addition, the programmer is responsible for coding CALL FAR instructions
where necessary when callirexternal functions, and must also keep track of which external variable
definitions are far and which are near.

2.2.6 Floating—Point Differences

NASM uses different names to refer to floating—point registers from MASM: where MASM would call them
ST(0) , ST(1) and so on, and86 would call them simph0, 1 and so on, NASM chooses to call them
st0 , stl etc.

As of version 0.96, NASM now treats the instructions with ‘nowait’ forms in the same way as
MASM-compatible assemblers. The idiosyncratic treatment employed by 0.95 and earlier was based on a
misunderstanding by the authors.

2.2.7 Other Differences
For historical reasons, NASM uses the keywdM/ORDwvhere MASM and compatible assemblers use

TBYTE
NASM does not declare uninitialized storage in the same way as MASM: where a MASM programmer might
usestack db 64 dup (?) , NASM requiresstack resb 64 , intended to be read as ‘reserve 64

bytes’. For a limited amount of compatibility, since NASM treatss a valid character in symbol names, you
can code? equ 0 and then writingdw ? will at least do something vaguely usefDlUPis still not a
supported syntax, however.

In addition to all of this, macros and directives work completely differently to MASM. See chapter 4 and
chapter 6 for further detalils.

29

30

Chapter 3: The NASM Language

3.1 Layout of a NASM Source Line

Like most assemblers, each NASM source line contains (unless it is a macro, a preprocessor directive or an
assembler directive: see chapter 4 and chapter 6) some combination of the four fields

label: instruction operands ; comment

As usual, most of these fields are optional; the presence or absence of any combination of a label, an
instruction and a comment is allowed. Of course, the operand field is either required or forbidden by the
presence and nature of the instruction field.

NASM uses backslash (\) as the line continuation character; if a line ends with backslash, the next line is
considered to be a part of the backslash—ended line.

NASM places no restrictions on white space within a line: labels may have white space before them, or
instructions may have no space before them, or anything. The colon after a label is also optional. (Note that
this means that if you intend to colbglsb alone on a line, and tydedab by accident, then that’s still a

valid source line which does nothing but define a label. Running NASM with the command-line option
—-w+orphan-labels will cause it to warn you if you define a label alone on a line without a trailing colon.)

Valid characters in labels are letters, numbers, #, @ ~, . , and?. The only characters which may be used
as thefirst character of an identifier are letters,(with special meaning: see section 3.9)and ?. An
identifier may also be prefixed with&to indicate that it is intended to be read as an identifier and not a
reserved word; thus, if some other module you are linking with defines a symbolezalegiou can refer to
$eax in NASM code to distinguish the symbol from the register. Maximum length of an identifier is 4095
characters.

The instruction field may contain any machine instruction: Pentium and P6 instructions, FPU instructions,
MMX instructions and even undocumented instructions are all supported. The instruction may be prefixed by
LOCK REP REPEREPZ REPNHEREPNZ XACQUIREXRELEASEor BNONOBND in the usual way.

Explicit address—size and operand-size prefikés, A32, A64, 016 and 032, 064 are provided — one
example of their use is given in chapter 10. You can also use the name of a segment register as an instruction
prefix: codinges mov [bx],ax is equivalent to codingiov [es:bx],ax . We recommend the latter

syntax, since it is consistent with other syntactic features of the language, but for instructiond €)ioBRs

which has no operands and yet can require a segment override, there is no clean syntactic way to proceed
apart fromes lodsh

An instruction is not required to use a prefix: prefixes sucBR#A 32, LOCKor REPEcan appear on a line
by themselves, and NASM will just generate the prefix bytes.

In addition to actual machine instructions, NASM also supports a number of pseudo-instructions, described in
section 3.2.

Instruction operands may take a number of forms: they can be registers, described simply by the register name
(e.g.ax, bp, ebx, cr0 : NASM does not use thgas —style syntax in which register names must be prefixed

by a % sign), or they can be effective addresses (see section 3.3), constants (section 3.4) or expressions
(section 3.5).

For x87 floating—point instructions, NASM accepts a wide range of syntaxes: you can use two—operand forms
like MASM supports, or you can use NASM’s native single—operand forms in most cases. For example, you

can code:
fadd stl : this sets st0 := st0 + st
fadd stO,stl : so does this
fadd stl,stO ; this sets stl := st1 + stO
fadd to stl : so does this

Almost any x87 floating—point instruction that references memory must use one of the pbafe@RD
QWORDr TWORIMD indicate what size of memory operand it refers to.

3.2 Pseudo-Instructions

Pseudo-instructions are things which, though not real x86 machine instructions, are used in the instruction
field anyway because that's the most convenient place to put them. The current pseudo-instrudiiBns are
DWDD DQ DT, DQ DY andDZ their uninitialized counterparRESB RESWRESD RESQ REST, RESQ
RESYandRESZ theINCBIN command, th&QUcommand, and thEIMES prefix.

3.2.1 DBand Friends: Declaring Initialized Data

DB DWDD DQ DT, DQ DY andDZ are used, much as in MASM, to declare initialized data in the output file.
They can be invoked in a wide range of ways:

db 0x55 ; just the byte 0x55

db 0x55,0x56,0x57 ;three bytes in succession
db 'a’,0x55 ; character constants are OK
db ’hello’,13,10,'$’ ; so are string constants

dw 0x1234 ; Ox34 0x12

dw 'a’ ; Ox61 0x00 (it's just a number)
dw ‘ab’ ; Ox61 0x62 (character constant)
dw ‘abc’ ; Ox61 0x62 0x63 0x00 (string)
dd 0x12345678 ; 0X78 0x56 0x34 0x12

dd 1.234567e20 ; floating—point constant

dg 0x123456789abcdef0 ; eight byte constant
dg 1.234567e20 ; double—precision float

dt 1.234567e20 ; extended-precision float

DT, DQ DY andDZ do not accept numeric constants as operands.

3.2.2 RESBand Friends: Declaring Uninitialized Data

RESB RESWRESD RESQREST, RESQ RESYandRESZare designed to be used in the BSS section of a
module: they declaraninitialized storage space. Each takes a single operand, which is the number of bytes,
words, doublewords or whatever to reserve. As stated in section 2.2.7, NASM does not support the
MASM/TASM syntax of reserving uninitialized space by writiD§V ? or similar things: this is what it does
instead. The operand tdRESB-type pseudo—-instruction iscatical expressionsee section 3.8.

For example:

buffer: resb 64 ; reserve 64 bytes
wordvar: resw 1 ; reserve a word
realarray resq 10 ; array of ten reals

31

ymmval: resy 1 ; one YMM register
zmmvals: resz 32 ; 32 ZMM registers

3.2.3 INCBIN : Including External Binary Files

INCBIN is borrowed from the old Amiga assembler DevPac: it includes a binary file verbatim into the output
file. This can be handy for (for example) including graphics and sound data directly into a game executable
file. It can be called in one of these three ways:

incbin “file.dat" ; include the whole file

incbin “file.dat",1024 ; skip the first 1024 bytes

incbin “file.dat",1024,512 ; skip the first 1024, and
; actually include at most 512

INCBIN is both a directive and a standard macro; the standard macro version searches for the file in the
include file search path and adds the file to the dependency lists. This macro can be overridden if desired.

3.2.4 EQU Defining Constants

EQUdefines a symbol to a given constant value: wB&hlis used, the source line must contain a label. The
action ofEQUis to define the given label name to the value of its (only) operand. This definition is absolute,
and cannot change later. So, for example,

message db ’hello, world’
msglen equ $-message

definesmsglen to be the constant 1fhsglen may not then be redefined later. This is not a preprocessor
definition either: the value ofmsglen is evaluatedonce using the value of (see section 3.5 for an
explanation off) at the point of definition, rather than being evaluated wherever it is referenced and using the
value of$ at the point of reference.

3.2.5 TIMES: Repeating Instructions or Data

The TIMES prefix causes the instruction to be assembled multiple times. This is partly present as NASM's
equivalent of th®UPsyntax supported by MASM-compatible assemblers, in that you can code

zerobuf: times 64 db 0

or similar things; bufTIMES is more versatile than that. The argumenfTtMES is not just a numeric
constant, but a numeraxpressionso you can do things like

buffer: db "hello, world’
times 64-$+buffer db ’’

which will store exactly enough spaces to make the total lendihftér up to 64. Finally,TIMES can be
applied to ordinary instructions, so you can code trivial unrolled loops in it:

times 100 movsb

Note that there is no effective difference betwéares 100 resb 1 andresb 100 , except that the
latter will be assembled about 100 times faster due to the internal structure of the assembler.

The operand tdIMES is a critical expression (section 3.8).

Note also thaffIMES can't be applied to macros: the reason for this is TIeES is processed after the
macro phase, which allows the argumenTIRIES to contain expressions such@bs-$+buffer as above.
To repeat more than one line of code, or a complex macro, use the prepréaregsdirective.

3.3 Effective Addresses

An effective address is any operand to an instruction which references memory. Effective addresses, in
NASM, have a very simple syntax: they consist of an expression evaluating to the desired address, enclosed in
square brackets. For example:

wordvar dw 123
mov ax,[wordvar]
mov ax,[wordvar+1]
mov ax,[es:wordvar+bx]

Anything not conforming to this simple system is not a valid memory reference in NASM, for example
es:wordvar[bx]

More complicated effective addresses, such as those involving more than one register, work in exactly the
same way:

mov eax,[ebx*2+ecx+offset]
mov ax,[bp+di+8]

NASM is capable of doing algebra on these effective addresses, so that things which don't neloedsarily
legal are perfectly all right:

mov eax,[ebx*5] ; assembles as [ebx*4+ebX]
mov eax,[labell*2-label2] ;ie [labell+(labell-label2)]

Some forms of effective address have more than one assembled form; in most such cases NASM will generate
the smallest form it can. For example, there are distinct assembled forms for the 32-bit effective addresses
[eax*2+0] and[eax+eax] , and NASM will generally generate the latter on the grounds that the former
requires four bytes to store a zero offset.

NASM has a hinting mechanism which will caugax+ebx] and[ebx+eax] to generate different
opcodes; this is occasionally useful becajesé+ebp] and[ebp+esi] have different default segment
registers.

However, you can force NASM to generate an effective address in a particular form by the use of the
keywordsBYTE WORIDWORRNANOSPLIT. If you needeax+3] to be assembled using a double-word
offset field instead of the one byte NASM will normally generate, you can fmderd eax+3]

Similarly, you can force NASM to use a byte offset for a small value which it hasn’t seen on the first pass (see
section 3.8 for an example of such a code fragment) by (isytg eax+offset] . As special cases,

[byte eax] will code [eax+0] with a byte offset of zero, andword eax] will code it with a
double-word offset of zero. The normal fof®@ax] , will be coded with no offset field.

The form described in the previous paragraph is also useful if you are trying to access data in a 32-bit
segment from within 16 bit code. For more information on this see the section on mixed-size addressing
(section 10.2). In particular, if you need to access data with a known offset that is larger than will fit in a
16-bit value, if you don't specify that it is a dword offset, nasm will cause the high word of the offset to be
lost.

Similarly, NASM will split [eax*2] into[eax+eax] because that allows the offset field to be absent and
space to be saved; in fact, it will also spiax*2+offset] into [eax+eax+offset] . You can combat
this behaviour by the use of tMOSPLIT keyword: [nosplit eax*2] will force [eax*2+0] to be
generated literally[nosplit eax*1] also has the same effect. In another way, a split EA form

33

[0, eax*2] can be used, too. HowevédOSPLIT in [nosplit eax+eax] will be ignored because
user’s intention here is consideredeax+eax]

In 64-bit mode, NASM will by default generate absolute addressesREhekeyword makes it produce
RIP —relative addresses. Since this is frequently the normally desired behaviour, Beg-fidL Tdirective
(section 6.2). The keywordiBS overridesREL

A new form of split effective addres syntax is also supported. This is mainly intended for mib operands as
used by MPX instructions, but can be used for any memory reference. The basic concept of this form is
splitting base and index.

mov eax,[ebx+8,ecx*4] ; ebx=base, ecx=index, 4=scale, 8=disp

For mib operands, there are several ways of writing effective address depending on the tools. NASM supports
all currently possible ways of mib syntax:

; bndstx

; next 5 lines are parsed same

; base=rax, index=rbx, scale=1, displacement=3

bndstx [rax+0x3,rbx], bnd0 ; NASM - split EA

bndstx [rbx*1+rax+0x3], bnd0 ; GAS - *1’ indecates an index reg
bndstx [rax+rbx+3], bnd0 ; GAS - without hints

bndstx [rax+0x3], bnd0, rbx ; ICC-1

bndstx [rax+0x3], rbx, bnd0 ; ICC-2

When broadcasting decorator is used, the opsize keyword should match the size of each element.
VDIVPS zmm4, zmmb5, dword [rbx]{1to16} ; single—precision float
VDIVPS zmm4, zmmb5, zword [rbx] ; packed 512 bit memory
3.4 Constants

NASM understands four different types of constant: numeric, character, string and floating—point.

3.4.1 Numeric Constants

A numeric constant is simply a number. NASM allows you to specify numbers in a variety of number bases,
in a variety of ways: you can suffikd or X, Dor T, Q or O, andB or Y for hexadecimal, decimal, octal and
binary respectively, or you can prefbx, for hexadecimal in the style of C, or you can prefixfor
hexadecimal in the style of Borland Pascal or Motorola Assemblers. Note, though, tBaptéfix does
double duty as a prefix on identifiers (see section 3.1), so a hex number prefixeddwstgramust have a

digit after the$ rather than a letter. In addition, current versions of NASM accept the gefifor
hexadecimalQd or Ot for decimal,00 or 0qg for octal, anddb or Oy for binary. Please note that unlike C, a

0 prefix by itself doesiotimply an octal constant!

Numeric constants can have underscorgsnterspersed to break up long strings.

Some examples (all producing exactly the same code):

mov ax,200 ; decimal

mov ax,0200 ; still decimal

mov ax,0200d ; explicitly decimal
mov ax,0d200 ; also decimal
mov ax,0c8h ; hex

mov ax,$0c8 ; hex again: the 0 is required

mov ax,0xc8 ; hex yet again

mov ax,0hc8 ; still hex

mov ax,310q ; octal

mov ax,3100 ; octal again
mov ax,00310 ; octal yet again
mov ax,0g310 ; octal yet again

mov ax,11001000b ; binary

mov ax,1100_1000b ; same binary constant

mov ax,1100 1000y ; same binary constant once more
mov ax,0b1100 1000 ; same binary constant yet again
mov ax,0y1100 1000 ; same binary constant yet again

3.4.2 Character Strings

A character string consists of up to eight characters enclosed in either single guotes)(double quotes

(..) or backquotes'.(."). Single or double quotes are equivalent to NASM (except of course that
surrounding the constant with single quotes allows double quotes to appear within it and vice versa); the
contents of those are represented verbatim. Strings enclosed in backquotes support\ Cestgpes for
special characters.

The following escape sequences are recognized by backquoted strings:

\ single quote ()
\" double quote (")
\ backquote ()

\\ backslash (\)

\? question mark (?)
\a BEL (ASCII 7)
\b BS (ASCII 8)
\t TAB (ASCII 9)
\n LF (ASCII 10)

\v VT (ASCII 11)

\f FF (ASCIl 12)

\r CR (ASCII 13)

\e ESC (ASCII 27)

\377 Up to 3 octal digits - literal byte

\XFF Up to 2 hexadecimal digits — literal byte
\ul234 4 hexadecimal digits — Unicode character
\U12345678 8 hexadecimal digits — Unicode character

All other escape sequences are reserved. NotéOthaneaning aNUL character (ASCII 0), is a special case
of the octal escape sequence.

Unicode characters specified wiih or\U are converted to UTF-8. For example, the following lines are all
equivalent:

db \u263a’ ; UTF-8 smiley face
db \xe2\x98\xba' ; UTF-8 smiley face
db OE2h, 098h, OBAh ; UTF-8 smiley face

35

36

3.4.3 Character Constants

A character constant consists of a string up to eight bytes long, used in an expression context. It is treated as if
it was an integer.

A character constant with more than one byte will be arranged with little—endian order in mind: if you code
mov eax, abcd’

then the constant generated is Ar61626364 , but 0x64636261 , so that if you were then to store the
value into memory, it would readbcd rather thandcba. This is also the sense of character constants
understood by the Pentium@PUID instruction.

3.4.4 String Constants

String constants are character strings used in the context of some pseudo-instructions, névdgntiig
andINCBIN (where it represents a filename.) They are also used in certain preprocessor directives.

A string constant looks like a character constant, only longer. It is treated as a concatenation of
maximum-size character constants for the conditions. So the following are equivalent:

db ’hello’ ; string constant
db ’'h')e’,I'I'’o’ ; equivalent character constants

And the following are also equivalent:

dd ’ninechars’ ; doubleword string constant
dd ’nine’,’char,’s’ ;becomes three doublewords
db ’'ninechars’,0,0,0 ; and really looks like this

Note that when used in a string—supporting context, quoted strings are treated as a string constants even if
they are short enough to be a character constant, because otlabrveibe would have the same effect as

db 'a’ , which would be silly. Similarly, three—character or four—character constants are treated as strings
when they are operandsi@yyand so forth.

3.4.5 Unicode Strings

The special operators utfl6 , utfléle , utflébe , utf32 , utf32le and
__utf32be__ allows definition of Unicode strings. They take a string in UTF-8 format and converts it to
UTF-16 or UTF-32, respectively. Unless thee forms are specified, the output is littleendian.

For example:

%define u(x) __ utflé_ (x)

%define w(x) _ utf32_ (x)
dw u(C:\WINDOWS’), 0 ; Pathname in UTF-16
dd w(‘A + B =\u206a‘), 0 ; String in UTF-32

The UTF operators can be applied either to strings passed tRlHamily instructions, or to character
constants in an expression context.

3.4.6 Floating—Point Constants

Floating—point constants are acceptable only as argumeb® @VWDD DQ DT, andDQ or as arguments to
the special operators float8 , floatl6 , float32 , floaté4 , float80Om__
__float80e__ , floatl28] ,and_ floatl28h

Floating—point constants are expressed in the traditional form: digits, then a period, then optionally more
digits, then optionally ai followed by an exponent. The period is mandatory, so that NASM can distinguish
betweerdd 1 , which declares an integer constant, ddd..0 which declares a floating—point constant.

NASM also support C99-style hexadecimal floating—paddxt; hexadecimal digits, period, optionally more
hexadeximal digits, then optionallyPafollowed by abinary (not hexadecimal) exponent in decimal notation.
As an extension, NASM additionally supports @feand$ prefixes for hexadecimal, as well binary and octal
floating—point, using th@&b or 0y andOo or 0q prefixes, respectively.

Underscores to break up groups of digits are permitted in floating—point constants as well.

Some examples:

db -0.2 ; "Quarter precision”

dw -0.5 ; IEEE 754r/SSES5 half precision
dd 1.2 ; an easy one

dd 1.222 222 222 ; underscores are permitted
dd Ox1p+2 ; 1.0x27"2 =4.0

dg Ox1p+32 ; 1.0x2732 = 4 294 967 296.0
dg 1l.el0 ; 10 000 000 000.0

dg 1l.e+10 ; synonymous with 1.e10

dqg 1l.e-10 ; 0.000 000 000 1

dt 3.141592653589793238462 ; pi

do 1.e+4000 ; IEEE 754r quad precision

The 8-bit "quarter—precision" floating—point format is sign:exponent:mantissa = 1:4:3 with an exponent bias
of 7. This appears to be the most frequently used 8-bit floating—point format, although it is not covered by
any formal standard. This is sometimes called a "minifloat.”

The special operators are used to produce floating—point numbers in other contexts. They produce the binary
representation of a specific floating—point number as an integer, and can use anywhere integer constants are
used in an expression. float80Om__ and _ float80e produce the 64-bit mantissa and 16-bit
exponent of an 80-bit floating—point number, andloat128| and__ float128h_ produce the

lower and upper 64-bit halves of a 128-bit floating—point number, respectively.

For example:
mov rax,__float64__ (3.141592653589793238462)

... would assign the binary representation of pi as a 64-bit floating point numb&AMdrhis is exactly
equivalent to:

mov rax,0x400921fb54442d18

NASM cannot do compile—-time arithmetic on floating—point constants. This is because NASM is designed to
be portable — although it always generates code to run on x86 processors, the assembler itself can run on any
system with an ANSI C compiler. Therefore, the assembler cannot guarantee the presence of a floating—point
unit capable of handling the Intel number formats, and so for NASM to be able to do floating arithmetic it
would have to include its own complete set of floating—point routines, which would significantly increase the
size of the assembiler for very little benefit.

The special tokens_Infinity ,_ONaN__(or _NaN_) and__SNaN__ can be used to generate
infinities, quiet NaNs, and signalling NaNs, respectively. These are normally used as macros:

37

38

%define Inf _Infinity
%define NaN __ QNaN___
dg +1.5, -Inf, NaN ; Double—precision constants

The%use fp standard macro package contains a set of convenience macros. See section 5.3.

3.4.7 Packed BCD Constants

x87-style packed BCD constants can be used in the same contexts as 80-bit floating—point numbers. They
are suffixed withp or prefixed withOp, and can include up to 18 decimal digits.

As with other numeric constants, underscores can be used to separate digits.
For example:

dt 12345 678 901 245 678p
dt -12_345 678 901 245 678p
dt +0p33
dt 33p

3.5 Expressions

Expressions in NASM are similar in syntax to those in C. Expressions are evaluated as 64-bit integers which
are then adjusted to the appropriate size.

NASM supports two special tokens in expressions, allowing calculations to involve the current assembly
position: the$ and$$ tokens.$ evaluates to the assembly position at the beginning of the line containing the
expression; so you can code an infinite loop usitP $. $$ evaluates to the beginning of the current
section; so you can tell how far into the section you are by ($i%&f) .

The arithmetic operators provided by NASM are listed here, in increasing order of precedence.

3.5.1 | : Bitwise OR Operator

The| operator gives a bitwise OR, exactly as performed byORenachine instruction. Bitwise OR is the
lowest—priority arithmetic operator supported by NASM.

3.5.2 ~: Bitwise XOR Operator

N provides the bitwise XOR operation.
3.5.3 &: Bitwise AND Operator

& provides the bitwise AND operation.

3.5.4 << and >>: Bit Shift Operators

<< gives a hit-shift to the left, just as it does in C53&3 evaluates to 5 times 8, or 49> gives a bit-shift
to the right; in NASM, such a shift Elwaysunsigned, so that the bits shifted in from the left—-hand end are
filled with zero rather than a sign—extension of the previous highest bit.

3.5.5 + and —: Addition and Subtraction Operators

The+ and- operators do perfectly ordinary addition and subtraction.

3.5.6*,/,/ ,%and%%Multiplication and Division

* is the multiplication operatof. and// are both division operatork:is unsigned division and is signed
division. Similarly,%and%%provide unsigned and signed modulo operators respectively.

NASM, like ANSI C, provides no guarantees about the sensible operation of the signed modulo operator.

Since theé%character is used extensively by the macro preprocessor, you should ensure that both the signed
and unsigned modulo operators are followed by white space wherever they appear.

3.5.7 Unary Operators

The highest—priority operators in NASM’s expression grammar are those which only apply to one argument.
These are-, —, ~, ! , SEG and the integer functions operators.

- negates its operandl,does nothing (it's provided for symmetry witf), ~ computes the one’s complement
of its operand! is the logical negation operator.

SEGprovides the segment address of its operand (explained in more detail in section 3.6).

A set of additional operators with leading and trailing double underscores are used to implement the integer
functions of théfunc macro package, see section 5.4.

3.6 SEGand WRT

When writing large 16-bit programs, which must be split into multiple segments, it is often necessary to be
able to refer to the segment part of the address of a symbol. NASM supp@EGbeerator to perform this
function.

The SEG operator returns thpreferred segment base of a symbol, defined as the segment base relative to
which the offset of the symbol makes sense. So the code

mov ax,seg symbol
mov es,ax
mov bx,symbol

will load ES:BX with a valid pointer to the symbsymbol .

Things can be more complex than this: since 16-bit segments and groups may overlap, you might
occasionally want to refer to some symbol using a different segment base from the preferred one. NASM lets
you do this, by the use of tMéRT(With Reference To) keyword. So you can do things like

mov ax,weird_seg ; weird_seg is a segment base
mov es,ax
mov bx,symbol wrt weird_seg

to loadES:BX with a different, but functionally equivalent, pointer to the synsyaibol .

NASM supports far (inter-segment) calls and jumps by means of the syaltasegment:offset ,
wheresegment andoffset both represent immediate values. So to call a far procedure, you could code
either of

call (seg procedure):procedure
call weird_seg:(procedure wrt weird_seqg)

(The parentheses are included for clarity, to show the intended parsing of the above instructions. They are not
necessary in practice.)

39

NASM supports the syntagall far procedure as a synonym for the first of the above usagbt?
works identically taCALL in these examples.

To declare a far pointer to a data item in a data segment, you must code
dw symbol, seg symbol

NASM supports no convenient synonym for this, though you can always invent one using the macro
processor.

3.7 STRICT: Inhibiting Optimization

When assembling with the optimizer set to level 2 or higher (see section 2.1.22), NASM will use size
specifiers BYTE WORDDWORDQWORDTWORDOWORDYWORDr ZWORP but will give them the
smallest possible size. The keywdBdRICT can be used to inhibit optimization and force a particular
operand to be emitted in the specified size. For example, with the optimizer onBdm& b6 mode,

push dword 33
is encoded in three byté8 6A 21 , whereas
push strict dword 33
is encoded in six bytes, with a full dword immediate opef6@8 21 00 00 00

With the optimizer off, the same code (six bytes) is generated whetf@FRIET keyword was used or not.

3.8 Critical Expressions

Although NASM has an optional multi-pass optimizer, there are some expressions which must be resolvable
on the first pass. These are cal&dtical Expressions

The first pass is used to determine the size of all the assembled code and data, so that the second pass, whe
generating all the code, knows all the symbol addresses the code refers to. So one thing NASM can’t handle is
code whose size depends on the value of a symbol declared after the code in question. For example,

times (label-$) db 0
label: db 'Where am 1?’

The argument t@IMES in this case could equally legally evaluate to anything at all; NASM will reject this
example because it cannot tell the size of RMES line when it first sees it. It will just as firmly reject the
slightly paradoxical code

times (label-$+1) db 0
label: db 'NOW where am 1?’

in whichanyvalue for theTIMES argument is by definition wrong!

NASM rejects these examples by means of a concept calidtical expressionwhich is defined to be an
expression whose value is required to be computable in the first pass, and which must therefore depend only
on symbols defined before it. The argument tofthMES prefix is a critical expression.

3.9 Local Labels

NASM gives special treatment to symbols beginning with a period. A label beginning with a single period is
treated as bocal label, which means that it is associated with the previous non-local label. So, for example:

labell ; some code

.loop
; some more code

jne .loop
ret

label2 ; some code

.loop
; some more code

jne .loop
ret

In the above code fragment, eatiE instruction jumps to the line immediately before it, because the two
definitions of.loop are kept separate by virtue of each being associated with the previous non-local label.

This form of local label handling is borrowed from the old Amiga assembler DevPac; however, NASM goes
one step further, in allowing access to local labels from other parts of the code. This is achieved by means of
defininga local label in terms of the previous non-local label: the first definitialoop above is really

defining a symbol callethbell.loop , and the second defines a symbol calddxtl2.loop . So, if you

really needed to, you could write

label3 ; some more code
; and some more

jmp labell.loop

Sometimes it is useful — in a macro, for instance — to be able to define a label which can be referenced from
anywhere but which doesn't interfere with the normal local-label mechanism. Such a label can't be non-local
because it would interfere with subsequent definitions of, and references to, local labels; and it can’t be local
because the macro that defined it wouldn’t know the label's full name. NASM therefore introduces a third
type of label, which is probably only useful in macro definitions: if a label begins with the special j@efix

then it does nothing to the local label mechanism. So you could code

labell: ; a non—local label
.local: ; this is really labell.local
..@foo: ; this is a special symbol
label2: ; another non-local label
.local: ; this is really label2.local

jmp ..@foo ; this will jump three lines up

NASM has the capacity to define other special symbols beginning with a double period: for example,
..Start is used to specify the entry point in thigj output format (see section 7.4.6)magebase is

used to find out the offset from a base address of the current imagewm€@#e output format (see section
7.6.1). So just keep in mind that symbols beginning with a double period are special.

41

42

Chapter 4: The NASM Preprocessor

NASM contains a powerful macro processor, which supports conditional assembly, multi-level file inclusion,
two forms of macro (single-line and multi-line), and a ‘context stack’ mechanism for extra macro power.
Preprocessor directives all begin witkoeaign.

The preprocessor collapses all lines which end with a backslash (\) character into a single line. Thus:

%define THIS_VERY_LONG_MACRO_NAME_IS_DEFINED_TO\
THIS_VALUE

will work like a single-line macro without the backslash—newline sequence.

4.1 Single-Line Macros
4.1.1 The Normal Way:%define

Single-line macros are defined using #hdefine preprocessor directive. The definitions work in a similar
way to C; so you can do things like

%define ctrl Ox1F &
%define param(a,b) ((a)+(a)*(b))

mov byte [param(2,ebx)], ctrl 'D’
which will expand to

mov byte [(2)+(2)*(ebx)], OX1F & 'D’

When the expansion of a single-line macro contains tokens which invoke another macro, the expansion is
performed at invocation time, not at definition time. Thus the code

%define a(x) 1+b(x)
%define b(x) 2*x
mov ax,a(8)

will evaluate in the expected way nmov ax,1+2*8 , even though the mactowasn’t defined at the time of
definition ofa.

Macros defined witl®edefine are case sensitive: aft#define foo bar , onlyfoo will expand tobar :
Foo or FOOwill not. By using%idefine instead of%define (the ‘i’ stands for ‘insensitive’) you can
define all the case variants of a macro at once, sdltfine foo bar would causdoo , Foo, FOQ

fOO and so on all to expand bar .

There is a mechanism which detects when a macro call has occurred as a result of a previous expansion of the
same macro, to guard against circular references and infinite loops. If this happens, the preprocessor will only
expand the first occurrence of the macro. Hence, if you code

%define a(x) 1+a(x)

mov ax,a(3)

the macroa(3) will expand once, becomingi+a(3) , and will then expand no further. This behaviour can
be useful: see section 9.1 for an example of its use.

You can overload single—line macros: if you write

%define foo(x) 1+x
%define foo(x,y) 1+x*y

the preprocessor will be able to handle both types of macro call, by counting the parameters you pass; so
foo(3) will becomel+3 whereadoo(ebx,2) will becomel+ebx*2 . However, if you define

%define foo bar

then no other definition dibo will be accepted: a macro with no parameters prohibits the definition of the
same name as a maaevith parameters, and vice versa.

This doesn't prevent single—line macros baiedefined you can perfectly well define a macro with
%define foo bar

and then re—define it later in the same source file with

%define foo baz

Then everywhere the macfoo is invoked, it will be expanded according to the most recent definition. This
is particularly useful when defining single-line macros Withssign (see section 4.1.7).

You can pre—define single—line macros using the ‘—d’ option on the NASM command line: see section 2.1.18.

4.1.2 Resolvingnodefine : %xdefine

To have a reference to an embedded single-line macro resolved at the time that the embedding macro is
defined as opposed to when the embedding macexp@ndedyou need a different mechanism to the one
offered by%define . The solution is to usébxdefine , or it's case—insensitive counterpésixdefine

Suppose you have the following code:

%define isTrue 1
%define isFalse isTrue
%define isTrue 0O

vall: db isFalse
%define isTrue 1

val2: db isFalse

In this caseyall is equal to 0, andal2 is equal to 1. This is because, when a single-line macro is defined
using%define , it is expanded only when it is called. isfalse expands tasTrue , the expansion will
be the current value @True . The first time it is called that is 0, and the second time it is 1.

If you wantedisFalse to expand to the value assigned to the embedded risdete at the time that
isFalse was defined, you need to change the above code 8hxdefine .

43

%xdefine isTrue 1
%xdefine isFalse isTrue
%xdefine isTrue 0

vall: db isFalse
%xdefine isTrue 1

val2: db isFalse

Now, each time thaisFalse s called, it expands to 1, as that is what the embedded risdote
expanded to at the time thaFalse was defined.

4.1.3 Macro Indirection: %...]

The %[...] construct can be used to expand macros in contexts where macro expansion would otherwise
not occur, including in the names other macros. For example, if you have a set of macro$-oahted
Foo32 andFoo64, you could write:

mov ax,Foo%[BITS] ; The Foo value

to use the builtin macro BITS _ (see section 4.11.5) to automatically select between them. Similarly, the
two statements:

%xdefine Bar Quux ; Expands due to %xdefine
%define Bar %[Quux] ; Expands due to %...]

have, in fact, exactly the same effect.

%][...] concatenates to adjacent tokens in the same way that multi-line macro parameters do, see section
4.3.9 for details.

4.1.4 Concatenating Single Line Macro Token$o+

Individual tokens in single line macros can be concatenated, to produce longer tokens for later processing.
This can be useful if there are several similar macros that perform similar functions.

Please note that a space is required &fteiin order to disambiguate it from the synt@x1used in multiline
macros.

As an example, consider the following:
%define BDASTART 400h ; Start of BIOS data area

struc tBIOSDA ; its structure
.COM1laddr RESW 1
.COM2addr RESW 1
; ..and so on

endstruc

Now, if we need to access the elements of tBIOSDA in different places, we can end up with:

mov ax,BDASTART + tBIOSDA.COM1laddr
mov bx,BDASTART + tBIOSDA.COM2addr

This will become pretty ugly (and tedious) if used in many places, and can be reduced in size significantly by
using the following macro:

; Macro to access BIOS variables by their names (from tBDA):
%define BDA(X) BDASTART + tBIOSDA. %+ X
Now the above code can be written as:

mov ax,BDA(COM1addr)
mov bx,BDA(COMZ2addr)

Using this feature, we can simplify references to a lot of macros (and, in turn, reduce typing errors).

4.1.5 The Macro Name ltself%?and %??

The special symbol%?and%?? can be used to reference the macro name itself inside a macro expansion,
this is supported for both single—and multi-line macfé8.refers to the macro name mwvoked whereas

%7?7? refers to the macro name dsclared The two are always the same for case—sensitive macros, but for
case-insensitive macros, they can differ.

For example:

%idefine Foo mov %7?,%7??
foo
FOO

will expand to:

mov foo,Foo
mov FOO,Foo

The sequence:
%idefine keyword $%?

can be used to make a keyword "disappear”, for example in case a new instruction has been used as a label ir
older code. For example:

%idefine pause $%? ; Hide the PAUSE instruction

4.1.6 Undefining Single-Line Macros%undef
Single-line macros can be removed with %hendef directive. For example, the following sequence:
%define foo bar
%undef foo
mov eax, foo
will expand to the instructiomov eax, foo , since aftePoundef the macrdoo is no longer defined.

Macros that would otherwise be pre—defined can be undefined on the command-line using the ‘~u’ option on
the NASM command line: see section 2.1.19.

4.1.7 Preprocessor Variables¥assign

An alternative way to define single-line macros is by means of%assign command (and its
case-insensitive counterpa¥biassign , which differs from %assign in exactly the same way that
%idefine differs from%define).

45

%assign is used to define single-line macros which take no parameters and have a numeric value. This
value can be specified in the form of an expression, and it will be evaluated once, wiéastign
directive is processed.

Like %define , macros defined usirfpassign can be re—defined later, so you can do things like
%assign i i+1
to increment the numeric value of a macro.

%assign is useful for controlling the termination &bkrep preprocessor loops: see section 4.5 for an
example of this. Another use féassign is given in section 8.4 and section 9.1.

The expression passed%essign is a critical expression (see section 3.8), and must also evaluate to a pure
number (rather than a relocatable reference such as a code or data address, or anything involving a register).

4.1.8 Defining Strings:%defstr

%defstr , and its case-insensitive counterpitiefstr , define or redefine a single-line macro without
parameters but converts the entire right—hand side, after macro expansion, to a quoted string before definition.

For example:

%defstr test TEST

is equivalent to

%define test ' TEST’

This can be used, for example, with #héconstruct (see section 4.10.2):
%defstr PATH %!PATH ; The operating system PATH variable

4.1.9 Defining Tokens%deftok

4.2

%deftok , and its case-insensitive counterpitieftok , define or redefine a single-line macro without
parameters but converts the second parameter, after string conversion, to a sequence of tokens.

For example:
%deftok test ' TEST’
is equivalent to
%define test TEST

String Manipulation in Macros

It's often useful to be able to handle strings in macros. NASM supports a few simple string handling macro
operators from which more complex operations can be constructed.

All the string operators define or redefine a value (either a string or a numeric value) to a single—line macro.
When producing a string value, it may change the style of quoting of the input string or strings, and possibly
use\ —escapes inside-quoted strings.

4.2.1 Concatenating Strings%ostrcat

The%strcat operator concatenates quoted strings and assign them to a single-line macro.

For example:

%strcat alpha "Alpha: ", '12" screen’

... would assign the valuAlpha: 12" screen’ toalpha . Similarly:

e, »

foo"\', "bar

%strcat beta
... would assign the valudoo"\\'bar™ tobeta .

The use of commas to separate strings is permitted but optional.

4.2.2 String Length:%strlen

The%strlen operator assigns the length of a string to a macro. For example:
%strlen charcnt 'my string’

In this examplecharcnt would receive the value 9, just as if @assign had been used. In this example,
'my string’ was a literal string but it could also have been a single-line macro that expands to a string, as
in the following example:

%define sometext 'my string’
%strlen charcnt sometext

As in the first case, this would resultdharcnt being assigned the value of 9.

4.2.3 Extracting Substrings:%substr

4.3

Individual letters or substrings in strings can be extracted usirhsbbstr operator. An example of its use
is probably more useful than the description:

%substr mychar 'xyzw’ 1 ; equivalent to %define mychar 'x’
%substr mychar 'xyzw’ 2 ; equivalent to %define mychar 'y’
%substr mychar 'xyzw’ 3 ; equivalent to %define mychar 'z’

%substr mychar 'xyzw’ 2,2 ; equivalent to %define mychar 'yz’
%substr mychar 'xyzw’ 2,-1 ; equivalent to %define mychar 'yzw’
%substr mychar 'xyzw' 2,-2 ; equivalent to %define mychar 'yz’

As with %strlen (see section 4.2.2), the first parameter is the single-line macro to be created and the
second is the string. The third parameter specifies the first character to be selected, and the optional fourth
parameter preceeded by comma) is the length. Note that the first index is 1, not 0 and the last index is equal to
the value thafestrlen would assign given the same string. Index values out of range result in an empty
string. A negative length means "until N-1 characters before the end of string*] ireeans until end of
string,—2 until one character before, etc.

Multi-Line Macros: %macro

Multi-line macros are much more like the type of macro seen in MASM and TASM: a multi-line macro
definition in NASM looks something like this.

%macro prologue 1
push ebp
mov ebp,esp
sub esp,%1

%endmacro

47

48

This defines a C-like function prologue as a macro: so you would invoke the macro with a call such as
myfunc: prologue 12
which would expand to the three lines of code

myfunc: push ebp
mov ebp,esp
sub esp,12

The numberl after the macro name in tHémacro line defines the number of parameters the macro
prologue expects to receive. The use%iflinside the macro definition refers to the first parameter to the
macro call. With a macro taking more than one parameter, subsequent parameters would be refét2d to as
%3and so on.

Multi-line macros, like single-line macros, are case—sensitive, unless you define them using the alternative
directive%imacro .

If you need to pass a commaymat of a parameter to a multi-line macro, you can do that by enclosing the
entire parameter in braces. So you could code things like

%macro silly 2

%2:db %1

%endmacro
silly 'a’, letter_a ; letter_a: db'a’
silly 'ab’, string_ab ; string_ab: db 'ab’
silly {13,10}, crlf ;erlf: db 13,10

4.3.1 Overloading Multi-Line Macros

As with single-line macros, multi-line macros can be overloaded by defining the same macro name several
times with different numbers of parameters. This time, no exception is made for macros with no parameters at
all. So you could define

%macro prologue 0
push ebp
mov ebp,esp
%endmacro
to define an alternative form of the function prologue which allocates no local stack space.

Sometimes, however, you might want to ‘overload’ a machine instruction; for example, you might want to
define

%macro push 2

push %1
push %2
%endmacro

so that you could code

push ebx ; this line is not a macro call
push eax,ecx ; but this one is

Ordinarily, NASM will give a warning for the first of the above two lines, sipgsh is now defined to be a
macro, and is being invoked with a number of parameters for which no definition has been given. The correct
code will still be generated, but the assembler will give a warning. This warning can be disabled by the use of
the—w—-macro—-params command-line option (see section 2.1.24).

4.3.2 Macro—Local Labels

NASM allows you to define labels within a multi-line macro definition in such a way as to make them local
to the macro call: so calling the same macro multiple times will use a different label each time. You do this by
prefixing %%o the label name. So you can invent an instruction which exec®RES d the Z flag is set by

doing this:

%macro retz 0

jnz %%skip
ret
%%skip:

%endmacro

You can call this macro as many times as you want, and every time you call it NASM will make up a different
‘real’ name to substitute for the lal##lb6skip. The names NASM invents are of the for@2345.skip

where the number 2345 changes with every macro call.. @eprefix prevents macro—local labels from
interfering with the local label mechanism, as described in section 3.9. You should avoid defining your own
labels in this form (the.@ prefix, then a number, then another period) in case they interfere with
macro-local labels.

4.3.3 Greedy Macro Parameters

Occasionally it is useful to define a macro which lumps its entire command line into one parameter definition,
possibly after extracting one or two smaller parameters from the front. An example might be a macro to write
a text string to a file in MS-DOS, where you might want to be able to write

writefile [filehandle],"hello, world",13,10

NASM allows you to define the last parameter of a macro fgréedy meaning that if you invoke the macro
with more parameters than it expects, all the spare parameters get lumped into the last defined one along with
the separating commas. So if you code:

%macro writefile 2+

jmp %%endstr
%%str: db %2
%%endstr:

mov dx,%%str

mov cx,%%endstr-%%str

mov bx,%1

mov ah,0x40

int 0x21

49

50

%endmacro

then the example call tavritefile above will work as expected: the text before the first comma,
[filehandle] , is used as the first macro parameter and expanded %ftiés referred to, and all the
subsequent text is lumped ifeRand placed after thab.

The greedy nature of the macro is indicated to NASM by the use ofdiym after the parameter count on the
%macro line.

If you define a greedy macro, you are effectively telling NASM how it should expand the macragywen
number of parameters from the actual number specified up to infinity; in this case, for example, NASM now
knows what to do when it sees a calltdtefile with 2, 3, 4 or more parameters. NASM will take this

into account when overloading macros, and will not allow you to define another favnitedfle taking

4 parameters (for example).

Of course, the above macro could have been implemented as a non—greedy macro, in which case the call to it
would have had to look like

writefile [filehandle], {"hello, world",13,10}

NASM provides both mechanisms for putting commas in macro parameters, and you choose which one you
prefer for each macro definition.

See section 6.3.1 for a better way to write the above macro.

4.3.4 Macro Parameters Range

NASM allows you to expand parameters via special construétipny} wherex is the first parameter
index andy is the last. Any index can be either negative or positive but must never be zero.

For example
%macro mpar 1-*
db %{3:5}
%endmacro
mpar 1,2,3,4,5,6
expands t®,4,5 range.
Even more, the parameters can be reversed so that

%macro mpar 1-*
db %{5:3}
%endmacro

mpar 1,2,3,4,5,6

expands t®,4,3 range.

But even this is not the last. The parameters can be addressed via negative indices so NASM will count them
reversed. The ones who know Python may see the analogue here.

%macro mpar 1-*
db %{-1:-3}
%endmacro

mpar 1,2,3,4,5,6
expands t®,5,4 range.
Note that NASM uses comma to separate parameters being expanded.

By the way, here is a trick — you might use the int#gx1:—1 } which gives you the last argument passed to
a macro.

4.3.5 Default Macro Parameters

NASM also allows you to define a multi-line macro witlamge of allowable parameter counts. If you do
this, you can specify defaults for omitted parameters. So, for example:

%macro die 0-1 "Painful program death has occurred."”
writefile 2,%1
mov ax,0x4c01l
int 0x21

%endmacro

This macro (which makes use of theitefile macro defined in section 4.3.3) can be called with an
explicit error message, which it will display on the error output stream before exiting, or it can be called with
no parameters, in which case it will use the default error message supplied in the macro definition.

In general, you supply a minimum and maximum number of parameters for a macro of this type; the
minimum number of parameters are then required in the macro call, and then you provide defaults for the
optional ones. So if a macro definition began with the line

%macro foobar 1-3 eax,[ebx+2]

then it could be called with between one and three parameter¥lamduld always be taken from the macro
call. %2 if not specified by the macro call, would defaulteax , and%3if not specified would default to
[ebx+2]

You can provide extra information to a macro by providing too many default parameters:
%macro quux 1 something

This will trigger a warning by default; see section 2.1.24 for more information. \§finex is invoked, it
receives not one but two parametemmething can be referred to &2 The difference between passing
something this way and writingsomething in the macro body is that with this wapmething is
evaluated when the macro is defined, not when it is expanded.

You may omit parameter defaults from the macro definition, in which case the parameter default is taken to be
blank. This can be useful for macros which can take a variable number of parameters, Sistwkba (see
section 4.3.6) allows you to determine how many parameters were really passed to the macro call.

This defaulting mechanism can be combined with the greedy—parameter mechanisndjesontecro above
could be made more powerful, and more useful, by changing the first line of the definition to

%macro die 0—1+ "Painful program death has occurred.",13,10

The maximum parameter count can be infinite, denoted.bi this case, of course, it is impossible to
provide afull set of default parameters. Examples of this usage are shown in section 4.3.8.

51

4.3.6 %0Q Macro Parameter Counter

The parameter referen&60will return a numeric constant giving the number of parameters received, that is,
if %0is n then%n is the last parameteb0is mostly useful for macros that can take a variable number of
parameters. It can be used as an argumelbrEp (see section 4.5) in order to iterate through all the
parameters of a macro. Examples are given in section 4.3.8.

4.3.7 %0Q Label Preceeding Macro

%00 will return the label preceeding the macro invocation, if any. The label must be on the same line as the
macro invocation, may be a local label (see section 3.9), and need not end in a colon.

4.3.8 %rotate : Rotating Macro Parameters

Unix shell programmers will be familiar with tlshift ~ shell command, which allows the arguments passed
to a shell script (referenced &%, $2 and so on) to be moved left by one place, so that the argument
previously referenced &2 becomes available &i, and the argument previously referencedasis no
longer available at all.

NASM provides a similar mechanism, in the form%fotate . As its name suggests, it differs from the
Unix shift in that no parameters are lost: parameters rotated off the left end of the argument list reappear on
the right, and vice versa.

%rotate is invoked with a single numeric argument (which may be an expression). The macro parameters
are rotated to the left by that many places. If the argumeé¥tatate is negative, the macro parameters are
rotated to the right.

So a pair of macros to save and restore a set of registers might work as follows:

%macro multipush 1-*

%rep %0
push %1

%rotate 1

%endrep

%endmacro

This macro invokes th®USHinstruction on each of its arguments in turn, from left to right. It begins by
pushing its first argumen®], then invoke®orotate to move all the arguments one place to the left, so that
the original second argument is now availabléds Repeating this procedure as many times as there were
arguments (achieved by supplyitias the argument 8hrep) causes each argument in turn to be pushed.

Note also the use ¢f as the maximum parameter count, indicating that there is no upper limit on the number
of parameters you may supply to theltipush macro.

It would be convenient, when using this macro, to haR@®©Requivalent, whichdidn’t require the arguments

to be given in reverse order. Ideally, you would write rindtipush macro call, then cut-and-paste the

line to where the pop needed to be done, and change the name of the called mmadtipdp , and the

macro would take care of popping the registers in the opposite order from the one in which they were pushed.

This can be done by the following definition:

%macro multipop 1-*

%rep %0

%rotate -1
pop %1

%endrep

%endmacro

This macro begins by rotating its arguments one place toghe so that the origindhst argument appears
as %1 This is then popped, and the arguments are rotated right again, so the second-to-last argument
become$bl Thus the arguments are iterated through in reverse order.

4.3.9 Concatenating Macro Parameters

NASM can concatenate macro parameters and macro indirection constructs on to other text surrounding them.
This allows you to declare a family of symbols, for example, in a macro definition. If, for example, you
wanted to generate a table of key codes along with offsets into the table, you could code something like

%macro keytab_entry 2

keypos%l equ $-keytab
do %2

%endmacro

keytab:
keytab_entry F1,128+1
keytab_entry F2,128+2
keytab_entry Return,13

which would expand to

keytab:

keyposF1 equ $-keytab
db 128+1

keyposF2 equ $-keytab
db 128+2

keyposReturn equ $-keytab
do 13

You can just as easily concatenate text on to the other end of a macro parameter, byodfiting

If you need to appenddigit to a macro parameter, for example defining lafmdd andfoo2 when passed

the parametefoo , you can’'t code%ll because that would be taken as the eleventh macro parameter.
Instead, you must cod®{1}1 , which will separate the first (giving the number of the macro parameter)
from the second (literal text to be concatenated to the parameter).

This concatenation can also be applied to other preprocessor in—line objects, such as macro-local labels
(section 4.3.2) and context—local labels (section 4.7.2). In all cases, ambiguities in syntax can be resolved by
enclosing everything after tRésign and before the literal text in braces%f¥6foo}bar concatenates the

text bar to the end of the real name of the macro-local 1&foa (This is unnecessary, since the form
NASM uses for the real names of macro-local labels means that the two Gsfigésolbar and
%%foobar would both expand to the same thing anyway; nevertheless, the capability is there.)

53

The single-line macro indirection construég]...] (section 4.1.3), behaves the same way as macro
parameters for the purpose of concatenation.

See also th&o+operator, section 4.1.4.

4.3.10 Condition Codes as Macro Parameters

NASM can give special treatment to a macro parameter which contains a condition code. For a start, you can
refer to the macro paramet®l by means of the alternative synt®1, which informs NASM that this

macro parameter is supposed to contain a condition code, and will cause the preprocessor to report an error
message if the macro is called with a parameter whichtia valid condition code.

Far more usefully, though, you can refer to the macro parameter by méang, efhich NASM will expand
as theinverse condition code. So theetz macro defined in section 4.3.2 can be replaced by a general
conditional-return macro like this:

%macro retc 1
%-1 %%skip
ret

%%skip:

%endmacro

This macro can now be invoked using calls ligte ne , which will cause the conditional-jump instruction
in the macro expansion to come outl&s orretc po which will make the jump aPE.

The %+1 macro—parameter reference is quite happy to interpret the argu@¥@dteind ECXZ as valid
condition codes; howeve®o-1 will report an error if passed either of these, because no inverse condition
code exists.

4.3.11 Disabling Listing Expansion

When NASM is generating a listing file from your program, it will generally expand multi-line macros by
means of writing the macro call and then listing each line of the expansion. This allows you to see which
instructions in the macro expansion are generating what code; however, for some macros this clutters the
listing up unnecessarily.

NASM therefore provides th&olist qualifier, which you can include in a macro definition to inhibit the
expansion of the macro in the listing file. Thaolist qualifier comes directly after the number of
parameters, like this:

%macro foo 1.nolist
Or like this:

%macro bar 1-5+.nolist a,b,c,d,e,f,g,h

4.3.12 Undefining Multi-Line Macros: %ounmacro

Multi-line macros can be removed with tBeunmacro directive. Unlike theédoundef directive, however,
%unmacro takes an argument specification, and will only remove exact matches with that argument
specification.

For example:

%macro foo 1-3

; Do something
%endmacro
%unmacro foo 1-3

removes the previously defined maéoo , but

%macro bar 1-3

; Do something
%endmacro
%unmacro bar 1

doesnotremove the macrbar , since the argument specification does not match exactly.

4.4 Conditional Assembly

Similarly to the C preprocessor, NASM allows sections of a source file to be assembled only if certain
conditions are met. The general syntax of this feature looks like this:

%if<condition>

; some code which only appears if <condition> is met
%elif<condition2>

; only appears if <condition> is not met but <condition2> is
%else

; this appears if neither <condition> nor <condition2> was met
%endif

The inverse form&osifn and%elifn are also supported.
The%else clause is optional, as is theelif clause. You can have more than ébelif clause as well.

There are a number of variants of #é& directive. Each has its corresponditglif , %ifn , and%elifn
directives; for example, the equivalents to tb@fdef directive are %elifdef , %ifndef , and
%elifndef

4.4.1 %ifdef : Testing Single-Line Macro Existence

Beginning a conditional-assembly block with the Bbddef MACRO will assemble the subsequent code if,
and only if, a single—line macro calldiACRGUs defined. If not, then th&elif and%else blocks (if any)
will be processed instead.

For example, when debugging a program, you might want to write code such as

; perform some function
%ifdef DEBUG

writefile 2,"Function performed successfully”,13,10
%endif

; go and do something else

Then you could use the command-line opt@DEBUG0 create a version of the program which produced
debugging messages, and remove the option to generate the final release version of the program.

You can test for a macnoot being defined by usingpifndef instead of%ifdef . You can also test for
macro definitions ifoelif blocks by usingeelifdef and%elifndef

55

4.4.2 %ifmacro : Testing Multi-Line Macro Existence

The %ifmacro directive operates in the same way as%iftlef directive, except that it checks for the
existence of a multi-line macro.

For example, you may be working with a large project and not have control over the macros in a library. You
may want to create a macro with one name if it doesn't already exist, and another name if one with that name
does exist.

The %ifmacro is considered true if defining a macro with the given name and number of arguments would
cause a definitions conflict. For example:

%ifmacro MyMacro 1-3
%error "MyMacro 1-3" causes a conflict with an existing macro.
%else
%macro MyMacro 1-3
; insert code to define the macro
%endmacro

%endif

This will create the macro "MyMacro 1-3" if no macro already exists which would conflict with it, and emits
a warning if there would be a definition conflict.

You can test for the macro not existing by using%hfamacro instead oPsifmacro . Additional tests can
be performed ifoelif blocks by usingoelifmacro and%elifnmacro

4.4.3 %ifctx : Testing the Context Stack

The conditional-assembly constri#ifctx will cause the subsequent code to be assembled if and only if
the top context on the preprocessor’'s context stack has the same name as one of the arguments. As with
%ifdef , the inverse angbelif forms%ifnctx , %elifctx and%elifnctx are also supported.

For more details of the context stack, see section 4.7. For a samplexiebof , see section 4.7.6.

4.4.4 %if : Testing Arbitrary Numeric Expressions

The conditional-assembly constrgétf expr will cause the subsequent code to be assembled if and only if
the value of the numeric expressiexpr is non-zero. An example of the use of this feature is in deciding
when to break out of @rep preprocessor loop: see section 4.5 for a detailed example.

The expression given #if , and its counterpagbelif , is a critical expression (see section 3.8).

%if extends the normal NASM expression syntax, by providing a set of relational operators which are not
normally available in expressions. The operators, >, <=, >= and<> test equality, less—-than, greater—than,
less—or—equal, greater—or—-equal and not-equal respectively. The C-likeforiausd!= are supported as
alternative forms of= and <>. In addition, low—priority logical operator&& ™ and|| are provided,
supplying logical AND, logical XOR and logical OR. These work like the C logical operators (although C has
no logical XOR), in that they always return either 0 or 1, and treat any non-zero input as 1 {4q tbat

example, returns 1 if exactly one of its inputs is zero, and 0 otherwise). The relational operators also return 1
for true and O for false.

Like other%if constructs%if has a counterpatbelif , and negative form&ifn and%elifn

4.4.5 %ifidn and %ifidni : Testing Exact Text Identity

The constructifidn textl,text2 will cause the subsequent code to be assembled if and only if
textl andtext2 , after expanding single-line macros, are identical pieces of text. Differences in white
space are not counted.

%ifidni is similar to%ifidn , but is case—insensitive.

For example, the following macro pushes a register or number on the stack, and allows youRo aseat
real register:

%macro pushparam 1

%ifidni %1,ip

call %%label
%%label:
%else

push %1
%endif

%endmacro

Like other %if constructs,%ifidn has a counterpafoelifidn , and negative form&sifnidn and
%elifnidn . Similarly, %ifidni has counterpargelifidni , %ifnidni and%elifnidni

4.4.6 %ifid , %ifnum , %ifstr : Testing Token Types

Some macros will want to perform different tasks depending on whether they are passed a number, a string, or
an identifier. For example, a string output macro might want to be able to cope with being passed either a
string constant or a pointer to an existing string.

The conditional assembly construiifid , taking one parameter (which may be blank), assembles the
subsequent code if and only if the first token in the parameter exists and is an idéaiffiam works
similarly, but tests for the token being a numeric constaiistr tests for it being a string.

For example, thevritefile macro defined in section 4.3.3 can be extended to take advant#gfstof
in the following fashion:

%macro writefile 2—-3+

%ifstr %2

jmp %%endstr

%if %0 = 3

%%str: db %2,%3

%else

%%str: db %2

%endif

%%endstr: mov dx,%%str

mov cX,%%endstr-%%str

57

%else
mov dx,%?2
mov ¢X,%3
%endif
mov bx,%1
mov ah,0x40

int 0x21
%endmacro
Then thewritefile macro can cope with being called in either of the following two ways:

writefile [file], strpointer, length
writefile [file], "hello", 13, 10

In the first, strpointer is used as the address of an already-declared strinderagith is used as its
length; in the second, a string is given to the macro, which therefore declares it itself and works out the
address and length for itself.

Note the use o¥if inside thedoifstr : this is to detect whether the macro was passed two arguments (so the
string would be a single string constant, atd%?2 would be adequate) or more (in which case, all but the
first two would be lumped together in¥%3 anddb %2,%3 would be required).

The usuaboelif ...,%ifn ..., and%elifn ... versions exist for each &6ifid , %ifnum and%ifstr

4.4.7 %iftoken : Test for a Single Token

Some macros will want to do different things depending on if it is passed a single token (e.g. paste it to
something else usirfp+) versus a multi-token sequence.

The conditional assembly constrigéiftoken assembles the subsequent code if and only if the expanded
parameters consist of exactly one token, possibly surrounded by whitespace.

For example:

%iftoken 1

will assemble the subsequent code, but

%iftoken -1

will not, since-1 contains two tokens: the unary minus operatand the numbet.

The usuabeeliftoken , %ifntoken , and%elifntoken variants are also provided.

4.4.8 %ifempty : Test for Empty Expansion

The conditional assembly constri@éifempty assembles the subsequent code if and only if the expanded
parameters do not contain any tokens at all, whitespace excepted.

The usuaboelifempty , %ifnempty , and%elifnempty variants are also provided.

4.4.9 %ifenv : Test If Environment Variable Exists

The conditional assembly constrigéifenv assembles the subsequent code if and only if the environment
variable referenced by tBé!<env> directive exists.

The usuaboelifenv , %ifnenv , and%elifnenv variants are also provided.

Just as foo!<env> the argument should be written as a string if it contains characters that would not be
legal in an identifier. See section 4.10.2.

4.5 Preprocessor Loops®orep

NASM's TIMES prefix, though useful, cannot be used to invoke a multi-line macro multiple times, because
it is processed by NASM after macros have already been expanded. Therefore NASM provides another form
of loop, this time at the preprocessor ledélep.

The directive®orep and%endrep (%rep takes a numeric argument, which can be an expressemgrep
takes no arguments) can be used to enclose a chunk of code, which is then replicated as many times as
specified by the preprocessor:

%assigni0
%rep 64
inc word [table+2*i]
%assign i i+1
%endrep

This will generate a sequence of IBIC instructions, incrementing every word of memory frigaibble] to
[table+126]

For more complex termination conditions, or to break out of a repeat loop part way along, you can use the
%exitrep directive to terminate the loop, like this:

fibonacci:
%assigni0
%assignj 1
%rep 100
%if j > 65535

%exitrep
%endif

dw j

%assign K j+i
%assign i j
%assign j k
%endrep

fib_number equ ($—fibonacci)/2

This produces a list of all the Fibonacci numbers that will fit in 16 bits. Note that a maximum repeat count
must still be given tdorep. This is to prevent the possibility of NASM getting into an infinite loop in the
preprocessor, which (on multitasking or multi—user systems) would typically cause all the system memory to
be gradually used up and other applications to start crashing.

Note a maximum repeat count is limited by 62 bit number, though it is hardly possible that you ever need
anything bigger.

4.6 Source Files and Dependencies

These commands allow you to split your sources into multiple files.

59

4.6.1 %include : Including Other Files

Using, once again, a very similar syntax to the C preprocessor, NASM's preprocessor lets you include other
source files into your code. This is done by the use dfdinelude directive:

%include "macros.mac"
will include the contents of the filmacros.mac into the source file containing tBéinclude directive.

Include files are searched for in the current directory (the directory you're in when you run NASM, as
opposed to the location of the NASM executable or the location of the source file), plus any directories
specified on the NASM command line using theoption.

The standard C idiom for preventing a file being included more than once is just as applicable in NASM: if
the filemacros.mac has the form

%ifndef MACROS_MAC
%define MACROS_MAC
; now define some macros
%endif

then including the file more than once will not cause errors, because the second time the file is included
nothing will happen because the mabtACROS_MAMIl already be defined.

You can force a file to be included even if there i€4include directive that explicitly includes it, by using
the—p option on the NASM command line (see section 2.1.17).

4.6.2 %pathsearch : Search the Include Path

The %pathsearch directive takes a single-line macro name and a filename, and declare or redefines the
specified single-line macro to be the include—path-resolved version of the filename, if the file exists
(otherwise, it is passed unchanged.)

For example,
%pathsearch MyFoo "foo.bin"
... with=lbins/ in the include path may end up defining the ma@y#-oo to be"bins/foo.bin"

4.6.3 %depend: Add Dependent Files

The%depend directive takes a filename and adds it to the list of files to be emitted as dependency generation
when the-Moptions and its relatives (see section 2.1.4) are used. It produces no output.

This is generally used in conjunction wibpathsearch . For example, a simplified version of the standard
macro wrapper for theNCBIN directive looks like:

%imacro incbin 1-2+ 0
%pathsearch dep %1
%depend dep

incbin dep,%?2
%endmacro

This first resolves the location of the file into the magep, then adds it to the dependency lists, and finally
issues the assembler—leVsICBIN directive.

4.6.4 %use: Include Standard Macro Package

4.7

The %use directive is similar td%include , but rather than including the contents of a file, it includes a
named standard macro package. The standard macro packages are part of NASM, and are described in chapte
5.

Unlike the%include directive, package names for thause directive do not require quotes, but quotes are
permitted. In NASM 2.04 and 2.05 the unquoted form would be macro—expanded; this is no longer true. Thus,
the following lines are equivalent:

%use altreg
%use 'altreg’

Standard macro packages are protected from multiple inclusion. When a standard macro package is used, a
testable single—line macro of the formUSE_package is also defined, see section 4.11.8.

The Context Stack

Having labels that are local to a macro definition is sometimes not quite powerful enough: sometimes you
want to be able to share labels between several macro calls. An example migtiEBEAT... UNTIL loop,

in which the expansion of theEPEATmacro would need to be able to refer to a label whicHJR&IL

macro had defined. However, for such a macro you would also want to be able to nest these loops.

NASM provides this level of power by means oftantext stack The preprocessor maintains a stack of
contexts each of which is characterized by a name. You add a new context to the stack u$tmyshe
directive, and remove one usifigoop. You can define labels that are local to a particular context on the stack.

4.7.1 %push and %pop Creating and Removing Contexts

The %push directive is used to create a new context and place it on the top of the conteXgiastk takes
an optional argument, which is the name of the context. For example:

%push foobar

This pushes a new context calledbar on the stack. You can have several contexts on the stack with the
same name: they can still be distinguished. If no name is given, the context is unnamed (this is normally used
when both théopush and theopop are inside a single macro definition.)

The directive%pop, taking one optional argument, removes the top context from the context stack and
destroys it, along with any labels associated with it. If an argument is given, it must match the name of the
current context, otherwise it will issue an error.

4.7.2 Context—Local Labels

Just as the usagé%foo defines a label which is local to the particular macro call in which it is used, the
usage%$foo is used to define a label which is local to the context on the top of the context stack. So the
REPEATandUNTIL example given above could be implemented by means of:

%macro repeat O

%push repeat
%$begin:

%endmacro

61

%macro until 1

j%-1 %3$begin
%pop

%endmacro
and invoked by means of, for example,

mov c¢x,string
repeat

add c¢x,3
scasb

until e

which would scan every fourth byte of a string in search of the byk.in

If you need to define, or access, labels local to the cobilrivthe top one on the stack, you can use
%$$foo , or %$$$foo for the context below that, and so on.

4.7.3 Context-Local Single-Line Macros

NASM also allows you to define single-line macros which are local to a particular context, in just the same
way:

%define %%$localmac 3

will define the single-line macr&$localmac to be local to the top context on the stack. Of course, after a
subsequerfiopush, it can then still be accessed by the néag$localmac .

4.7.4 Context Fall-Through Lookup

Context fall-through lookup (automatic searching of outer contexts) is a feature that was added in NASM
version 0.98.03. Unfortunately, this feature is unintuitive and can result in buggy code that would have
otherwise been prevented by NASM'’s error reporting. As a result, this feature hadepeerated NASM

version 2.09 will issue a warning when usage of tiaprecatedfeature is detected. Starting with NASM
version 2.10, usage of thieprecatedeature will simply result in aexpression syntax error

An example usage of thieprecatedeature follows:

%macro ctxthru 0
%push ctx1
%assign %$external 1
%push ctx2
%assign %$internal 1
mov eax, %$external
mov eax, %S$internal
%pop
%pop
%endmacro

As demonstrated%$external is being defined in thetxl context and referenced within thogx2

context. With context fall-through lookup, referencing an undefined context—local macro like this implicitly
searches through all outer contexts until a match is made or isn't found in any context. As a result,
%3$external referenced within thetx2 context would implicitly us€&e$external as defined irctx1 .

Most people would expect NASM to issue an error in this situation be#sbesaernal was never defined
within ctx2 and also isn’t qualified with the proper context deptB$external

Here is a revision of the above example with proper context depth:

%macro ctxthru 0
%push ctx1
%assign %$external 1
%push ctx2
%assign %$internal 1
mov eax, %$external
mov eax, %S$internal
%pop
%pop
%endmacro

As demonstratedo$external s still being defined in thetxl context and referenced within tlex2
context. However, the reference %$external within ctx2 has been fully qualified with the proper
context depth%$$external , and thus is no longer ambiguous, unintuitive or erroneous.

4.7.5 %repl : Renaming a Context

If you need to change the name of the top context on the stack (in order, for example, to have it respond
differently to%ifctx), you can execute @pop followed by a%push; but this will have the side effect of
destroying all context—local labels and macros associated with the context that was just popped.

NASM provides the directivéorepl , which replacesa context with a different name, without touching the
associated macros and labels. So you could replace the destructive code

%pop
%push newname

with the non—destructive versiéarepl newname .

4.7.6 Example Use of the Context Stack: Block IFs

This example makes use of almost all the context-stack features, including the conditional-assembly
constructifctx , to implement a block IF statement as a set of macros.

%macro if 1

%push if
j%-1 %$ifnot

%endmacro
%macro else 0

%ifctx if
%repl else
jmp %$ifend
%3ifnot:
%else
%error "expected ‘if’ before ‘else

63

64

%endif
%endmacro
%macro endif 0

%ifctx if
%3ifnot:
%pop
%elifctx else
%3ifend:
%pop
%else
%error "expected ‘if’ or ‘else’ before ‘endif
%endif

%endmacro

This code is more robust than tREPEATand UNTIL macros given in section 4.7.2, because it uses
conditional assembly to check that the macros are issued in the right order (for example, nardifiing
beforeif) and issues %error if they're not.

In addition, theendif macro has to be able to cope with the two distinct cases of either directly following an
if , or following anelse . It achieves this, again, by using conditional assembly to do different things
depending on whether the context on top of the stai€k w@relse .

Theelse macro has to preserve the context on the stack, in order to h2esithet referred to by thé
macro be the same as the one defined byetttif macro, but has to change the context's name so that
endif will know there was an intervenirgse . It does this by the use &repl .

A sample usage of these macros might look like:

cmp ax,bx
if ae
cmp bx,cx
if ae
mov ax,cx
else
mov ax,bx
endif
else

cmp ax,cx
if ae

mov ax,cx
endif

endif

The block+F macros handle nesting quite happily, by means of pushing another context, describing the inner
if , on top of the one describing the oufer, thuselse andendif always refer to the last unmatchiéd
orelse .

4.8 Stack Relative Preprocessor Directives

The following preprocessor directives provide a way to use labels to refer to local variables allocated on the
stack.

* %arg (see section 4.8.1)
» Opstacksize (see section 4.8.2)

* %local (see section 4.8.3)

4.8.1 %arg Directive

The%arg directive is used to simplify the handling of parameters passed on the stack. Stack based parameter
passing is used by many high level languages, including C, C++ and Pascal.

While NASM has macros which attempt to duplicate this functionality (see section 8.4.5), the syntax is not
particularly convenient to use and is not TASM compatible. Here is an example which shows tHbaige of
without any external macros:

some_function:
%push mycontext ; save the current context

%stacksize large ; tell NASM to use bp
%arg i:word, j_ptr:word

mov ax,|i]
mov bx,[j_ptr]
add ax,[bx]
ret
%pop ; restore original context

This is similar to the procedure defined in section 8.4.5 and adds the value in i to the value pointed to by |_ptr
and returns the sum in the ax register. See section 4.7.1 for an explanatiah cindpop and the use of
context stacks.

4.8.2 %stacksize Directive

The %stacksize directive is used in conjunction with théarg (see section 4.8.1) and thdocal (see
section 4.8.3) directives. It tells NASM the default size to use for subseifiaegtand%local directives.
The%stacksize directive takes one required argument which is orflabf , flaté4 ,large orsmall .

%stacksize flat

This form causes NASM to use stack-based parameter addressing relatiye dad it assumes that a near
form of call was used to get to this label (i.e. #igt is on the stack).

%stacksize flat64

This form causes NASM to use stack-based parameter addressing reldbpe dad it assumes that a near
form of call was used to get to this label (i.e. tiiyat is on the stack).

65

%stacksize large

This form use$p to do stack-based parameter addressing and assumes that a far form of call was used to get
to this address (i.e. thgt andcs are on the stack).

%stacksize small

This form also usebp to address stack parameters, but it is different flamge because it also assumes

that the old value of bp is pushed onto the stack (i.e. it expedEN&ERIinstruction). In other words, it
expects thabp, ip andcs are on the top of the stack, underneath any local space which may have been
allocated byENTER This form is probably most useful when used in combination witdbeal directive

(see section 4.8.3).

4.8.3 %local Directive

The %local directive is used to simplify the use of local temporary stack variables allocated in a stack
frame. Automatic local variables in C are an example of this kind of variable%lidual directive is most

useful when used with thisstacksize (see section 4.8.2 and is also compatible withotlaeg directive

(see section 4.8.1). It allows simplified reference to variables on the stack which have been allocated typically
by using theENTERinstruction. An example of its use is the following:

silly_swap:
%push mycontext ; save the current context
%stacksize small ; tell NASM to use bp
%assign %$localsize 0 ; see text for explanation

%local old_ax:word, old_dx:word

enter %$localsize,0 ; see text for explanation
mov [old_ax],ax ;swap ax & bx

mov [old_dx],dx ;and swap dx & cx

mov ax,bx

mov dx,cx

mov bx,[old_ax]

mov cx,[old_dx]

leave ; restore old bp
ret ;
%pop ; restore original context

The %%$localsize variable is used internally by tilocal directive andmustbe defined within the
current context before th#local directive may be used. Failure to do so will result in one expression
syntax error for eacPolocal variable declared. It then may be used in the construction of an appropriately
sized ENTER instruction as shown in the example.

4.9 Reporting User—-Defined Errors:%error , %warning , %fatal

The preprocessor directiiéerror will cause NASM to report an error if it occurs in assembled code. So if
other users are going to try to assemble your source files, you can ensure that they define the right macros by
means of code like this:

%ifdef F1
; do some setup

%elifdef F2

; do some different setup
%else

%error "Neither F1 nor F2 was defined."
%endif

Then any user who fails to understand the way your code is supposed to be assembled will be quickly warned
of their mistake, rather than having to wait until the program crashes on being run and then not knowing what
went wrong.

Similarly, %warning issues a warning, but allows assembly to continue:

%ifdef F1
; do some setup
%elifdef F2
; do some different setup
%else
%warning "Neither F1 nor F2 was defined, assuming F1."
%define F1
%endif

%error and %warning are issued only on the final assembly pass. This makes them safe to use in
conjunction with tests that depend on symbol values.

%fatal terminates assembly immediately, regardless of pass. This is useful when there is no point in
continuing the assembly further, and doing so is likely just going to cause a spew of confusing error messages.

It is optional for the message string afééerror , %warning or %fatal to be quoted. If it is1ot, then
single-line macros are expanded in it, which can be used to display more information to the user. For
example:

%if foo > 64

%assign foo_over foo-64

%error foo is foo_over bytes too large
%endif

4.10 Other Preprocessor Directives

NASM also has preprocessor directives which allow access to information from external sources. Currently
they include:

* %line enables NASM to correctly handle the output of another preprocessor (see section 4.10.1).

* %! enables NASM to read in the value of an environment variable, which can then be used in your
program (see section 4.10.2).

4.10.1 %line Directive

The %line directive is used to notify NASM that the input line corresponds to a specific line number in
another file. Typically this other file would be an original source file, with the current NASM input being the
output of a pre—processor. TB&line directive allows NASM to output messages which indicate the line
number of the original source file, instead of the file that is being read by NASM.

This preprocessor directive is not generally of use to programmers, by may be of interest to preprocessor
authors. The usage of th@line preprocessor directive is as follows:

67

%line nnn[+mmm] [filename]

In this directive,nnn identifies the line of the original source file which this line correspondsitaris an
optional parameter which specifies a line increment value; each line of the input file read in is considered to
correspond tommmiines of the original source file. Finalljilename is an optional parameter which
specifies the file name of the original source file.

After reading a&line preprocessor directive, NASM will report all file name and line numbers relative to
the values specified therein.
4.10.2 %!<env> : Read an environment variable.

The%!<env> directive makes it possible to read the value of an environment variable at assembly time. This
could, for example, be used to store the contents of an environment variable into a string, which could be used
at some other point in your code.

For example, suppose that you have an environment vaf&@ilpand you want the contents BOOto be
embedded in your program. You could do that as follows:

%defstr FOO %!FOO
See section 4.1.8 for notes on #defstr directive.

If the name of the environment variable contains non-identifier characters, you can use string quotes to
surround the name of the variable, for example:

%defstr C_colon %!'C:’

4.11 Standard Macros

NASM defines a set of standard macros, which are already defined when it starts to process any source file. If
you really need a program to be assembled with no pre—defined macros, you carttdeahedirective to
empty the preprocessor of everything but context-local preprocessor variables and single-line macros.

Most user—level assembler directives (see chapter 6) are implemented as macros which invoke primitive
directives; these are described in chapter 6. The rest of the standard macro set is described here.

4.11.1 NASM Version Macros

The single-line macros_ NASM_MAJOR, NASM MINOR_, _ NASM _SUBMINOR__ and
___NASM_PATCHLEVEL__expand to the major, minor, subminor and patch level parts of the version
number of NASM being used. So, under NASM 0.98.32p1 for examplRASM_MAJOR__would be
defined to be 0, NASM_MINOR__would be defined as 98, NASM_SUBMINOR_would be defined to

32,and __ NASM_PATCHLEVEL_would be defined as 1.

Additionally, the macro_ NASM_SNAPSHOT _is defined for automatically generated snapshot releases
only.

4.11.2 __NASM_VERSION_ID_: NASM Version ID

The single-line macro NASM_VERSION_ID __expands to a dword integer representing the full version
number of the version of nasm being used. The value is the equivalent NASM_MAJOR,
__NASM_MINOR_, NASM_SUBMINOR_and __ NASM_PATCHLEVEL_ concatenated to produce a
single doubleword. Hence, for 0.98.32p1, the returned number would be equivalent to:

dd 0x00622001

or
db 1,32,98,0

Note that the above lines are generate exactly the same code, the second line is used just to give an indicatior
of the order that the separate values will be present in memory.

4.11.3 NASM_VER_: NASM Version string

The single-line macro NASM_VER__expands to a string which defines the version number of nasm being
used. So, under NASM 0.98.32 for example,

db __ NASM_VER__
would expand to
db "0.98.32"

4114 FILE__ and__LINE__ : File Name and Line Number

Like the C preprocessor, NASM allows the user to find out the file name and line nhumber containing the
current instruction. The macro FILE__ expands to a string constant giving the name of the current input
file (which may change through the course of assemtginiiclude directives are used), and LINE___
expands to a numeric constant giving the current line number in the input file.

These macros could be used, for example, to communicate debugging information to a macro, since invoking
__LINE__ inside a macro definition (either single-line or multi-line) will return the line number of the
macrocall, rather thardefinition So to determine where in a piece of code a crash is occurring, for example,
one could write a routinstillhere , Which is passed a line numberBAX and outputs something like

‘line 155: still here’. You could then write a macro

%macro notdeadyet O
push eax
mov eax,_ LINE
call stillhere
pop eax
%endmacro

and then pepper your code with callswtideadyet until you find the crash point.

4115 BITS _ : Current BITS Mode

The _BITS__ standard macro is updated every time that the BITS mode is set usiB§TBIeXX or

[BITS XX] directive, where XX is a valid mode number of 16, 32 or 6BITS _ receives the specified

mode number and makes it globally available. This can be very useful for those who utilize mode—-dependent
macros.

4.11.6 __ OUTPUT_FORMAT : Current Output Format

The OUTPUT_FORMAT _standard macro holds the current Output Format, as given byf tgtion or
NASM'’s default. Typenasm —hf for a list.

%ifidn __ OUTPUT_FORMAT__, win32
%define NEWLINE 13, 10
%elifidn __ OUTPUT_FORMAT _, elf32

69

%define NEWLINE 10
%endif

4.11.7 Assembly Date and Time Macros

NASM provides a variety of macros that represent the timestamp of the assembly session.

The DATE___and___TIME__ macros give the assembly date and time as strings, in 1ISO 8601 format
("YYYY-MM-DD'and"HH:MM:SS" , respectively.)

The DATE_NUM__and__ TIME_NUM__macros give the assembly date and time in numeric form; in
the formatY YYYMMDBNndHHMMS &spectively.

The UTC _DATE__and__UTC_TIME__ macros give the assembly date and time in universal time
(UTC) as strings, in ISO 8601 formdtYYYY-MM-DD"and "HH:MM:SS" , respectively.) If the host
platform doesn't provide UTC time, these macros are undefined.

The _ UTC_DATE_NUM_and _ UTC_TIME_NUM__ macros give the assembly date and time
universal time (UTC) in numeric form; in the forméayYYMMDRNnd HHMMSS®espectively. If the host
platform doesn’t provide UTC time, these macros are undefined.

The __ POSIX_TIME__ macro is defined as a number containing the number of seconds since the POSIX
epoch, 1 January 1970 00:00:00 UTC; excluding any leap seconds. This is computed using UTC time if
available on the host platform, otherwise it is computed using the local time as if it was UTC.

All instances of time and date macros in the same assembly session produce consistent output. For example,
in an assembly session started at 42 seconds after midnight on January 1, 2010 in Moscow (timezone UTC+3)
these macros would have the following values, assuming, of course, a properly configured environment with a
correct clock:

__DATE__ "2010-01-01"
__TIME__ "00:00:42"
__DATE_NUM__ 20100101
__TIME_NUM__ 000042
__UTC_DATE__ "2009-12-31"
__UTC_TIME__ "21:00:42"

__UTC_DATE_NUM__ 20091231
__UTC_TIME_NUM__ 210042
__POSIX_TIME__ 1262293242

4.11.8 USE package : Package Include Test

When a standard macro package (see chapter 5) is included whbuieedirective (see section 4.6.4), a
single-line macro of the form USE_package is automatically defined. This allows testing if a particular
package is invoked or not.

For example, if thaaltreg package is included (see section 5.1), then the maddSE _ALTREG_ is
defined.

4.11.9 PASS_: Assembly Pass

The macro PASS__is defined to bé on preparatory passes, ahan the final pass. In preprocess—only
mode, it is set t@, and when running only to generate dependencies (due teMite ~-MGoption, see
section 2.1.4) it is set .

Avoid using this macro if at all possible. It is tremendously easy to generate very strange errors by misusing
it, and the semantics may change in future versions of NASM.

4.11.10 STRUCand ENDSTRUDeclaring Structure Data Types

The core of NASM contains no intrinsic means of defining data structures; instead, the preprocessor is
sufficiently powerful that data structures can be implemented as a set of macros. The Si&tsaand
ENDSTRUGre used to define a structure data type.

STRUCtakes one or two parameters. The first parameter is the name of the data type. The second, optional
parameter is the base offset of the structure. The name of the data type is defined as a symbol with the value
of the base offset, and the name of the data type with the ssffig appended to it is defined as BQU

giving the size of the structure. On8FRUChas been issued, you are defining the structure, and should
define fields using théRESB family of pseudo-instructions, and then invoE&IDSTRUQo finish the
definition.

For example, to define a structure callegtype containing a longword, a word, a byte and a string of bytes,
you might code

struc mytype

mt_long: resd 1
mt_word: resw 1
mt_byte: resb 1
mt_str: resb 32

endstruc

The above code defines six symbaid; long as 0 (the offset from the beginning ofrgtype structure to
the longword field)ymt_word as 4mt_byte as 6mt_str as 7mytype_size as 39, andnytype itself
as zero.

The reason why the structure type name is defined at zero by default is a side effect of allowing structures to
work with the local label mechanism: if your structure members tend to have the same names in more than
one structure, you can define the above structure like this:

struc mytype

Jong: resd 1

.word: resw 1

.byte: resb 1

.Str: resb 32
endstruc

This defines the offsets to the structure fieldsmagype.long , mytype.word , mytype.byte and
mytype.str

NASM, since it has nintrinsic structure support, does not support any form of period notation to refer to the
elements of a structure once you have one (except the above local-label notation), so code such as
mov ax,[mystruc.mt_word] is not valid.mt_word is a constant just like any other constant, so the
correct syntax isnov ax,[mystruc+mt_word] or mov ax,[mystruc+mytype.word]

71

Sometimes you only have the address of the structure displaced by an offset. For example, consider this
standard stack frame setup:

push ebp
mov ebp, esp
sub esp, 40

In this case, you could access an element by subtracting the offset:

mov [ebp — 40 + mytype.word], ax

However, if you do not want to repeat this offset, you can use —40 as a base offset:
struc mytype, —40

And access an element this way:

mov [ebp + mytype.word], ax

4.11.11ISTRUC, AT and IEND: Declaring Instances of Structures

Having defined a structure type, the next thing you typically want to do is to declare instances of that structure
in your data segment. NASM provides an easy way to do this ihSthieUC mechanism. To declare a
structure of typenytype in a program, you code something like this:

mystruc:
istruc mytype

atmt_long,dd 123456

atmt_word, dw 1024

atmt_byte,db X

atmt_str, db ’hello, world’, 13, 10, O

iend

The function of theAT macro is to make use of tAR@MES prefix to advance the assembly position to the
correct point for the specified structure field, and then to declare the specified data. Therefore the structure
fields must be declared in the same order as they were specified in the structure definition.

If the data to go in a structure field requires more than one source line to specify, the remaining source lines
can easily come after th€T line. For example:

atmt_str, db 123,134,145,156,167,178,189
db 190,100,0

Depending on personal taste, you can also omit the code partAT the completely, and start the structure
field on the next line:

at mt_str
db "hello, world’
db 13,10,0

4.11.12 ALIGN and ALIGNB: Data Alignment

The ALIGN and ALIGNB macros provides a convenient way to align code or data on a word, longword,
paragraph or other boundary. (Some assemblers call this dir&dfiZz&l) The syntax of theALIGN and
ALIGNB macros is

72

align 4 ; align on 4-byte boundary

align 16 ; align on 16—byte boundary
align 8,db 0 ; pad with Os rather than NOPs
align 4,resh 1 ; align to 4 in the BSS

alignb 4 ; equivalent to previous line

Both macros require their first argument to be a power of two; they both compute the number of additional
bytes required to bring the length of the current section up to a multiple of that power of two, and then apply
the TIMES prefix to their second argument to perform the alignment.

If the second argument is not specified, the defaultAioilGN is NOR and the default foALIGNB is

RESB 1. So if the second argument is specified, the two macros are equivalent. Normally, you can just use
ALIGN in code and data sections adIGNB in BSS sections, and never need the second argument except
for special purposes.

ALIGN and ALIGNB, being simple macros, perform no error checking: they cannot warn you if their first
argument fails to be a power of two, or if their second argument generates more than one byte of code. In each
of these cases they will silently do the wrong thing.

ALIGNB (or ALIGN with a second argument RESB 1) can be used within structure definitions:
struc mytype?2

mt_byte:
resb 1
alignb 2
mt_word:
resw 1
alignb 4
mt_long:
resd 1
mt_str:
resb 32

endstruc

This will ensure that the structure members are sensibly aligned relative to the base of the structure.

A final caveat:ALIGN and ALIGNB work relative to the beginning of tteection not the beginning of the
address space in the final executable. Aligning to a 16—-byte boundary when the section you're in is only
guaranteed to be aligned to a 4-byte boundary, for example, is a waste of effort. Again, NASM does not
check that the section’s alignment characteristics are sensible for theAld&bf or ALIGNB.

Both ALIGN andALIGNB do call[SECTALIGNmacro implicitly. See section 4.11.13 for details.

See also themartalign standard macro package, section 5.2.

4.11.13 SECTALIGN Section Alignment

The SECTALIGN macros provides a way to modify alignment attribute of output file section. Unlike the
align= attribute (which is allowed at section definition only) EECTALIGNmacro may be used at any
time.

For example the directive

73

74

SECTALIGN 16

sets the section alignment requirements to 16 bytes. Once increased it can not be decreased, the magnituds
may grow only.

Note thatALIGN (see section 4.11.12) calls tBECTALIGNmacro implicitly so the active section alignment
requirements may be updated. This is by default behaviour, if for some reason you wertGNedo not
call SECTALIGNat all use the directive

SECTALIGN OFF
It is still possible to turn in on again by
SECTALIGN ON

5.1

5.2

Chapter 5: Standard Macro Packages

The %use directive (see section 4.6.4) includes one of the standard macro packages included with the NASM
distribution and compiled into the NASM binary. It operates likedtheclude directive (see section 4.6.1),
but the included contents is provided by NASM itself.

The names of standard macro packages are case insensitive, and can be quoted or not.

altreg : Alternate Register Names

Thealtreg standard macro package provides alternate register names. It provides numeric register names
for all registers (not jusR8-R15), the Intel-defined aliaseR8L-R15L for the low bytes of register (as
opposed to the NASM/AMD standard nam@8B-R15B), and the namefROH-R3H (by analogy with
ROL-R3L) for AH CH DH andBH

Example use:
%use altreg
proc:

mov r0l,r3h : mov al,bh
ret

See also section 11.1.

smartalign : Smart ALIGN Macro

The smartalign standard macro package provides forAamGN macro which is more powerful than the
default (and backwards—compatible) one (see section 4.11.12). Whemdhimlign package is enabled,
when ALIGN is used without a second argument, NASM will generate a sequence of instructions more
efficient than a series dIOP Furthermore, if the padding exceeds a specific threshold, then NASM will
generate a jump over the entire padding sequence.

The specific instructions generated can be controlled with theAbdGNMODENacro. This macro takes two
parameters: one mode, and an optional jump threshold override. If (for any reason) you need to turn off the
jump completely just set jump threshold value to —1 (or setiojtmp). The following modes are possible:

e generic : Works on all x86 CPUs and should have reasonable performance. The default jump threshold
is 8. This is the default.

e nop: Pad out withNOPinstructions. The only difference compared to the standat@N macro is that
NASM can still jump over a large padding area. The default jump threshold is 16.

« k7: Optimize for the AMD K7 (Athlon/Althon XP). These instructions should still work on all x86 CPUs.
The default jump threshold is 16.

« k8: Optimize for the AMD K8 (Opteron/Althon 64). These instructions should still work on all x86 CPUs.
The default jump threshold is 16.

75

76

5.3

5.4

e p6: Optimize for Intel CPUs. This uses the IoN@Pinstructions first introduced in Pentium Pro. This is
incompatible with all CPUs of family 5 or lower, as well as some VIA CPUs and several virtualization
solutions. The default jump threshold is 16.

The macro__ ALIGNMODE__is defined to contain the current alignment mode. A number of other macros
beginning with__ ALIGN_ are used internally by this macro package.

fp : Floating—point macros

This packages contains the following floating—point convenience macros:

%define Inf __Infinity
%define NaN __QNaN__
%define QNaN __ONaN__
%define SNaN __SNaN__
%define float8(x) __float8__ (x)
%define floatl6(x) _ floatl6 (X)
%define float32(x) _ float32_ (X)
%define float64(x) _ float64_ (x)

%define float80Om(x) _ float80m__ (x)
%define float80e(x) _ float80e_ (X)
%define float128I(x) _ float128l (x)
%define float128h(x) _ float128h_ (X)

ifunc : Integer functions

This package contains a set of macros which implement integer functions. These are actually implemented as
special operators, but are most conveniently accessed via this macro package.

The macros provided are:

5.4.1 Integer logarithms

These functions calculate the integer logarithm base 2 of their argument, considered as an unsigned integer.
The only differences between the functions is their respective behavior if the argument provided is not a
power of two.

The functionilog2e() (aliasilog2()) generates an error if the argument is not a power of two.

The functionilog2f() rounds the argument down to the nearest power of two; if the argument is zero it
returns zero.

The functionilog2c() rounds the argument up to the nearest power of two.

The functionslog2fw() (aliasilog2w()) andilog2cw() generate a warning if the argument is not a
power of two, but otherwise behaves lilag?2f() andilog2c() , respectively.

Chapter 6: Assembler Directives

NASM, though it attempts to avoid the bureaucracy of assemblers like MASM and TASM, is nevertheless
forced to support fewdirectives. These are described in this chapter.

NASM'’s directives come in two typesiser—level directives andprimitive directives. Typically, each
directive has a user-level form and a primitive form. In almost all cases, we recommend that users use the
user—level forms of the directives, which are implemented as macros which call the primitive forms.

Primitive directives are enclosed in square brackets; user-level directives are not.

In addition to the universal directives described in this chapter, each object file format can optionally supply
extra directives in order to control particular features of that file format. Thasat-specificdirectives are
documented along with the formats that implement them, in chapter 7.

6.1 BITS : Specifying Target Processor Mode

TheBITS directive specifies whether NASM should generate code designed to run on a processor operating
in 16-bit mode, 32-hit mode or 64-bit mode. The synt&ddT$S XX , where XX is 16, 32 or 64.

In most cases, you should not need to BEES explicitly. Theaout , coff , elf , macho, win32 and

win64 object formats, which are designed for use in 32-bit or 64-bit operating systems, all cause NASM to
select 32-bit or 64-bit mode, respectively, by default. ®bge object format allows you to specify each
segment you define as eithdE16 or USE32, and NASM will set its operating mode accordingly, so the
use of theBITS directive is once again unnecessary.

The most likely reason for using tB4TS directive is to write 32-bit or 64-bit code in a flat binary file; this
is because thbin output format defaults to 16-hit mode in anticipation of it being used most frequently to
write DOS.COMprograms, DOSSYS device drivers and boot loader software.

The BITS directive can also be used to generate code for a different mode than the standard one for the
output format.

You donot need to specifBITS 32 merely in order to use 32-bit instructions in a 16—bit DOS program; if
you do, the assembler will generate incorrect code because it will be writing code targeted at a 32-bit
platform, to be run on a 16-bit one.

When NASM is inBITS 16 maode, instructions which use 32-bit data are prefixed with an 0x66 byte, and
those referring to 32-bit addresses have an 0x67 prefiBIT® 32 mode, the reverse is true: 32-hit
instructions require no prefixes, whereas instructions using 16-bit data need an 0x66 and those working on
16-bit addresses need an 0x67.

When NASM is inBITS 64 mode, most instructions operate the same as they dBIT& 32 mode.
However, there are 8 more general and SSE registers, and 16-hit addressing is no longer supported.

The default address size is 64 bits; 32-bit addressing can be selected with the 0x67 prefix. The default
operand size is still 32 bits, however, and the 0x66 prefix selects 16-bit operand siREXprefix is used

both to select 64-bit operand size, and to access the new registers. NASM automatically inserts REX prefixes
when necessary.

77

When theREXprefix is used, the processor does not know how to address the AH, BH, CH or DH (high 8-bit
legacy) registers. Instead, it is possible to access the the low 8-bits of the SP, BP Sl and DI registers as SPL,
BPL, SIL and DIL, respectively; but only when the REX prefix is used.

TheBITS directive has an exactly equivalent primitive fofBITS 16] , [BITS 32] and[BITS 64]
The user-level form is a macro which has no function other than to call the primitive form.

Note that the space is neccessary,Bl§S32 will notwork!

6.1.1 USE16& USE32 Aliases for BITS

The 'USE16 and ‘USE32 directives can be used in place 81TS 16 ' and ‘BITS 32 ’, for compatibility
with other assemblers.

6.2 DEFAULT Change the assembler defaults

The DEFAULT directive changes the assembler defaults. Normally, NASM defaults to a mode where the
programmer is expected to explicitly specify most features directly. However, this is occasionally obnoxious,
as the explicit form is pretty much the only one one wishes to use.

Currently,DEFAULTcan seREL & ABSandBND& NOBND
6.2.1 REL& ABS RIP-relative addressing

This sets whether registerless instructions in 64-bit modeRirerelative or not. By default, they are
absolute unless overridden with tREL specifier (see section 3.3). HoweveDEFAULT REL is specified,
REL is default, unless overridden with t#BS specifier,except when used with an FS or GS segment
override

The special handling dfS and GS overrides are due to the fact that these registers are generally used as
thread pointers or other special functions in 64-bit mode, and geneRifgelative addresses would be
extremely confusing.

DEFAULT RELis disabled wittDEFAULT ABS
6.2.2 BND& NOBNDBNDprefix

If DEFAULT BNDis set, all bnd—prefix available instructions following this directive are prefixed with bnd.
To override it NOBNDprefix can be used.

DEFAULT BND
call foo ; BND will be prefixed
nobnd call foo ; BND will NOT be prefixed

DEFAULT NOBNDcan disableDEFAULT BNDand thenBND prefix will be added only when explicitly
specified in code.

DEFAULT BNDis expected to be the normal configuration for writing MPX-enabled code.

6.3 SECTIONor SEGMENTChanging and Defining Sections

The SECTIONdirective SEGMENTs an exactly equivalent synonym) changes which section of the output
file the code you write will be assembled into. In some object file formats, the number and names of sections
are fixed; in others, the user may make up as many as they wish. 8#6d¢ON may sometimes give an

error message, or may define a new section, if you try to switch to a section that does not (yet) exist.

The Unix object formats, and tHan object format (but see section 7.1.3), all support the standardized
section namedext ,.data and.bss for the code, data and uninitialized—data sections.obfjieformat,

by contrast, does not recognize these section names as being special, and indeed will strip off the leading
period of any section name that has one.

6.3.1 The SECT__ Macro

The SECTION directive is unusual in that its user—level form functions differently from its primitive form.
The primitive form,[SECTION xyz] , simply switches the current target section to the one given. The
user—level formSECTION xyz , however, first defines the single-line macr’SECT___ to be the primitive
[SECTION] directive which it is about to issue, and then issues it. So the user-level directive

SECTION .text
expands to the two lines

%define __SECT__ [SECTION .texi]
[SECTION .text]

Users may find it useful to make use of this in their own macros. For exampleritbfie macro
defined in section 4.3.3 can be usefully rewritten in the following more sophisticated form:

%macro writefile 2+
[section .data]

%%0str: db %2
%%endstr:

__SECT__

mov dx,%%str

mov cx,%%endstr-%%str
mov bx,%1

mov ah,0x40

int 0x21

%endmacro

This form of the macro, once passed a string to output, first switches temporarily to the data section of the file,
using the primitive form of th€ECTIONdirective so as not to modify SECT__. It then declares its string

in the data section, and then invokesSSECT___ to switch back tavhicheversection the user was previously
working in. It thus avoids the need, in the previous version of the macro, to inclivieiastruction to jump

over the data, and also does not falil if, in a complic&Bd format module, the user could potentially be
assembling the code in any of several separate code sections.

6.4 ABSOLUTEDefining Absolute Labels

The ABSOLUTEdirective can be thought of as an alternative forn8BCTION it causes the subsequent
code to be directed at no physical section, but at the hypothetical section starting at the given absolute address.
The only instructions you can use in this mode ard&Rt&Bfamily.

ABSOLUTEHSs used as follows:

79

80

absolute Ox1A

kbuf chr resw 1
kbuf free resw 1
kbuf resw 16

This example describes a section of the PC BIOS data area, at segment address 0x40: the above code define
kbuf chr to be Ox1Akbuf free to be 0x1C, andbuf to be Ox1E.

The user—level form oABSOLUTE like that of SECTION redefines the SECT__ macro when it is
invoked.

STRUCandENDSTRUG@re defined as macros which us8SOLUTHand also SECT_).

ABSOLUTEdoesn't have to take an absolute constant as an argument: it can take an expression (actually, a
critical expression: see section 3.8) and it can be a value in a segment. For example, a TSR can re-use its
setup code as run-time BSS like this:

org 100h ; i's a .COM program
jmp setup ; setup code comes last

; the resident part of the TSR goes here
setup:
; now write the code that installs the TSR here

absolute setup

runtimevarl resw 1
runtimevar2 resd 20

tsr_end:

This defines some variables ‘on top of the setup code, so that after the setup has finished running, the space it
took up can be re—used as data storage for the running TSR. The symbol ‘tsr_end’ can be used to calculate the
total size of the part of the TSR that needs to be made resident.

6.5 EXTERNImporting Symbols from Other Modules

EXTERNS similar to the MASM directiv&EXTRNand the C keywordxtern : it is used to declare a symbol

which is not defined anywhere in the module being assembled, but is assumed to be defined in some other
module and needs to be referred to by this one. Not every object—file format can support external variables:
thebin format cannot.

The EXTERNdirective takes as many arguments as you like. Each argument is the name of a symbol:

extern _printf
extern _sscanf,_fscanf

Some object-file formats provide extra features toEX&ERNdirective. In all cases, the extra features are
used by suffixing a colon to the symbol name followed by object-format specific text. For examplg, the
format allows you to declare that the default segment base of an external should be thdggropp by
means of the directive

extern _variable:wrt dgroup

The primitive form ofEXTERNdiffers from the user—level form only in that it can take only one argument at
a time: the support for multiple arguments is implemented at the preprocessor level.

You can declare the same variableE26TERNmore than once: NASM will quietly ignore the second and
later redeclarations. You can't declare a variablEXXSERNas well as something else, though.

6.6 GLOBAL Exporting Symbols to Other Modules

GLOBALIs the other end dEXTERN if one module declares a symbol BXTERNand refers to it, then in
order to prevent linker errors, some other module must actlefigethe symbol and declare it @& OBAL
Some assemblers use the n@aBLIC for this purpose.

The GLOBALdirective applying to a symbol must appbaforethe definition of the symbol.

GLOBALuses the same syntaxEBXTERN except that it must refer to symbols whatle defined in the same
module as th6LOBALdirective. For example:

global _main
_main:
; some code

GLOBAL like EXTERN allows object formats to define private extensions by means of a colorelfThe
object format, for example, lets you specify whether global data items are functions or data:

global hashlookup:function, hashtable:data

Like EXTERN the primitive form ofGLOBALJdiffers from the user—level form only in that it can take only
one argument at a time.

6.7 COMMOMefining Common Data Areas

The COMMONMirective is used to declamommon variablesA common variable is much like a global
variable declared in the uninitialized data section, so that

common intvar 4

is similar in function to
global intvar

section .bss

intvar resd 1

The difference is that if more than one module defines the same common variable, then at link time those
variables will benerged and references fatvar in all modules will point at the same piece of memory.

Like GLOBALand EXTERN COMMOMNupports object-format specific extensions. For exampleplhe
format allows common variables to be NEAR or FAR, and @¢lie format allows you to specify the
alignment requirements of a common variable:

common commvar 4:near ; works in OBJ
common intarray 100:4 ; works in ELF: 4 byte aligned

Once again, likEXTERNandGLOBAL. the primitive form ofCOMMOUiffers from the user—level form only
in that it can take only one argument at a time.

81

6.8 CPU Defining CPU Dependencies
The CPUdirective restricts assembly to those instructions which are available on the specified CPU.
Options are:
+ CPU 8086 Assemble only 8086 instruction set
* CPU 186 Assemble instructions up to the 80186 instruction set
« CPU 286 Assemble instructions up to the 286 instruction set
« CPU 386 Assemble instructions up to the 386 instruction set
* CPU 486 486 instruction set
* CPU 586 Pentium instruction set
 CPU PENTIUMSame as 586
* CPU 686 P6 instruction set
* CPU PPROSame as 686
* CPU P2 Same as 686
e CPU P3 Pentium lll (Katmai) instruction sets
* CPU KATMAI Same as P3
e CPU P4 Pentium 4 (Willamette) instruction set
e CPU WILLAMETTESame as P4
* CPU PRESCOTPrescott instruction set
* CPU X64 x86-64 (x64/AMD64/Intel 64) instruction set
« CPU IA64 1A64 CPU (in x86 mode) instruction set

All options are case insensitive. All instructions will be selected only if they apply to the selected CPU or
lower. By default, all instructions are available.

6.9 FLOAT. Handling of floating—point constants

By default, floating—point constants are rounded to nearest, and IEEE denormals are supported. The following
options can be set to alter this behaviour:

* FLOAT DAZ Flush denormals to zero

¢ FLOAT NODAZDo not flush denormals to zero (default)
« FLOAT NEARRound to nearest (default)

e FLOAT UP Round up (toward +Infinity)

 FLOAT DOWNRound down (toward —Infinity)

* FLOAT ZERORound toward zero

* FLOAT DEFAULTRestore default settings

The standard macros FLOAT DAZ_, FLOAT _ROUND , and__FLOAT _ contain the current state,
as long as the programmer has avoided the use of the brackeded primitivéFb@AT]).

__FLOAT__ contains the full set of floating—point settings; this value can be saved away and invoked later to
restore the setting.

6.10 [WARNING]: Enable or disable warnings

The [WARNING] directive can be used to enable or disable classes of warnings in the same waywas the
option, see section 2.1.24 for more details about warning classes.

Warning classes may be enabled wifwarning +]\e{warning—class] , disabled with
[warning — warning—clas$, or reset to their original value (as specified on the command line) with
[warning * warning-clasg]}.

The[WARNING] directive also accepts tlal , error anderror= warning—classspecifiers.

No "user form" (without the brackets) currently exists.

83

Chapter 7: Output Formats

NASM is a portable assembler, designed to be able to compile on any ANSI C-supporting platform and
produce output to run on a variety of Intel x86 operating systems. For this reason, it has a large number of
available output formats, selected using fieoption on the NASM command line. Each of these formats,
along with its extensions to the base NASM syntax, is detailed in this chapter.

As stated in section 2.1.1, NASM chooses a default name for your output file based on the input file name and
the chosen output format. This will be generated by removing the exterasan,(.s , or whatever you like

to use) from the input file name, and substituting an extension defined by the output format. The extensions
are given with each format below.

7.1 bin : Flat—Form Binary Output

The bin format does not produce object files: it generates nothing in the output file except the code you
wrote. Such ‘pure binary’ files are used by MS-DOSOM executables andSYS device drivers are pure
binary files. Pure binary output is also useful for operating system and boot loader development.

The bin format supports multiple section names. For details of how NASM handles sectionshin the
format, see section 7.1.3.

Using thebin format puts NASM by default into 16—bit mode (see section 6.1). In order fmirusto write
32-bit or 64-bit code, such as an OS kernel, you need to explicitly issBET®&82 orBITS 64 directive.

bin has no default output file name extension: instead, it leaves your file name as it is once the original
extension has been removed. Thus, the default is for NASM to asseimipleg.asm into a binary file
calledbinprog

7.1.1 ORGBIinary File Program Origin

Thebin format provides an additional directive to the list given in chapt@R85 The function of th@©ORG
directive is to specify the origin address which NASM will assume the program begins at when it is loaded
into memory.

For example, the following code will generate the longwax@0000104 :

org 0x100
dd label
label:

Unlike the ORGdirective provided by MASM-compatible assemblers, which allows you to jump around in
the object file and overwrite code you have already generated, NASRIGloes exactly what the directive
says:origin. Its sole function is to specify one offset which is added to all internal address references within
the section; it does not permit any of the trickery that MASM'’s version does. See section 12.1.3 for further
comments.

7.1.2 bin Extensions to theSECTIONDirective

Thebin output format extends tHRECTION (or SEGMEN)Tdirective to allow you to specify the alignment
requirements of segments. This is done by appendinglti@N qualifier to the end of the section—definition
line. For example,

section .data align=16
switches to the sectiadata and also specifies that it must be aligned on a 16-byte boundary.

The parameter tBLIGN specifies how many low bits of the section start address must be forced to zero. The
alignment value given may be any power of two.

7.1.3 Multisection Support for thebin Format

Thebin format allows the use of multiple sections, of arbitrary names, besides the "kbextn", .data
and.bss names.

« Sections may be designatebgbits or nobits . Default isprogbits (exceptbss , which defaults
tonobits , of course).

« Sections can be aligned at a specified boundary following the previous sectioaligiith , or at an
arbitrary byte—granular position withart=

e Sections can be given a virtual start address, which will be used for the calculation of all memory
references within that section witart=

e Sections can be ordered usifojjows=<section> or vfollows=<section> as an alternative to
specifying an explicit start address.

e Arguments toorg, start , vstart , andalign= are critical expressions. See section 3.8. E.g.
align=(1 << ALIGN_SHIFT) —ALIGN_SHIFT must be defined before it is used here.

« Any code which comes before an expliGECTION directive is directed by default into theext
section.

« If an ORGstatement is not give@QRG 0is used by default.

« The .bss section will be placed after the lagrogbits section, unlessstart= , vstart=
follows= , orvfollows= has been specified.

« All sections are aligned on dword boundaries, unless a different alignment has been specified.
« Sections may not overlap.

* NASM creates theection.<secname>.start for each section, which may be used in your code.

7.1.4 Map Files

Map files can be generated+fibin format by means of thgnap] option. Map types oéll (default),
brief , sections , segments , or symbols may be specified. Output may be directedstdout
(default), stderr , or a specified file. E.gmap symbols myfile.map] . No "user form" exists, the
square brackets must be used.

85

7.2 ith : Intel Hex Output

Theith file format produces Intel hex—format files. Just astie format, this is a flat memory image
format with no support for relocation or linking. It is usually used with ROM programmers and similar
utilities.

All extensions supported by tln file format is also supported by thik file format.

ith provides a default output file—name extensionthf

7.3 srec : Motorola S—Records Output

Thesrec file format produces Motorola S—records files. Just abihe format, this is a flat memory image
format with no support for relocation or linking. It is usually used with ROM programmers and similar
utilities.

All extensions supported by tlén file format is also supported by teeec file format.

srec provides a default output file—name extensiorsaéc

7.4 obj : Microsoft OMF Object Files

The obj file format (NASM calls itobj rather thanomf for historical reasons) is the one produced by
MASM and TASM, which is typically fed to 16—bit DOS linkers to produeXE files. It is also the format
used by OS/2.

obj provides a default output file—name extensiorobf .

obj is not exclusively a 16-bit format, though: NASM has full support for the 32-bit extensions to the
format. In particular, 32-bibbj format files are used by Borland’s Win32 compilers, instead of using
Microsoft's newemwin32 object file format.

The obj format does not define any special segment names: you can call your segments anything you like.
Typical names for segmentsabj format files aresCODEDATAandBSS

If your source file contains code before specifying an ex@EGMENTirective, then NASM will invent its
own segment called NASMDEFSEr you.

When you define a segment inalpj file, NASM defines the segment name as a symbol as well, so that you
can access the segment address of the segment. So, for example:

segment data
dvar: dw 1234

segment code

function:
mov ax,data ; get segment address of data
mov ds,ax ; and move it into DS
inc word [dvar] ; now this reference will work
ret

The obj format also enables the use of BiEGandWRToperators, so that you can write code which does
things like

extern foo

mov ax,seg foo ; get preferred segment of foo
mov ds,ax

mov ax,data ; a different segment

mov es,ax

mov ax,[ds:foo] ; this accesses ‘foo’

mov [es:foo wrt data],bx ; so does this

7.4.1 obj Extensions to theSEGMENTDirective

The obj output format extends thEEGMENTor SECTION directive to allow you to specify various
properties of the segment you are defining. This is done by appending extra qualifiers to the end of the
segment-definition line. For example,

segment code private align=16

defines the segmemide , but also declares it to be a private segment, and requires that the portion of it
described in this code module must be aligned on a 16—byte boundary.

The available qualifiers are:

PRIVATE, PUBLIC, COMMONMNNd STACK specify the combination characteristics of the segment.
PRIVATE segments do not get combined with any others by the liRkéBLIC andSTACKsegments get
concatenated together at link time; 22@MMOBEgments all get overlaid on top of each other rather than
stuck end-to—end.

ALIGN is used, as shown above, to specify how many low bits of the segment start address must be forced
to zero. The alignment value given may be any power of two from 1 to 4096; in reality, the only values
supported are 1, 2, 4, 16, 256 and 4096, so if 8 is specified it will be rounded up to 16, and 32, 64 and 128
will all be rounded up to 256, and so on. Note that alignment to 4096-byte boundaries is a PharLap
extension to the format and may not be supported by all linkers.

CLASScan be used to specify the segment class; this feature indicates to the linker that segments of the
same class should be placed near each other in the output file. The class name can be any word, e.g.
CLASS=CODE

OVERLAY like CLASS is specified with an arbitrary word as an argument, and provides overlay
information to an overlay—capable linker.

Segments can be declaredUS8E16 or USE32, which has the effect of recording the choice in the object
file and also ensuring that NASM'’s default assembly mode when assembling in that segment is 16-bit or
32-bit respectively.

When writing OS/2 object files, you should declare 32-bit segmerfd.A$, which causes the default
segment base for anything in the segment to be the special frddp and also defines the group if it is
not already defined.

The obj file format also allows segments to be declared as having a pre-defined absolute segment
address, although no linkers are currently known to make sensible use of this feature; nevertheless, NASM
allows you to declare a segment suctBEEMENT SCREEN ABSOLUTE=0xB80id you need to. The
ABSOLUTEandALIGN keywords are mutually exclusive.

NASM'’s default segment attributes &#&/BLIC, ALIGN=1, no class, no overlay, aiSE16.

87

7.4.2 GROUPDefining Groups of Segments

Theobj format also allows segments to be grouped, so that a single segment register can be used to refer to
all the segments in a group. NASM therefore supplieSROURIirective, whereby you can code

segment data
; some data
segment bss
; some uninitialized data

group dgroup data bss

which will define a group calledgroup to contain the segmentkata andbss . Like SEGMENTGROUP
causes the group name to be defined as a symbol, so that you can refer to aveariabbbhedata segment
asvar wrt data or asvar wrt dgroup , depending on which segment value is currently in your
segment register.

If you just refer tovar , however, andar is declared in a segment which is part of a group, then NASM will
default to giving you the offset ofar from the beginning of theroup not the segment Therefore
SEG var , also, will return the group base rather than the segment base.

NASM will allow a segment to be part of more than one group, but will generate a warning if you do this.
Variables declared in a segment which is part of more than one group will default to being relative to the first
group that was defined to contain the segment.

A group does not have to contain any segments; you can still WiRKeeferences to a group which does not
contain the variable you are referring to. OS/2, for example, defines the speciaFgfouvith no segments
in it.

7.4.3 UPPERCASHisabling Case Sensitivity in Output

Although NASM itself is case sensitive, some OMF linkers are not; therefore it can be useful for NASM to
output single—case object files. TRPPERCASHormat-specific directive causes all segment, group and
symbol names that are written to the object file to be forced to upper case just before being written. Within a
source file, NASM is still case—sensitive; but the object file can be written entirely in upper case if desired.

UPPERCASIHs used alone on a line; it requires no parameters.

7.4.4 IMPORT Importing DLL Symbols

The IMPORT format-specific directive defines a symbol to be imported from a DLL, for use if you are
writing a DLL’s import library in NASM. You still need to declare the symboEX§ ERNas well as using
theIMPORT(directive.

The IMPORTdirective takes two required parameters, separated by white space, which are (respectively) the
name of the symbol you wish to import and the name of the library you wish to import it from. For example:

import WSAStartup wsock32.dll

A third optional parameter gives the name by which the symbol is known in the library you are importing it
from, in case this is not the same as the name you wish the symbol to be known by to your code once you
have imported it. For example:

import asyncsel wsock32.dll WSAAsyncSelect
7.4.5 EXPORTExporting DLL Symbols

The EXPORTformat-specific directive defines a global symbol to be exported as a DLL symbol, for use if
you are writing a DLL in NASM. You still need to declare the symbolGA©BALas well as using the
EXPORTdirective.

EXPORTtakes one required parameter, which is the name of the symbol you wish to export, as it was defined
in your source file. An optional second parameter (separated by white space from the first) giwéertiad

name of the symbol: the name by which you wish the symbol to be known to programs using the DLL. If this
name is the same as the internal name, you may leave the second parameter off.

Further parameters can be given to define attributes of the exported symbol. These parameters, like the
second, are separated by white space. If further parameters are given, the external name must also be
specified, even if it is the same as the internal name. The available attributes are:

e resident indicates that the exported name is to be kept resident by the system loader. This is an
optimisation for frequently used symbols imported by name.

« nodata indicates that the exported symbol is a function which does not make use of any initialized data.

« parm=NNN whereNNNis an integer, sets the number of parameter words for the case in which the symbol
is a call gate between 32-bit and 16-bit segments.

e An attribute which is just a number indicates that the symbol should be exported with an identifying
number (ordinal), and gives the desired number.

For example:

export myfunc

export myfunc TheRealMoreFormalLookingFunctionName
export myfunc myfunc 1234 ; export by ordinal

export myfunc myfunc resident parm=23 nodata

7.4.6 ..start : Defining the Program Entry Point

OMFlinkers require exactly one of the object files being linked to define the program entry point, where
execution will begin when the program is run. If the object file that defines the entry point is assembled using
NASM, you specify the entry point by declaring the special symbtart at the point where you wish
execution to begin.

7.4.7 obj Extensions to theEXTERNDiIrective
If you declare an external symbol with the directive
extern foo

then references such amv ax,foo will give you the offset ofoo from its preferred segment base (as
specified in whichever modufeo is actually defined in). So to access the contenfemfyou will usually
need to do something like

mov ax,seg foo ; get preferred segment base
mov es,ax ; move it into ES
mov ax,[es:foo] ;and use offset ‘foo’ from it

89

90

This is a little unwieldy, particularly if you know that an external is going to be accessible from a given
segment or group, salgroup . So ifDSalready containedgroup , you could simply code

mov ax,[foo wrt dgroup]

However, having to type this every time you want to acfess can be a pain; so NASM allows you to
declarefoo in the alternative form

extern foo:wrt dgroup

This form causes NASM to pretend that the preferred segment bédse ofs in factdgroup ; so the
expressiorseg foo will now returndgroup , and the expressidno is equivalent tdoo wrt dgroup

This default¥WRTmechanism can be used to make externals appear to be relative to any group or segment in
your program. It can also be applied to common variables: see section 7.4.8.

7.4.8 obj Extensions to theCOMMORDirective

7.5

The obj format allows common variables to be either near or far; NASM allows you to specify which your
variables should be by the use of the syntax

common nearvar 2:near ; ‘nearvar’ is a near common
common farvar 10:far ; and ‘farvar’ is far

Far common variables may be greater in size than 64Kb, and so the OMF specification says that they are
declared as a number elementof a given size. So a 10-byte far common variable could be declared as ten
one-hyte elements, five two—byte elements, two five—byte elements or one ten-byte element.

SomeOMFlinkers require the element size, as well as the variable size, to match when resolving common
variables declared in more than one module. Therefore NASM must allow you to specify the element size on
your far common variables. This is done by the following syntax:

common c_5hby2 10:far5 ; two five—byte elements
common c_2by5 10:far 2 ; five two—byte elements

If no element size is specified, the default is 1. AlsoRARkeyword is not required when an element size is
specified, since only far commons may have element sizes at all. So the above declarations could equivalently
be

common c_5by2 10:5 ; two five—byte elements
common c_2by5 10:2 ; five two—byte elements

In addition to these extensions, t@®MMONMNirective inobj also supports defaul¥RTspecification like
EXTERNdoes (explained in section 7.4.7). So you can also declare things like

common foo 10:wrt dgroup
common bar 16:far 2:wrt data
common baz 24:wrt data:6

win32 : Microsoft Win32 Object Files

The win32 output format generates Microsoft Win32 object files, suitable for passing to Microsoft linkers
such as Visual C++. Note that Borland Win32 compilers do not use this format, bobjusastead (see
section 7.4).

win32 provides a default output file—name extensiorobf .

Note that although Microsoft say that Win32 object files follow @@FF(Common Object File Format)
standard, the object files produced by Microsoft Win32 compilers are not compatible with COFF linkers such
as DJGPP’s, and vice versa. This is due to a difference of opinion over the precise semantics of PC-relative
relocations. To produce COFF files suitable for DJGPP, use NA8Mfs output format; conversely, the

coff format does not produce object files that Win32 linkers can generate correct output from.

7.5.1 win32 Extensions to theSECTIONDirective

Like theobj format,win32 allows you to specify additional information on tBECTIONdirective line, to

control the type and properties of sections you declare. Section types and properties are generated
automatically by NASM for the standard section namtest , .data and.bss , but may still be
overridden by these qualifiers.

The available qualifiers are:

e code, or equivalentiytext , defines the section to be a code section. This marks the section as readable
and executable, but not writable, and also indicates to the linker that the type of the section is code.

« data andbss define the section to be a data section, analogouslgde . Data sections are marked as
readable and writable, but not executabkta declares an initialized data section, whetess declares
an uninitialized data section.

e rdata declares an initialized data section that is readable but not writable. Microsoft compilers use this
section to place constants in it.

« info defines the section to be an informational section, which is not included in the executable file by the
linker, but may (for example) pass informatimrthe linker. For example, declaring erflo —type section
called.drectve causes the linker to interpret the contents of the section as command-line options.

e align= , used with a trailing number as abj , gives the alignment requirements of the section. The
maximum you may specify is 64: the Win32 object file format contains no means to request a greater
section alignment than this. If alignment is not explicitly specified, the defaults are 16-byte alignment for
code sections, 8-byte alignment for rdata sections and 4-byte alignment for data (and BSS) sections.
Informational sections get a default alignment of 1 byte (no alignment), though the value does not matter.

The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text code align=16
section .data data align=4
section .rdata rdata align=8
section .bss bss align=4

Any other section name is treated by default ltkeat

7.5.2 win32 : Safe Structured Exception Handling

Among other improvements in Windows XP SP2 and Windows Server 2003 Microsoft has introduced
concept of "safe structured exception handling." General idea is to collect handlers’ entry points in designated
read-only table and have alleged entry point verified against this table prior exception control is passed to the
handler. In order for an executable module to be equipped with such "safe exception handler table," all object
modules on linker command line has to comply with certain criteria. If one single module among them does
not, then the table in question is omitted and above mentioned run-time checks will not be performed for
application in question. Table omission is by default silent and therefore can be easily overlooked. One can
instruct linker to refuse to produce binary without such table by passifassgeh command line option.

91

92

Without regard to this run-time check merits it's natural to expect NASM to be capable of generating
modules suitable fatsafeseh linking. From developer’s viewpoint the problem is two—fold:

« how to adapt modules not deploying exception handlers of their own;

« how to adapt/develop modules utilizing custom exception handling;

Former can be easily achieved with any NASM version by adding following line to source code:
$@feat.00 equ 1

As of version 2.03 NASM adds this absolute symbol automatically. If it's not already present to be precise.
l.e. if for whatever reason developer would choose to assign another value in source file, it would still be
perfectly possible.

Registering custom exception handler on the other hand requires certain "magic." As of version 2.03
additional directive is implementedafeseh , which instructs the assembler to produce appropriately
formatted input data for above mentioned "safe exception handler table." Its typical use would be:

section .text
extern _MessageBoxA@16
%if _ NASM_VERSION_ID__ >=0x02030000
safeseh handler ; register handler as "safe handler"
%endif
handler:
push DWORD 1 ; MB_OKCANCEL
push DWORD caption
push DWORD text
push DWORDO0
call _MessageBoxA@16
sub eax,1 ;incidentally suits as return value
; for exception handler
ret
global _main
_main:
push DWORD handler
push DWORD [fs:0]
mov DWORD [fs:0],esp ; engage exception handler
XOr eax,eax
mov eax,DWORDJ[eax] ; cause exception
pop DWORD [fs:0] ;disengage exception handler
add esp4
ret
text: db 'OK to rethrow, CANCEL to generate core dump’,0
caption:db 'SEGV’,0

section .drectve info
db '/defaultlib:user32.lib /defaultlib:msvert.lib ’

As you might imagine, it's perfectly possible to produce .exe binary with "safe exception handler table" and
yet engage unregistered exception handler. Indeed, handler is engaged by simply manjfsi@iting
location at run—time, something linker has no power over, run-time that is. It should be explicitly mentioned
that such failure to register handler's entry point wstifeseh directive has undesired side effect at

run—time. If exception is raised and unregistered handler is to be executed, the application is abruptly
terminated without any notification whatsoever. One can argue that system could at least have logged some
kind "non-safe exception handler in x.exe at address n" message in event log, but no, literally no notification
is provided and user is left with no clue on what caused application failure.

Finally, all mentions of linker in this paragraph refer to Microsoft linker version 7.x and later. Presence of
@feat.00 symbol and input data for "safe exception handler table" causes no backward incompatibilities
and "safeseh" modules generated by NASM 2.03 and later can still be linked by earlier versions or
non—-Microsoft linkers.

7.5.3 Debugging formats for Windows

7.6

The win32 andwin64 formats support the Microsoft CodeView debugging format. Currently CodeView
version 8 format is supportedv8), but newer versions of the CodeView debugger should be able to handle
this format as well.

win64 : Microsoft Win64 Object Files

The win64 output format generates Microsoft Win64 object files, which is nearly 100% identical to the
win32 object format (section 7.5) with the exception that it is meant to target 64-bit code and the x86-64
platform altogether. This object file is used exactly the same awitt32 object format (section 7.5), in
NASM, with regard to this exception.

7.6.1 win64 : Writing Position—Independent Code

While REL takes good care of RIP-relative addressing, there is one aspect that is easy to overlook for a
Win64 programmer: indirect references. Consider a switch dispatch table:

jmp qword [dsptch+rax*8]

dsptch: dq caseO
dg casel

Even a novice Win64 assembler programmer will soon realize that the code is not 64-bit savvy. Most notably
linker will refuse to link it with

'ADDR32’ relocation to ".text’ invalid without /LARGEADDRESSAWARE:NO
So [s]he will have to split jmp instruction as following:

lea rbx,[rel dsptch]
jmp gword [rbx+rax*8]

What happens behind the scene is that effective addréess irs encoded relative to instruction pointer, or in
perfectly position—-independent manner. But this is only part of the problem! Trouble is that in .dll context
caseN relocations will make their way to the final module and might have to be adjusted at .dll load time. To
be specific when it can't be loaded at preferred address. And when this occurs, pages with such relocations
will be rendered private to current process, which kind of undermines the idea of sharing .dll. But no worry,
it’s trivial to fix:

lea rbx,[rel dsptch]

add rbx,[rbx+rax*8]

jmp rbx

93

94

dsptch: dqg caseO-dsptch
dg casel-dsptch

NASM version 2.03 and later provides another alternatint,..imagebase operator, which returns

offset from base address of the current image, be it .exe or .dll module, therefore the name. For those
acquainted with PE-COFF format base address denotes stAfiAGIEE_DOS HEADERtructure. Here is

how to implement switch with these image-relative references:

lea rbx,[rel dsptch]

mov eax,[rbx+rax*4]

sub rbx,dsptch wrt ..imagebase
add rbx,rax

jmp rbx

dsptch: dd caseO wrt ..imagebase
dd casel wrt..imagebase

One can argue that the operator is redundant. Indeed, snippet before last works just fine with any NASM
version and is not even Windows specific... The real reason for implemewntingmagebase will
become apparent in next paragraph.

It should be noted thairt ..imagebase is defined as 32-bit operand only:
dd label wrt ..imagebase ; ok
dg label wrt ..imagebase ; bad
mov eax,label wrt ..imagebase ; ok
mov rax,label wrt ..imagebase ; bad

7.6.2 win64 : Structured Exception Handling

Structured exception handing in Win64 is completely different matter from Win32. Upon exception program
counter value is noted, and linker—generated table comprising start and end addresses of all the functions [in
given executable module] is traversed and compared to the saved program counter. Thus so called
UNWIND_ INFGstructure is identified. If it's not found, then offending subroutine is assumed to be "leaf" and
just mentioned lookup procedure is attempted for its caller. In Win64 leaf function is such function that does
not call any other functionor modifies any Win64 non-volatile registers, including stack pointer. The latter
ensures that it's possible to identify leaf function’s caller by simply pulling the value from the top of the stack.

While majority of subroutines written in assembler are not calling any other function, requirement for
non-volatile registers’ immutability leaves developer with not more than 7 registers and no stack frame,
which is not necessarily what [s]he counted with. Customarily one would meet the requirement by saving
non-volatile registers on stack and restoring them upon return, so what can go wrong? If [and only if] an
exception is raised at run—time and WhlWIND_INFOstructure is associated with such "leaf" function, the

stack unwind procedure will expect to find caller’s return address on the top of stack immediately followed by
its frame. Given that developer pushed caller’s non-volatile registers on stack, would the value on top point at
some code segment or even addressable space? Well, developer can attempt copying caller’s return address t
the top of stack and this would actually work in some very specific circumstances. But unless developer can
guarantee that these circumstances are always met, it's more appropriate to assume worst case scenario, i.€
stack unwind procedure going berserk. Relevant question is what happens then? Application is abruptly
terminated without any natification whatsoever. Just like in Win32 case, one can argue that system could at
least have logged "unwind procedure went berserk in x.exe at address n" in event log, but no, no trace of
failure is left.

Now, when we understand significance of idWIND_INFOstructure, let's discuss what's in it and/or how

it's processed. First of all it is checked for presence of reference to custom language—specific exception
handler. If there is one, then it's invoked. Depending on the return value, execution flow is resumed
(exception is said to be "handleddr; rest of UNWIND_INFOstructure is processed as following. Beside
optional reference to custom handler, it carries information about current callee’'s stack frame and where
non-volatile registers are saved. Information is detailed enough to be able to reconstruct contents of caller's
non-volatile registers upon call to current callee. And so caller's context is reconstructed, and then unwind
procedure is repeated, i.e. anoth®WIND _INFOstructure is associated, this time, with caller’s instruction
pointer, which is then checked for presence of reference to language—specific handler, etc. The procedure is
recursively repeated till exception is handled. As last resort system "handles" it by generating memory core
dump and terminating the application.

As for the moment of this writing NASM unfortunately does not facilitate generation of above mentioned

detailed information about stack frame layout. But as of version 2.03 it implements building blocks for

generating structures involved in stack unwinding. As simplest example, here is how to deploy custom
exception handler for leaf function:

default rel
section .text
extern MessageBoxA

handler:
sub rsp,40
mov rcx,0

lea rdx,[text]
lea r8,[caption]
mov 19,1 ; MB_OKCANCEL
call MessageBoxA
sub eax,1 ;incidentally suits as return value
; for exception handler
add rsp,40
ret
global main
main:
XOr rax,rax
mov rax,QWORD][rax] ; cause exception
ret
main_end:
text: db 'OK to rethrow, CANCEL to generate core dump’,0
caption:db 'SEGV’,0

section .pdata rdata align=4
dd main wrt ..imagebase
dd main_end wrt ..imagebase
dd xmain wrt ..imagebase
section .xdata rdata align=8
xmain: db 9,0,0,0
dd handler wrt ..imagebase
section .drectve info
db ’/defaultlib:user32.lib /defaultlib:msvcert.lib ’

95

96

What you see inpdata section is element of the "table comprising start and end addresses of function”
along with reference to associatetNWIND_INFOstructure. And what you see imdata section is
UNWIND_INFO structure describing function with no frame, but with designated exception handler.
References arerequired to be image-relative (which is the real reason for implementing
wrt ..imagebase operator). It should be noted thatdata align=n , as well as

wrt ..imagebase , are optional in these two segments’ contexts, i.e. can be omitted. Latter meafls that
32-bit references, not only above listed required ones, placed into these two segments turn out
image-relative. Why is it important to understand? Developer is allowed to append handler—specific data to
UNWIND_INFOstructure, and if [s]he adds a 32-bit reference, then [s]he will have to remember to adjust its
value to obtain the real pointer.

As already mentioned, in Win64 terms leaf function is one that does not call any other faoctioodifies

any non-volatile register, including stack pointer. But it's not uncommon that assembler programmer plans to
utilize every single register and sometimes even have variable stack frame. Is there anything one can do with
bare building blocks? I.e. besides manually composing fully—fletldéd/IND_INFOstructure, which would

surely be considered error—prone? Yes, there is. Recall that exception handler is called first, before stack
layout is analyzed. As it turned out, it's perfectly possible to manipulate current callee’s context in custom
handler in manner that permits further stack unwinding. General idea is that handler would not actually
"handle" the exception, but instead restore callee’s context, as it was at its entry point and thus mimic leaf
function. In other words, handler would simply undertake part of unwinding procedure. Consider following
example:

function:
mov rax,rsp ; copy rsp to volatile register
push r15 ; save non-volatile registers
push rbx
push rbp
mov rll,rsp ; prepare variable stack frame
sub rll,rcx
and rl1,-64
mov QWORDI[r11],rax ; check for exceptions
mov rsp,r1l ; allocate stack frame
mov QWORDIrsp],rax ; save original rsp value
magic_point:

mov r11,QWORDIrsp] ; pull original rsp value
mov rbp,QWORDI[r11-24]

mov rbx,QWORD[r11-16]

mov r15,QWORD[r11-8]

mov rsp,r1l ; destroy frame

ret

The keyword is that up tenagic_point original rsp value remains in chosen volatile register and no
non-volatile register, except fosp , is modified. While pasiagic_point rsp remains constant till the
very end of thdunction . In this case custom language—-specific exception handler would look like this:

EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
CONTEXT *context,DISPATCHER_CONTEXT *disp)
{ ULONG®64 *rsp;
if (context—>Rip<(ULONG64)magic_point)
rsp = (ULONG64 *)context—>Rax;

else

{ rsp = ((ULONG64 **)context—>Rsp)[0];
context—>Rbp = rsp[-3];
context—>Rbx = rsp[-2];
context—>R15 = rsp[-1];

}
context—>Rsp = (ULONG64)rsp;

memcpy (disp—>ContextRecord,context,sizeof(CONTEXT));
RtlVirtualUnwind(UNW_FLAG_NHANDLER,disp—>ImageBase,
dips—>ControlPc,disp—>FunctionEntry,disp—>ContextRecord,
&disp—>HandlerData,&disp—>EstablisherFrame,NULL);
return ExceptionContinueSearch;

}

As custom handler mimics leaf function, correspondiidWIND_INFOstructure does not have to contain
any information about stack frame and its layout.

7.7 coff : Common Object File Format
Thecoff output type producegSOFFobject files suitable for linking with the DJGPP linker.
coff provides a default output file—name extensioroof

The coff format supports the same extensions toSEE€TION directive aswin32 does, except that the
align qualifier and thénfo section type are not supported.

7.8 macho32 and macho64: Mach Obiject File Format

The macho32 and macho64 output formts produces Mach-O object files suitable for linking with the
MacOS X linkermacho is a synonym fomacho32.

macho provides a default output file—name extensioroof

7.8.1 macho extensions to theSECTIONDirective

The macho output format specifies section names in the formagthentsectiori. No spaces are allowed
around the comma. The following flags can also be specified:

« data - this section contains initialized data items

e text - this section contains code exclusively

* mixed - this section contains both code and data

* bss - this section is uninitialized and filled with zero

o zerofill — same abss

e no_dead_strip —inhibit dead code stripping for this section
 live_support — set the live support flag for this section
 strip_static_syms — strip static symbols for this section

« align= alignment— specify section alignment

97

The default isdata , unless the section name _istext or __bss in which case the default text or
bss , respectively.

For compatibility with other Unix platforms, the following standard names are also supported:

dext =_ TEXT,__text text
.rodata = DATA, const data
.data __ DATA, data data
.bss __DATA, bss bss

If the .rodata section contains no relocations, it is instead put into tHEEXT, const section unless
this section has already been specified explicitly. However, it is probably better to specify
__TEXT, const and__ DATA, const explicitly as appropriate.

7.8.2 Thread Local Storage in Mach—Omacho special symbols andVRT
Mach-0 defines the following special symbols that can be used on the right-hand sid&/Bfftiperator:
« .tlvp isused to specify access to thread-local storage.

e ..gotpcrel is used to specify references to the Global Offset Table. The GOT is supported in the
macho64 format only.

7.8.3 macho specfic directivesubsections_via_symbols

The directivesubsections_via_symbols sets theMH_SUBSECTIONS_VIA_SYMBOLfag in the
Mach—-O header, which tells the linker that the symbols in the file matches the conventions required to allow
for link—time dead code elimination.

This directive takes no arguments.

This is a macro implemented a$oragma. It can also be specified in i#pragma form, in which case it
will not affect non-Mach-0O builds of the same source code:

%pragma macho subsections_via_symbols

7.8.4 macho specfic directiveno_dead_strip

The directive no_dead_strip sets the Mach-C8H_NO_DEAD_STRIPsection flag on the section
containing a a specific symbol. This directive takes a list of symbols as its arguments.

This is a macro implemented a$4aoragma. It can also be specified in i#pragma form, in which case it
will not affect non-Mach-0O builds of the same source code:

%pragma macho no_dead_strip symbol...

7.9 elf32 ,elf64 ,elfx32 : Executable and Linkable Format Object Files

Theelf32 , elf64 andelfx32 output formats generatel F32 and ELF64 (Executable and Linkable
Format) object files, as used by Linux as well as Unix System V, including Solaris x86, UnixWare and SCO
Unix. elf provides a default output file—name extensioroofelf is a synonym foelf32

Theelfx32 format is used for the x32 ABI, which is a 32—-bit ABI with the CPU in 64—bit mode.
7.9.1 ELF specific directiveosabi

The ELF header specifies the application binary interface for the target operating system (OSABI). This field
can be set by using tlisabi directive with the numeric value (0-255) of the target system. If this directive

is not used, the default value will be "UNIX System V ABI" (0) which will work on most systems which
support ELF.

7.9.2 elf extensions to theSECTIONDirective

Like theobj format,elf allows you to specify additional information on t8&CTION directive line, to
control the type and properties of sections you declare. Section types and properties are generated
automatically by NASM for the standard section names, but may still be overridden by these qualifiers.

The available qualifiers are:

e alloc defines the section to be one which is loaded into memory when the program nsallwc
defines it to be one which is not, such as an informational or comment section.

« exec defines the section to be one which should have execute permission when the program is run.
noexec defines it as one which should not.

e write defines the section to be one which should be writable when the programriewuite defines
it as one which should not.

e progbits defines the section to be one with explicit contents stored in the object file: an ordinary code
or data section, for examplegbits defines the section to be one with no explicit contents given, such as
a BSS section.

« align= , used with a trailing number asabj , gives the alignment requirements of the section.
« tls defines the section to be one which contains thread local variables.

The defaults assumed by NASM if you do not specify the above qualifiers are:

section .text progbits alloc exec nowrite align=16
section .rodata progbits alloc noexec nowrite align=4
section .Irodata progbits alloc noexec nowrite align=4
section .data progbits alloc noexec write align=4
section .Idata progbits alloc noexec write align=4
section .bss nobits alloc noexec write align=4
section .lbss nobits alloc noexec write align=4
section .tdata progbits alloc noexec write align=4 tls
section .thss nobits alloc noexec write align=4 tls
section .comment progbits noalloc noexec nowrite align=1
section other progbits alloc noexec nowrite align=1

(Any section name other than those in the above table is treated by defaathéke in the above table.
Please note that section names are case sensitive.)

7.9.3 Position—-Independent Codemacho Special Symbols andVRT

SinceELF does not support segment-base referencedViR€perator is not used for its normal purpose;
therefore NASM'self output format makes use WRTfor a different purpose, namely the PIC-specific
relocation types.

elf defines five special symbols which you can use as the right-hand sideVéRffoperator to obtain PIC
relocation types. They aregotpc , ..gotoff , ..got , .plt and ..sym . Their functions are
summarized here:

99

100

« Referring to the symbol marking the global offset table base wsinggotpc will end up giving the
distance from the beginning of the current section to the global offset table.
(_GLOBAL_OFFSET_TABLE s the standard symbol name used to refer to the GOT.) So you would then
need to ad&$ to the result to get the real address of the GOT.

« Referring to a location in one of your own sections usirng..gotoff will give the distance from the
beginning of the GOT to the specified location, so that adding on the address of the GOT would give the
real address of the location you wanted.

« Referring to an external or global symbol usimg ..got causes the linker to build an entrythe
GOT containing the address of the symbol, and the reference gives the distance from the beginning of the
GOT to the entry; so you can add on the address of the GOT, load from the resulting address, and end up
with the address of the symbol.

« Referring to a procedure name using ..plt causes the linker to build a procedure linkage table
entry for the symbol, and the reference gives the address of the PLT entry. You can only use this in
contexts which would generate a PC-relative relocation normally (i.e. as the destinatiéw fovr IMP),
since ELF contains no relocation type to refer to PLT entries absolutely.

« Referring to a symbol name usiagt ..sym causes NASM to write an ordinary relocation, but instead
of making the relocation relative to the start of the section and then adding on the offset to the symbol, it
will write a relocation record aimed directly at the symbol in question. The distinction is a necessary one
due to a peculiarity of the dynamic linker.

A fuller explanation of how to use these relocation types to write shared libraries entirely in NASM is given in
section 9.2.

7.9.4 Thread Local Storage in ELFelf Special Symbols andVRT

« In ELF32 mode, referring to an external or global symbol usirig.tisie causes the linker to build
an entryin the GOT containing the offset of the symbol within the TLS block, so you can access the value
of the symbol with code such as:

mov eax,[tid wrt ..tlsie]
mov [gs:eax],ebx

e In ELF64 or ELFx32 mode, referring to an external or global symbol wsihggottpoff causes
the linker to build an entrin the GOT containing the offset of the symbol within the TLS block, so you
can access the value of the symbol with code such as:

mov rax,[rel tid wrt ..gottpoff]
mov rcx,[fs:rax]

7.9.5elf Extensions to theGLOBALDirective

ELF object files can contain more information about a global symbol than just its address: they can contain
the size of the symbol and its type as well. These are not merely debugger conveniences, but are actually
necessary when the program being written is a shared library. NASM therefore supports some extensions to
the GLOBALdirective, allowing you to specify these features.

You can specify whether a global variable is a function or a data object by suffixing the name with a colon
and the wordunction ordata . (object is a synonym fodata .) For example:

global hashlookup:function, hashtable:data

exports the global symbblshlookup as a function andashtable as a data object.

Optionally, you can control the ELF visibility of the symbol. Just add one of the visibility keywords:
default ,internal , hidden , orprotected . The default islefault of course. For example, to make
hashlookup hidden:

global hashlookup:function hidden

You can also specify the size of the data associated with the symbol, as a numeric expression (which may
involve labels, and even forward references) after the type specifier. Like this:

global hashtable:data (hashtable.end — hashtable)
hashtable:

db this,that,theother ; some data here
.end:

This makes NASM automatically calculate the length of the table and place that information iRld~the
symbol table.

Declaring the type and size of global symbols is necessary when writing shared library code. For more
information, see section 9.2.4.

7.9.6 elf Extensions to theCOMMORNirective

ELF also allows you to specify alignment requirements on common variables. This is done by putting a
number (which must be a power of two) after the name and size of the common variable, separated (as usual)
by a colon. For example, an array of doublewords would benefit from 4-byte alignment:

common dwordarray 128:4

This declares the total size of the array to be 128 bytes, and requires that it be aligned on a 4-byte boundary.

7.9.7 16-bit code and ELF

The ELF32 specification doesn't provide relocations for 8— and 16-bit values, but thel&NInker adds

these as an extension. NASM can generate GNU-compatible relocations, to allow 16-bit code to be linked as
ELF using GNUId . If NASM is used with the-w+gnu—elf-extensions option, a warning is issued

when one of these relocations is generated.

7.9.8 Debug formats and ELF

ELF provides debug information BTABSandDWARFormats. Line number information is generated for all
executable sections, but please note that only the ".text" section is executable by default.

7.10 aout : Linux a.out Object Files

The aout format generatea.out object files, in the form used by early Linux systems (current Linux
systems use ELF, see section 7.9.) These differ from atbet object files in that the magic number in the
first four bytes of the file is different; also, some implementatiorsait , for example NetBSD’s, support
position—-independent code, which Linux’s implementation does not.

a.out provides a default output file—name extensioroof

a.out is a very simple object format. It supports no special directives, no special symbols, n&HESoof
WRT and no extensions to any standard directives. It supports only the three standard secticiextames
.data and.bss .

101

7.11

7.12

7.13

aoutb : NetBSD/FreeBSD/OpenBS[a.out Object Files

The aoutb format generatea.out object files, in the form used by the various fB®D Unix clones,
NetBSD, FreeBSD andOpenBSD For simple object files, this object format is exactly the sanmsoat

except for the magic number in the first four bytes of the file. Howeveratiwth format supports
position—-independent code in the same way aslftheformat, so you can use it to wrBSDshared libraries.

aoutb provides a default output file—name extensioroof

aoutb supports no special directives, no special symbols, and only the three standard sectiotexames
.data and .bss . However, it also supports the same use WRT as elf does, to provide
position—independent code relocation types. See section 7.9.3 for full documentation of this feature.

aoutb also supports the same extensions to Gh&BALdirective aself does: see section 7.9.5 for
documentation of this.

as86 : Minix/Linux as86 Object Files

The Minix/Linux 16-bit assembleas86 has its own non-standard object file format. Although its
companion linkerld86 produces something close to ordinaryut binaries as output, the object file
format used to communicate betwees86 andld86 is not itselfa.out .

NASM supports this format, just in case it is usefulaa86 . as86 provides a default output file—name
extension ofo .

as86 is a very simple object format (from the NASM user’s point of view). It supports no special directives,
no use oSEGor WRT and no extensions to any standard directives. It supports only the three standard section
namestext ,.data and.bss . The only special symbol supported.&art

rdf : Relocatable Dynamic Object File Format

Therdf output format produceRDOFFobject files.RDOFHRelocatable Dynamic Object File Format) is a
home-grown object-file format, designed alongside NASM itself and reflecting in its file format the internal
structure of the assembler.

RDOFFis not used by any well-known operating systems. Those writing their own systems, however, may
well wish to useRDOFFas their object format, on the grounds that it is designed primarily for simplicity and
contains very little file—header bureaucracy.

The Unix NASM archive, and the DOS archive which includes sources, both contaoffan subdirectory
holding a set of RDOFF utilities: an RDF